Velocity Probe on Cosmology Tsz Yan LAM (IPMU, U of Tokyo)

UC Berkeley May 17 2011

Collaborators: Takahiro Nishimichi, Masahiro Takada, Naoki Yoshida (IPMU), Fabian Schmidt (Caltech)

Overview

Primordial non-Gaussianity

Dynamical mass estimate of massive clusters

Overview

Primordial non-Gaussianity

In this talk the local type primordial non-Gaussianity will be used as an illustration (f_{nl} denotes the strength of primordial non-Gaussianity).

Dynamical mass estimate of massive clusters

Overview

Primordial non-Gaussianity

In this talk the local type primordial non-Gaussianity will be used as an illustration (f_{nl} denotes the strength of primordial non-Gaussianity).

Dynamical mass estimate of massive clusters

Phase-space distribution as an estimate of cluster (dynamical) mass.

Mass measurement is crucial in cosmology.

Mass measurement is crucial in cosmology.

For massive clusters: weak gravitational lensing, X-ray, SZ.

Mass measurement is crucial in cosmology.

For massive clusters: weak gravitational lensing, X-ray, SZ.

Dynamics around massive clusters is sensitive to the mass enclosed --> dynamical mass estimates.

Mass measurement is crucial in cosmology.

 For massive clusters: weak gravitational lensing, X-ray, SZ.

Dynamics around massive clusters is sensitive to the mass enclosed --> dynamical mass estimates.

Possibility to test modified gravity.

Halos are aspherical – difficult to model.

Halos are aspherical – difficult to model.

Use lensing technique – stacking halos.

Halos are aspherical – difficult to model.

Use lensing technique – stacking halos.

After stacking can assume spherical symmetry.

- Halos are aspherical difficult to model.
- Use lensing technique stacking halos.
- After stacking can assume spherical symmetry.
- Use observable quantities to form the phase space distribution: line-of-sight velocity vs projected separation from halo center.

Stacking massive halos

 $N_{halo} = 1$

Stacking massive halos

 $N_{halo} = 10$

-5 4000 3000 -10 2000 -15 1000 VIOS 0 -20 -1000 -25 -2000 -30 -3000 -4000 10 12 6 14 8 2 0 4 r_{2d}

Lam et al. in preparation.

 $10^{14} \le M_{halo} \le 1.5 \times 10^{14}$

Lam et al. in preparation.

 $4 \times 10^{14} \le M_{halo} \le 5 \times 10^{15}$

Halo Model: split the regions into 1- and 2-halo terms.

Halo Model: split the regions into 1- and 2-halo terms.

I-halo terms: virial motions (non-linear)

Halo Model: split the regions into 1- and 2-halo terms.
 1-halo terms: virial motions (non-linear)
 2-halo terms: spherical collapse model

Virial motion: Maxwellian distribution.

Virial motion: Maxwellian distribution.

Projection to the line-of-sight direction: Gaussian.

Virial motion: Maxwellian distribution.

Projection to the line-of-sight direction: Gaussian.

Fitting formula for v_sigma (Evrard et al. 2008):

Virial motion: Maxwellian distribution_

Projection to the line-of-sight direction: Gaussian.

Fitting formula for v_sigma (Evrard et al. 2008):

$$\sigma_{\rm DM}(M,z) = \sigma_{\rm DM,15} \left[\frac{(1+z)^{3/2} M_{200b}}{10^{15} \rm M_{sun}} \right]^{\alpha}$$

 $\sigma_{\text{DM},15} = 880 \text{km/s and } \alpha = 0.355$ $M_{200b} = Mass of halo defined as 200 times background density$

2-halo term: Radial infalling

Infalling velocity predicted by spherical collapse model

BUT it does NOT work

2-halo term revisit

Need to add dispersion to the 2-halo term.

2-halo term revisit

- Need to add dispersion to the 2-halo term.
- In halo model, the 2-halo term is contributed by particles residing inside a secondary halo.

