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Motivation

I Next generation of surveys:
I Dark Energy Survey (DES),
I Pan-STARRS,
I Hyper-Suprime-Cam (HSC) survey,
I Large Synoptic Survey Telescope (LSST)

I . . . produce multi-epoch, multi-band, deep and highly
blended images

I How do we [optimally] detect and measure astronomical
objects in these image collections?
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Motivation – Going deep
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Motivation – for spectroscopic surveys

I For upcoming surveys:
I eBOSS
I Big-BOSS

I . . . we need 14,000 square degrees of deep, multi-band
imaging for target selection

I We might have to patch together existing and new surveys
from different instruments

I (eg, PTF for r-band, CFHT for u and g, KPNO for i, z)

I How do we [optimally] detect and measure astronomical
objects in these diverse image collections?
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Tradition

I Traditional approach: some variant of:
I make a canonical co-add

I detect and deblend on canonical co-add

I make a co-add for each band

I do forced photometry on each band’s co-add

I eg, CFHT-LS (Goranova et al. ; Gwyn, arXiv:1101.1084v2.), SDSS Stripe 82
(Annis, arXiv:1111.6619v2.; Huff, arXiv:1111.6958v1.)

I What’s wrong with tradition?

There is no such thing as an optimal co-add

http://terapix.iap.fr/cplt/T0006-doc.pdf
http://arxiv.org/abs/1101.1084v2
http://arxiv.org/abs/1111.6619v2
http://arxiv.org/abs/1111.6958v1
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The Problem With Tradition

For detection of point sources, no weighted sum of images
yields the total signal-to-noise available:

I Optimal point-source detection requires a matched filter

I Co-adding mixes the good- and bad-seeing images

I Can’t match them both with a single filter; mismatched filter
But. . .

I It is possible to build an optimal detection map (Kaiser 2004; Lang et

al. in prep) but it’s not really an image, and it has bad resolution
so isn’t good for deblending or galaxy shape
measurements.

I Take-home message: can do detection on co-adds, but
making measurements (of galaxy shapes and
brightnesses) on co-adds is fraught.
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Idea – the Tractor
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Simultaneous forward modeling



9

the Tractor Motivation Idea Implementation Results Future

On a single galaxy
I Grab a single galaxy from the SDSS catalog:

RA,Dec = (333.5550, 0.3644), r-band mag = 18.39;
deVaucouleurs profile: re = 0.7′′, ab = 0.43, φ = −136.1 deg
(in run 2728, camcol 4, field 236)

I What would that look like? At high res, with small PSF and no
noise:
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On a single galaxy
I Grab a single galaxy from the SDSS catalog:

RA,Dec = (333.5550, 0.3644), r-band mag = 18.39;
deVaucouleurs profile: re = 0.7′′, ab = 0.43, φ = −136.1 deg
(in run 2728, camcol 4, field 236)

I What would that look like? At SDSS resolution, with small PSF
and no noise (and SDSS WCS):
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On a single galaxy
I Grab a single galaxy from the SDSS catalog:

RA,Dec = (333.5550, 0.3644), r-band mag = 18.39;
deVaucouleurs profile: re = 0.7′′, ab = 0.43, φ = −136.1 deg
(in run 2728, camcol 4, field 236)

I What would that look like? At SDSS resolution, with the PSF
from run/camcol/field 2728/4/236, and no noise:
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On a single galaxy
I Grab a single galaxy from the SDSS catalog:

RA,Dec = (333.5550, 0.3644), r-band mag = 18.39;
deVaucouleurs profile: re = 0.7′′, ab = 0.43, φ = −136.1 deg
(in run 2728, camcol 4, field 236)

I What would that look like? In the actual SDSS image:
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On a whole image

I The SDSS catalog has stars, exponential galaxies,
deVaucouleurs galaxies, and composite (exp+deV)
galaxies:
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Noise model

I If our noise-free model were perfect, the only difference
between the model and real image would be noise (photon
noise from sky + source, readout noise)

I Pixelwise independent, ∼Gaussian noise
I Noise model: p(data|catalog) ∝ exp(−1

2 χ2)
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Multiple images

I Given a catalog and image calibration, we can predict a
model image

I A noise model lets us assign a probability to the observed
data given the model: usually chi-squared

I Multiple images? Produce model image for each image,
apply the per-image noise model, and multiply the
probabilities!



