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Overview
Primordial non-Gaussianity

Dynamical mass estimate of massive clusters 

In this talk the local type primordial non-Gaussianity wi! be used as 
an i!ustration (fnl denotes the strength of primordial non-
Gaussianity). 

Phase-space distribution as an estimate of cluster (dynamical) mass.
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Dynamical Mass of massive clusters

Mass measurement is crucial in cosmology.

For massive clusters: weak gravitational lensing, X-ray, 
SZ.

Dynamics around massive clusters is sensitive to the mass 
enclosed --> dynamical mass estimates.

Possibility to test modified gravity.
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Phase space distribution around 
massive halos

Halos are aspherical – difficult to model.

Use lensing technique – stacking halos.

A'er stacking can assume spherical symmetry.

Use observable quantities to form the phase space 
distribution: line-of-sight velocity vs projected 
separation )om halo center.
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Nhalo = 1

Stacking massive halos

Lam et al. in preparation
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Nhalo = 10

Stacking massive halos

Lam et al. in preparation
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1014 ≤ Mhalo≤1.5x1014

Lam et al. in preparation
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4x1014 ≤ Mhalo≤5x1015

Lam et al. in preparation
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Modeling of phase space distribution 
around massive halos

Halo Model: split the regions into  1- and 2-halo terms.

1-halo terms: virial motions (non-linear)

2-halo terms: spherical co!apse model
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1-halo term: Virial motion

Virial motion: Maxwe!ian distribution

Projection to the line-of-sight direction: Gaussian

Fitting formula for v_sigma (Evrard et al. 2008):

M200b = Mass of halo defined as 200 times background density
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Infalling velocity predicted by spherical 
collapse model

2-halo term: Radial infa!ing

Lam et al. in preparation
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BUT it does NOT work
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2-halo term revisit

Need to add dispersion to the 2-halo term

In halo model, the 2-halo term is contributed by particles 
residing inside a secondary halo.

Virial motion inside secondary halo.
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Want to calculate an effective dispersion as a function of r3d 
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σ2
eff(r3d,Mhalo)

Want to calculate an effective dispersion as a function of r3d 
for a mass Mhalo halo.

2 2

mass of secondary halo relative position of r3d to the center 
of secondary halo
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σ2
eff(r3d,Mhalo)
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Look better, but still not matching numerical measurements
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Halo-halo velocity

So far we assume secondary halo infa!ing motion is 
radial ONLY (only along line-of-separation).

AND assume this radial velocity is described by spherical 
co!apse model.

Go to numerical simulations to check if it is true a'er 
stacking.
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Halo-halo velocity: Parallel to the line of separation

linear theory

{ spherical co!apse

Lam et al. in preparation
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Halo-halo velocity: Perpendicular to the line of separation

linear theory

Lam et al. in preparation

Always non-zero tangential velocity !!!
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Semi-empirical model

Halo model: 1-halo and 2-halo terms.

1-halo: Evrard et al. (2008) fitting formula

2-halo: halo-halo velocity + virial motion inside secondary halo (assume no 
correlation between the two)

Halo-halo velocity: radial + tangential

Radial: Spherical co!apse biased by linear theory prediction (red curve) + 
dispersion )om linear theory.

Tangential: constant mean and dispersion ()om linear theory at large 
separation).
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3x1014≤Mprimary≤5x1015 1x108≤Msecondary≤5x1015

Semi-empirical model
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Summary
Semi-empirical model would capture some of the features in the 
numerical measurements.

However there is sti! room for improvement in the current 
model.

The effect of the virial motion extends to radius bi0er than the 
virial radius (see double peaks).

Modified gravity: Change virial theorem (hence the virial 
motion) + spherical co!apse (halo-halo velocity).
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Primordial non-Gaussianity
As a probe to inflation models

Fluctuations produced by single scalar field, slow-ro! 
inflation are described by Gaussian statistics

Gaussian statistics: fu!y described by the two-point 
correlation function
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Bernardeau et al. (2002)

=0

=0

Primordial non-Gaussianity
As a probe to inflation models

Fluctuations produced by single scalar field, slow-ro! 
inflation are described by Gaussian statistics

Gaussian statistics: fu!y described by the two-point 
correlation function
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CMB Probe

fnl = 0

Liguori, Matarrese and Moscardini 
(2003)

24



CMB Probe
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Liguori, Matarrese and Moscardini 
(2003)
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CMB Probe

fnl = 0

Liguori, Matarrese and Moscardini 
(2003)

25



CMB Probe

fnl = -3000

Liguori, Matarrese and Moscardini 
(2003)
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Large-scale structures probes
In addition to CMB, LSS can also probe primordial non-Gaussianity.

Gravitational evolution modifies the distribution: even original Gaussian 
field becomes non-Gaussian.

Difficulty: extract primordial non-Gaussian signal )om gravitational 
evolved measurements.