2-halo term revisit

- Need to add dispersion to the 2-halo term.
- In halo model, the 2-halo term is contributed by particles residing inside a secondary halo.
- Virial motion inside secondary halo.

Want to calculate an effective dispersion as a function of r_{3d} for a mass M_{halo} halo.

Want to calculate an effective dispersion as a function of r_{3d} for a mass M_{halo} halo.

$$\sigma_{v,\text{eff}}^{2}(r_{3d},M) = \frac{1}{\bar{w}} \int_{m_{\min}}^{m_{\max}} dm \int_{0}^{r_{\text{vir}}(m)} d^{3}y \ w(m,\vec{y};\vec{r}_{3d},M)\sigma_{v}^{2}(m,\vec{y}),$$
mass of secondary balo relative position of r_{3d} to the center of secondary balo

 $w(m, \vec{y}; \vec{r}_{3d}, M) = n(m)\rho_{\rm NFW}(|\vec{y}|)[1 + \xi_{hh}(|\vec{x}|, M, m)],$

 $\sigma_{\text{eff}}^2(r_{3d}, M_{\text{halo}})$

Look better, but still not matching numerical measurements

Halo-halo velocity

So far we assume secondary halo infalling motion is radial ONLY (only along line-of-separation).

Halo-halo velocity

So far we assume secondary halo infalling motion is radial ONLY (only along line-of-separation).

AND assume this radial velocity is described by spherical collapse model.

Halo-halo velocity

So far we assume secondary halo infalling motion is radial ONLY (only along line-of-separation).

- AND assume this radial velocity is described by spherical collapse model.
- Go to numerical simulations to check if it is true after stacking.

Halo-halo velocity: Perpendicular to the line of separation

Halo model: 1-halo and 2-halo terms.

Halo model: 1-halo and 2-halo terms.

I-halo: Evrard et al. (2008) fitting formula

- Halo model: 1-halo and 2-halo terms.
- I-halo: Evrard et al. (2008) fitting formula
- 2-halo: halo-halo velocity + virial motion inside secondary halo (assume no correlation between the two)

- Halo model: 1-halo and 2-halo terms.
- I-halo: Evrard et al. (2008) fitting formula
- 2-halo: halo-halo velocity + virial motion inside secondary halo (assume no correlation between the two)
- Halo-halo velocity: radial + tangential

- Halo model: 1-halo and 2-halo terms.
- I-halo: Evrard et al. (2008) fitting formula
- 2-halo: halo-halo velocity + virial motion inside secondary halo (assume no correlation between the two)
- Halo-halo velocity: radial + tangential
- Radial: Spherical collapse biased by linear theory prediction (red curve) + dispersion from linear theory.

- Halo model: 1-halo and 2-halo terms.
- I-halo: Evrard et al. (2008) fitting formula
- 2-halo: halo-halo velocity + virial motion inside secondary halo (assume no correlation between the two)
- Halo-halo velocity: radial + tangential
- Radial: Spherical collapse biased by linear theory prediction (red curve) + dispersion from linear theory.
- Tangential: constant mean and dispersion (from linear theory at large separation).

Semi-empirical model

 $³x10^{14} \le M_{primary} \le 5x10^{15}$

 $^{1 \}times 10^8 \le M_{secondary} \le 5 \times 10^{15}$

Summary

- Semi-empirical model would capture some of the features in the numerical measurements.
- However there is still room for improvement in the current. model.
- The effect of the virial motion extends to radius bigger than the virial radius (see double peaks).
- Modified gravity: Change virial theorem (hence the virial motion) + spherical collapse (halo-halo velocity).

Primordial non-Gaussianity

As a probe to inflation models

- Fluctuations produced by single scalar field, slow-roll inflation are described by Gaussian statistics
- Gaussian statistics: fully described by the two-point. correlation function.

Primordial non-Gaussianity

As a probe to inflation models

- Fluctuations produced by single scalar field, slow-roll inflation are described by Gaussian statistics
- Gaussian statistics: fully described by the two-point. correlation function.