16

the Tractor Motivation Idea Implementation Results Future

Multiple images

SDSS 2728/4/236 SDSS 4868/4/31 CFHT-LS 850994p
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Multiple images

SDSS 2728/4/236 SDSS 4868/4/31 CFHT-LS 850994p
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Multiple bands

Some options:
I Share the galaxy shape parameters between the bands,

but fit separate magnitudes per band
I one image much deeper than the rest: it drives the fit and

you get roughly forced photometry

I Closer to forced photometry: fit on a canonical band, “pin”
the galaxy shapes, and then fit mags per band

I Fit separate galaxy shapes and mags per band
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Idea
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Idea
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Posterior probability

I Noise model gives us likelihood p(data | catalog, calib)

I We really want posterior p(catalog |data)

I Bayes to the rescue:

posterior =
likelihood × prior

evidence

p(catalog |data) =
p(data | catalog) p(catalog)

p(data)

and we can ignore p(data) here.

I Key: prior p(catalog): penalize unlikely individual objects,
and encourage simplicity in the catalog (number and
complexity of sources)

I Occam’s Razor for model selection



22

the Tractor Motivation Idea Implementation Results Future

Tuning

I So far, we are just rendering the SDSS catalog
I But since we have a scalar objective function,

p(catalog
∣∣ data)

we can optimize the catalog to better match the observed
images

I Instead of starting with the SDSS catalog, we could have
started from scratch

I We can also optimize the calibration parameters:

p(catalog, calib
∣∣ data)

or marginalize over them.
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Tuning structure

I Need to optimize the model structure as well as the
parameter values

I (number and type of sources; PSF, astrometry, and sky)

I Heuristics needed here!
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Implementation – Tuning parameters

Current optimization approach (naive):
I For each catalog parameter, take a small step
I Render the new model image and compute the finite

difference approximate derivative
I Build a big sparse matrix: Aij = dpixeli/dparamj
I Solve (least squares) (Aw)X = χ, with per-pixel standard

deviations w
I X is a parameter update
I Try to step in direction X , or X/2, X/4, . . .
I Repeat
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Implementation – Tuning structure

A naive version of model switching:

I try switching a star ⇔ exponential or deVaucouleurs galaxy
⇔ composite galaxy

I (or try creating a new source where there are positive
residuals)

I re-optimize everything after the change

I accept if posterior probability is better
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Implementation – Rendering model images

I Represent PSF as mixture of Gaussians (fit to pixelized
model via EM)

I Represent galaxy profiles (exp, deV) as mixtures of
Gaussians

I Convolution is analytic!
I Rendering models involves lots of Gaussian evaluations
I (GPU?)
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Example
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Example
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Example
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Example
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Example
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Example



33

the Tractor Motivation Idea Implementation Results Future

Next. . .

I CFHT CS82 + SDSS Stripe 82

I Schlegel’s Amazing Technicolor Dream Survey
(PTF + CFHT + KPNO)

I Hubble?
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Future work

I Annotating galaxy catalogs (easy)

I Sampling (easy-ish)

I Better sky (medium)

I Regularized PSF model (medium)

I Proposing catalog structural changes (medium)

I Flexible, regularized galaxy models (Bayesian
nonparametric) (medium?)

I Summarizing and propagating covariance (deep+hard)

I Layering cosmology on top (eg, weak lensing) (hard)
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Thanks!

Time for questions and discussion!


	the Tractor
	Motivation
	Idea
	Implementation
	Results
	Future


