New Insights into Cosmology and the Galaxy-Halo Connection from non-linear Scales

Johannes Ulf Lange Yale University

Collaborators:

Frank van den Bosch, Andrew Zentner, Antonio Villarreal, Kuan Wang, Xiaohu Yang, Wentao Luo, Hong Guo

Galaxy Formation – A tale of two approaches

Simulations

- semi-analytic models (SAMs), hydro. simulations
- predict observables from first principles*
- *many free parameters (sub-grid physics) to tune

Empirical Modeling

- galaxy-dark matter halo connection through observations (reverse engineering)
- little galaxy physics priors
- can also constrain cosmology

Johannes Lange

BCG Seminar

Empirical Modeling - Basics

Empirical Modeling – A Success Story

Johannes Lange

BCG Seminar

Outline

- Empirical Modeling in galaxy surveys
- Clustering + Lensing Discrepancy in BOSS
- New Methods for Satellite Kinematics
- SDSS Constraints from Satellite Kinematics
- Future Work

Johannes Lange

BCG Seminar

Reconciling Clustering + Lensing

Galaxy Clustering – Indirect Halo Masses

Johannes Lange

BCG Seminar

Galaxy-Galaxy Lensing – Direct Halo Masses

Johannes Lange

BCG Seminar

Combining Clustering and Lensing

Johannes Lange

BCG Seminar

Dissecting the Lensing Discrepancy

Johannes Lange

BCG Seminar

Lensing Discrepancy – Baryonic feedback?

Lensing Discrepancy – Baryonic feedback?

Johannes Lange

BCG Seminar

Lensing Discrepancy – Assembly Bias?

Johannes Lange

BCG Seminar

Lensing Discrepancy – Assembly Bias?

Johannes Lange

BCG Seminar

Lensing Discrepancy – Cosmology?

Johannes Lange

BCG Seminar

Lensing Discrepancy – Cosmology?

Johannes Lange

BCG Seminar

Maturing Satellite Kinematics

Satellite Kinematics Recipe

- 1) Identify central and satellite candidates
- 2) Bin centrals in luminosity, color etc.
- 3) Stack satellites in each central bin
- 4) Measure velocity dispersion in each bin
- 5) Model galaxy-halo connection

BCG Seminar

Satellite Kinematics: Where are we now?

Yale University

Johannes Lange

BCG Seminar

Way of stacking satellites matters!

- not all centrals live in halos of same mass
- satellite weighting (sw): equal weight for each satellite
- host weighting (hw): equal weight for each central
- $\sigma_{hw}/\sigma_{sw} < 1$ measures scatter in halo mass

23

Ways to improve constraining power

BCG Seminar

Johannes Lange

 uncertainties estimated from mock catalogs 24

- σ_{sw} and σ_{hw} <u>highly</u> correlated
 - → better constraint on halo mass scatter

Fiber collisions are an issue!

Not correcting for fiber collisions leads to systematically underestimated halo masses.

Johannes Lange

BCG Seminar

Correcting for Bias of Analytical Model

 analytic model for velocity dispersion

```
\sigma^{2}(L_{1}, L_{2}) \approx \frac{\int_{L_{1}}^{L_{2}} \int_{0}^{\infty} w(L, M) \sigma_{\mathrm{ap}}^{2}(L, M) n_{\mathrm{h}}(M) \Phi_{\mathrm{c}}(L|M) dM dL}{\int_{L_{1}}^{L_{2}} \int_{0}^{\infty} w(L, M) n_{\mathrm{h}}(M) \Phi_{\mathrm{c}}(L|M) dM dL}
```

- various biases exist
- calibration with best fit model (recursive)

Yale University

Johannes Lange

Satellite kinematics constraints are close to unbiased and very competitive compared to clustering + lensing.

Satellite Kinematics in SDSS DR7

New Constraints from SDSS DR7

- DR7, galaxies with 0.02
 < z < 0.067, L > 10^{9.5}
- ~45,000 centrals,
 ~7,000 satellites
- red galaxies at fixed luminosity have more satellites/higher velocity dispersion

Johannes Lange

BCG Seminar

Model can accurately fit SDSS DR7

Johannes Lange

BCG Seminar

Mass-Luminosity Relation

- red centrals live in more massive halos than blue ones
- but, red and blue centrals have similar mass-luminosity relations
- solution: red fraction of centrals increases with halo mass

Halo mass is a main driver of galaxy quenching.

see also e.g. More+11, Zu+15, Mandelbaum+16

Johannes Lange

BCG Seminar

Comparison with previous studies

BCG Seminar

Johannes Lange

- Bias b ↔ Mass M, determines clustering
- sat. kin. in blue, other results from clustering/group cat.
- total mass increases with cen. luminosity

Results from sat. kin. are in good agreement with other studies.

Summary

- tension between results from (projected) clustering, lensing and satellite kinematics on small scales
- clustering + lensing tension unlikely explained by AGN feedback or assembly bias alone, tension with Planck CMB?
- matured satellite kinematics into competitive probe, good agreement with projected clustering results
- future work:
 - comparison lensing kinematics
 - stellar-to-halo mass relation and scatter
 - secondary galaxy / halo properties