In addition to CMB, LSS can also probe primordial non-Gaussianity.

- In addition to CMB, LSS can also probe primordial non-Gaussianity.
- Gravitational evolution modifies the distribution: even original Gaussian_ field becomes non-Gaussian.

- In addition to CMB, LSS can also probe primordial non-Gaussianity.
- Gravitational evolution modifies the distribution: even original Gaussian_ field becomes non-Gaussian.
- Difficulty: extract_primordial non-Gaussian signal from gravitational evolved measurements.

- In addition to CMB, LSS can also probe primordial non-Gaussianity.
- Gravitational evolution modifies the distribution: even original Gaussian_ field becomes non-Gaussian.
- Difficulty: extract_primordial non-Gaussian signal from gravitational evolved measurements.
- Extremum sensitive to primordial non-Gaussianity (see CMB maps above)

- In addition to CMB, LSS can also probe primordial non-Gaussianity.
- Gravitational evolution modifies the distribution: even original Gaussian_ field becomes non-Gaussian.
- Difficulty: extract_primordial non-Gaussian signal from gravitational evolved measurements.
- Extremum sensitive to primordial non-Gaussianity (see CMB maps above)
- Abundances of rare objects to constrain primordial non-Gaussianity.

- In addition to CMB, LSS can also probe primordial non-Gaussianity.
- Gravitational evolution modifies the distribution: even original Gaussian_ field becomes non-Gaussian.
- Difficulty: extract_primordial non-Gaussian signal from gravitational evolved measurements.
- Extremum sensitive to primordial non-Gaussianity (see CMB maps above)
- Abundances of rare objects to constrain primordial non-Gaussianity.
- Scale-dependent halo bias distinctive signal at large scale (small k).

Other LSS probes?

So far most LSS probes focus on the signature in the densityrelated probes.

Other LSS probes?

So far most LSS probes focus on the signature in the densityrelated probes.

Peculiar velocity field - density field in linear theory.

Other LSS probes?

- So far most LSS probes focus on the signature in the densityrelated probes.
- Peculiar velocity field density field in linear theory.
- Using velocity field to probe primordial non-Gaussianity: pairwise velocity distribution, redshift space distortion.

Pairwise Velocity Distribution

Measure probability of the relative velocity of tracers separated by some separation r.

 v_{\perp}

 $p(v_{\parallel}, v_{\perp}; r, f_{nl}) = p_g(v_{\parallel}, v_{\perp}; r)?$

Pairwise velocity distribution

Look at linear theory prediction first.

Pairwise velocity distribution

Look at linear theory prediction first.

Saussian initial conditions: Multivariate Gaussian

$$p_0(\mathbf{v}; r) = \frac{1}{(2\pi)^{3/2} \sqrt{|A|}} \exp\left(-\frac{1}{2} \mathbf{v}^T A^{-1} \mathbf{v}\right) \qquad \mathbf{v} = (v_{\parallel}, v_{\perp_a}, v_{\perp_b})$$
Linear Pairwise Velocity Distribution

Linear Pairwise Velocity Distribution

No correlation between different v's: only non-vanishing correlations are auto-correlations

 $\langle v_{\parallel}^2 \rangle$, $\langle v_{\perp_a}^2 \rangle$, and $\langle v_{\perp_b}^2 \rangle$

Linear Pairwise Velocity Distribution

No correlation between different v's: only non-vanishing correlations are auto-correlations

 $\langle v_{\parallel}^2 \rangle, \, \langle v_{\perp_a}^2 \rangle, \, \text{and} \, \langle v_{\perp_b}^2 \rangle$

Can separate into a product of three univariate Gaussian

$$p_0(\mathbf{v};r) = p_0(v_{\parallel};r)p_0(v_{\perp_a};r)p_0(v_{\perp_b};r)$$

Higher order correlations as well as cross correlations are non-vanishing.

Higher order correlations as well as cross correlations are non-vanishing.

Multivariate Gaussian does not work.