Extremum sensitive to primordial non-Gaussianity (see CMB maps 
above)

Abundances of rare objects to constrain primordial non-Gaussianity.

Scale-dependent halo bias – distinctive signal at large scale (sma! k).
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Other LSS probes?

So far most LSS probes focus on the signature in the density-
related probes.

Peculiar velocity field ~ density field in linear theory.

Using velocity field to probe primordial non-Gaussianity: 
pairwise velocity distribution, redshi' space distortion.
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Pairwise Velocity Distribution

Measure probability of the relative velocity of tracers 
separated by some separation r.

v�

v⊥

p(v�, v⊥; r, fnl) = pg(v�, v⊥; r)?
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Pairwise velocity distribution

Look at linear theory prediction first
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Pairwise velocity distribution

Look at linear theory prediction first

n Gaussian initial conditions: Multivariate Gaussian

p0(v; r) =
1

(2π)3/2
�
|A|

exp

�
−1

2
vTA−1v

�
v = (v�, v⊥a , v⊥b)
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Linear Pairwise Velocity Distribution
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Linear Pairwise Velocity Distribution

n No correlation between different v’s: only non-vanishing 
correlations are auto-correlations

�v2��, �v2⊥a
�, and �v2⊥b

�
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Linear Pairwise Velocity Distribution

n No correlation between different v’s: only non-vanishing 
correlations are auto-correlations

n Can separate into a product of three univariate 
Gaussian

p0(v; r) = p0(v�; r)p0(v⊥a ; r)p0(v⊥b ; r)

�v2��, �v2⊥a
�, and �v2⊥b

�
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Pairwise velocity distribution with 
primordial non-Gaussianity 

Higher order correlations as we! as cross correlations are 
non-vanishing.

Multivariate Gaussian does not work.

Main corrections are in the order of bispectrum.
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Characteristic Function

Fourier transform of the probability density function

Moment generating function:

Cumulant generating function:

And they are related by:

M(�λ; r) =
�∞

p=0
�(�λ·�v)p�

p! = �exp(�λ · �v)�

C(�λ; r) =
�∞

p=2
�(�λ·�v)p�c

p! = �exp(�λ · �v)�c

M(�λ; r) = exp
�
C(�λ; r)

�
= exp�exp(�λ · �v)�c
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Pairwise velocity distribution with 
primordial non-Gaussianity  

Characteristic function:
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Pairwise velocity distribution with 
primordial non-Gaussianity  

Characteristic function:

Fourier’s Transform to get the probability density function

But in general it is difficult to do the transform.

cross correlations

33



Approach: Taylor expand around Gaussian density function 
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Approach: Taylor expand around Gaussian density function 

The linear relative velocity density function:
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p(v�, v⊥; r, fnl)/pg(v�, v⊥; r)

r = 8 Mpc/h
Lam, Nishimichi & Yoshida 2011

No change

fnl = 100
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p(v�, v⊥; r, fnl)/pg(v�, v⊥; r)

r = 8 Mpc/h
Lam, Nishimichi & Yoshida 2011

Change due to cross correlation

fnl = 100
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Linear theory predictions:

Marginalized over v⊥, ratio < 1 when v� � 0 for fnl > 0

ratio > 1 when v� � 0 for fnl > 0

Marginalized over v�, ratio = 1 for all v⊥ and fnl
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Evolution of velocity distribution

Two particles separated by r at z with relative velocity v have 
different r0 and v0 at earlier redshi' z0.
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Parallel to the line of separation

Linear theory prediction for fnl =100

= ratio -1 for fnl =-100
x = ratio -1 for fnl=100

our model prediction 
fnl=±100

Lam, Nishimichi & Yoshida 2011
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Perpendicular to the line of separation

Lam, Nishimichi & Yoshida 2011

x = ratio -1 for fnl=100
= ratio -1 for fnl =-100

Linear theory predicts 
no change in PDF 
when marginalized 
over v_para!el
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Short summary
Primordial non-Gaussianity leaves signatures on the velocity field: 
we use the pairwise velocity distribution to demonstrate this effect.

Primordial non-Gaussianity induces non-vanishing three-point 
correlation functions: auto correlation of v_para!el AND cross 
correlation of v_para!el and v_perp.

Linear theory does not work – wrong predictions for both v_para!el 
and v_perp.

Evolution model implementing Zeldovich Approximation works 
reasonably we!.
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What’s next?

Redshi' space distortion to probe primordial non-
Gaussianity. (see Lam, Desjacques & Sheth 2010 or Schmidt 2010 for linear 
theory prediction)

Peculiar velocity of biased tracers – massive clusters
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Halo-Halo: Parallel to the line of separation

Lam, Nishimichi & Yoshida in preparation
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Halo-Halo: Perpendicular to the line of separation

Lam, Nishimichi & Yoshida in preparation
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