- Higher order correlations as well as cross correlations are non-vanishing.
- Multivariate Gaussian does not work.
- Main corrections are in the order of bispectrum.

Characteristic Function

Fourier transform of the probability density function.

 $\begin{array}{lll} \text{Moment generating function:} & \mathcal{M}(\vec{\lambda};r) &= \sum_{p=0}^{\infty} \frac{\langle (\vec{\lambda}\cdot\vec{v})^p \rangle}{p!} &= \langle \exp(\vec{\lambda}\cdot\vec{v}) \rangle \\ \\ \text{Cumulant generating function:} & \mathcal{C}(\vec{\lambda};r) &= \sum_{p=2}^{\infty} \frac{\langle (\vec{\lambda}\cdot\vec{v})^p \rangle_c}{p!} &= \langle \exp(\vec{\lambda}\cdot\vec{v}) \rangle_c \\ \\ \text{And they are related by:} & \mathcal{M}(\vec{\lambda};r) &= \exp\left[\mathcal{C}(\vec{\lambda};r)\right] &= \exp\langle \exp(\vec{\lambda}\cdot\vec{v}) \rangle_c \end{array}$

Characteristic function:

$$\exp\left[\sum_{j}\frac{\langle v_{j}^{2}\rangle}{2}(i\lambda_{j})^{2}+\frac{\langle v_{\parallel}^{3}\rangle}{3!}(i\lambda_{\parallel})^{3}+\frac{\langle v_{\parallel}v_{\perp_{a}}^{2}\rangle}{2}(i\lambda_{\parallel})(i\lambda_{\perp_{a}})^{2}+\frac{\langle v_{\parallel}v_{\perp_{b}}^{2}\rangle}{2}(i\lambda_{\parallel})(i\lambda_{\perp_{b}})^{2}+\dots\right]$$

cross correlations Characteristic function: $\exp\left[\sum_{\perp} \frac{\langle v_j^2 \rangle}{2} (i\lambda_j)^2 + \frac{\langle v_{\parallel}^3 \rangle}{3!} (i\lambda_{\parallel})^3 + \frac{\langle v_{\parallel} v_{\perp_a}^2 \rangle}{2} (i\lambda_{\parallel}) (i\lambda_{\perp_a})^2 + \frac{\langle v_{\parallel} v_{\perp_b}^2 \rangle}{2} (i\lambda_{\parallel}) (i\lambda_{\perp_b})^2 + \dots\right]$

cross correlations Characteristic function: $\exp\left[\sum_{i}\frac{\langle v_{j}^{2}\rangle}{2}(i\lambda_{j})^{2} + \frac{\langle v_{\parallel}^{3}\rangle}{3!}(i\lambda_{\parallel})^{3} + \frac{\langle v_{\parallel}v_{\perp_{a}}^{2}\rangle}{2}(i\lambda_{\parallel})(i\lambda_{\perp_{a}})^{2} + \frac{\langle v_{\parallel}v_{\perp_{b}}^{2}\rangle}{2}(i\lambda_{\parallel})(i\lambda_{\perp_{b}})^{2} + \dots\right]$

Fourier's Transform to get the probability density function.

Characteristic function:

$$\exp\left[\sum_{j} \frac{\langle v_{j}^{2} \rangle}{2} (i\lambda_{j})^{2} + \frac{\langle v_{\parallel}^{3} \rangle}{3!} (i\lambda_{\parallel})^{3} + \frac{\langle v_{\parallel} v_{\perp_{a}}^{2} \rangle}{2} (i\lambda_{\parallel}) (i\lambda_{\perp_{a}})^{2} + \frac{\langle v_{\parallel} v_{\perp_{b}}^{2} \rangle}{2} (i\lambda_{\parallel}) (i\lambda_{\perp_{b}})^{2} + \dots\right]$$

Fourier's Transform to get the probability density function.

But in general it is difficult to do the transform.

Approach: Taylor expand around Gaussian density function.

$$\mathcal{F}_0(i\boldsymbol{\lambda};r) = \exp\left[\sum_j \frac{\langle v_j^2 \rangle}{2} (i\lambda_j)^2\right]$$

Approach: Taylor expand around Gaussian density function.

$$\mathcal{F}_0(i\boldsymbol{\lambda};r) = \exp\left[\sum_j \frac{\langle v_j^2 \rangle}{2} (i\lambda_j)^2\right]$$

The linear relative velocity density function:

 $p(v_{\parallel}, v_{\perp_a}, v_{\perp_b}; f_{nl}, r) = p_0(v_{\parallel}, v_{\perp_a}, v_{\perp_b}; r)[1 + \alpha_{300}h_{300} + \alpha_{120}(h_{120} + h_{102})],$

$$\alpha_{300} = \frac{1}{6} \frac{\langle v_{\parallel}^3 \rangle}{\langle v_{\parallel}^2 \rangle^{3/2}}, \qquad \alpha_{120} = \frac{1}{2} \frac{\langle v_{\parallel} v_{\perp}^2 \rangle}{\langle v_{\parallel}^2 \rangle^{1/2} \langle v_{\perp}^2 \rangle},$$
$$h_{ijk} \equiv H_i(\nu_{\parallel}) H_j(\nu_{\perp_a}) H_k(\nu_{\perp_b})$$

 $p(v_{\parallel}, v_{\perp}; r, f_{nl})/p_g(v_{\parallel}, v_{\perp}; r)$

Change due to cross correlation.

Lam, Nishimichi & Yoshida 2011

Linear theory predictions:

Marginalized over v_{\perp} , ratio < 1 when $v_{\parallel} \gg 0$ for $f_{nl} > 0$ ratio > 1 when $v_{\parallel} \ll 0$ for $f_{nl} > 0$

Marginalized over v_{\parallel} , ratio = 1 for all v_{\perp} and f_{nl}

Evolution of velocity distribution

Two particles separated by r at z with relative velocity v have different r_0 and v_0 at earlier redshift $z_{0.}$

Evolution of velocity distribution

Two particles separated by r at z with relative velocity v have different r_0 and v_0 at earlier redshift $z_{0.}$

Zeldovich Approximation: Velocity unchanged.

Evolution of velocity distribution

Two particles separated by r at z with relative velocity v have different r_0 and v_0 at earlier redshift $z_{0.}$

Zeldovich Approximation: Velocity unchanged.

 $r^2 = \left(r_i + rac{D_0}{\dot{D}_i} v^i_{\parallel}
ight)^2 + \left(rac{D_0}{\dot{D}_i}
ight)^2 (v^{i-2}_{\perp_a} + v^{i-2}_{\perp_b})$

$$egin{aligned} v_{\parallel} &= rac{\dot{D}_0}{r} \left(rac{r_i v_{\parallel}^i}{\dot{D}_i} + rac{D_0}{\dot{D}_i^2} v^{i^2}
ight) \ &|v_{\perp}|^2 &= v_{\perp_a}^2 + v_{\perp_b}^2 = \left(rac{\dot{D}_0}{\dot{D}_i} v^i
ight)^2 - v_{\parallel^2}^2 \end{aligned}$$

Parallel to the line of separation

Linear theory predicts no change in PDF when marginalized over v_parallel

Perpendicular to the line of separation

Short summary

- Primordial non-Gaussianity leaves signatures on the velocity field: we use the pairwise velocity distribution to demonstrate this effect.
- Primordial non-Gaussianity induces non-vanishing three-point. correlation functions: auto correlation of v_parallel AND cross correlation of v_parallel and v_perp.
- Linear theory does not work wrong predictions for both v_parallel and v_perp.
- Evolution model implementing Zeldovich Approximation works reasonably well.

What's next?

Redshift space distortion to probe primordial non-Gaussianity. (see Lam, Desjacques & Sheth 2010 or Schmidt 2010 for linear theory prediction)

Peculiar velocity of biased tracers – massive clusters

Halo-Halo: Parallel to the line of separation

Halo-Halo: Perpendicular to the line of separation