
Based on: arXiv:1308.1404
                 and current work 
with M. Kamionkowski (JHU)

Cosmic Bandits: Exploration versus 
Exploitation in Cosmological Surveys

Ely D. Kovetz
University of Texas at Austin
LBNL, journal club, Oct. 18th, 2013



Explosion of data from sky surveys.
• Exponential growth in detector size, internet bandwidth, data storage.
                                           (Moore’s law)       (Nielsen’s law)       (Kryder’s law)       

Examples:

• CMB surveys: 
   A factor of up to O(106) increase in data from COBE to post-Planck experiments. 

• Galaxy surveys:
   LSST: O(10) PB a year. Similar to LHC.

• 21-cm surveys:
   SKA: O(100) PB a year, but 1,000 PB processed every day!

Introduction: Motivation



Experiments are getting (even) harder. 
• Require control of systematics over many orders of magnitude. 
• Faint signals are overwhelmed by (various) foregrounds.

Examples:  

• CMB B-mode surveys: 
   Sources of temperature-polarization leakage span many orders of magnitude.
   Inflationary B-modes may show up only at very small amplitudes (if           ). 

• High-res imaging:
   With improved sensitivity, confusion noise can be limiting.

• 21-cm surveys:
   EoR: foreground roughly 4 orders of magnitude higher than signal.
   Dark Ages: foregrounds up to 7 orders of magnitude higher.
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Introduction: Motivation



• How to balance the tradeoff between exploring and exploiting?
   One way...

• Not necessarily stupid. 
• Different targets call for different measurements.

Introduction: Exploration vs. Exploitation



Stochastic measurements and deep-field imaging call for different approaches.

• Deep-field imaging:
Exploration mostly wasted. 
Goal of adaptive strategy: 
      --> quickly converge and exploit.

• Stochastic fluctuations:  
Exploration mitigates cosmic variance. 
Goal of adaptive strategy: 
      --> find ideal patches to exploit.

Introduction: Exploration vs. Exploitation
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• Consider the case of B-mode detection, which is optimized in small sky patches. 
• Tradeoff is between finding lower-foreground patches and integrating over them. 

      Templates for polarized emission from dust (PED) in the Galaxy at 150GHz

Exploration vs. Exploitation: B-mode Surveys

(Clark et al. arXiv:1211.6404)
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• Worst patches can probably be avoided.
• But cleanest patches not yet detected. 
• If we find the cleanest patches... 
• Sensitivity might improve!

Exploration vs. Exploitation: B-mode Surveys
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• Competing signals?
• Lensing converts E-modes into B-modes.
• Detected! (Hanson et al. arXiv:1307.5830)

• De-lensing?

Exploration vs. Exploitation: B-mode Surveys
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• Goal: 
   Facing slots with different odds, maximize winnings.
• With infinite funds, this is easy. You learn the odds.
• With a finite number of plays, problem is unsolved. 
• Heuristics have been developed and compared.  

The Multi-Armed-Bandit Problem



• An MAB strategy: 
   Use estimates for the expected rewards of each arm in order to choose action.
• The expected (or true) reward             is called its action-value.
• An action-value estimate is given by the sample-average of previous rewards:

Multi-Armed-Bandit Strategies
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• An MAB strategy: 
   Use estimates for the expected rewards of each arm in order to choose action.
• The expected (or true) reward             is called its action-value.
• An action-value estimate is given by the sample-average of previous rewards:

• To test a strategy: 
   The optimal reward is                                and we look at the average total regret:

                                                                                                  (                         )  
                                                                                                     gap vs. optimal arm 
   where            is an ensemble average in simulations with known action-values.
• A good strategy ensures smaller counts for larger gaps.
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• Lai and Robbins (1985): in the asymptotic limit of infinite number of plays

   where                                is the Kullback-Liebler distance. 
• For normal distributions: 

Multi-Armed-Bandit Strategies
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• Uniformly random

   For        arms:

   Never explores --> has linear total regret.
                                                                                        

• Greedy 

   Never explores --> has linear total regret.
                                                                                   

BICEP (larger        )

Heuristic Solution Algorithms: Naive
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• Trick: use initialization to force exploration!

   No prior knowledge:

   Optimistic initialization:                          (after a while sample-average dominates)  
•    - greedy 

   Always explores --> has linear total regret.

   Limits:                           (greedy)                        (uniformly random)

•    - greedy with a decaying strategy for     --> can achieve logarithmic regret!

Heuristic Solution Algorithms: Forced Exploration
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• Probability matching 
         (Boltzmann)

   Limits:                           (greedy)                        (uniformly random)       

• Upper confidence bound (UCB)

   Define a (time-dependent) bound:

   and choose:

   When distributions are normal:  

  

   UCB has logarithmic total regret!

Heuristic Solution Algorithms
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• MAB Simulation:
                 ;

Heuristic Solution Algorithms
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• What about the total regret?

• UCB approaches the Lai and Robbins bound!

Heuristic Solution Algorithms



• B-modes: The good, the bad and the ugly

• The Multi-Armed-Bandit Problem
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The CMB is (weakly) polarized. Why?
• Induced by radiation anisotropy through Thomson scattering.
• A quadrupole anisotropy in the radiation field is required.
• Happens at the ionized        neutral interface (recombination, reionization)

B-modes: the Fuss

Quadrupole 
Anisotropy

Thomson  
Scattering

e–

Linear  
Polarization

¡'

¡'

¡

(Wayne Hu)



The CMB is (weakly) polarized. Why?
• Induced by radiation anisotropy through Thomson scattering.
• A quadrupole anisotropy in the radiation field is required.
• Happens at the ionized        neutral interface (recombination, reionization)
• Can be linearly decomposed into modes:               E (gradient)           B (curl)

B-modes can be generated by inflationary GWs.
Tensor-to-scalar ratio “r”: holy grail, smoking-gun...

B-modes: the Fuss



Experimental tradeoffs include:
• Recombination vs. Reionization. 
• Frequency coverage vs. Sky Coverage. 

                Patch size:

Foregrounds!           
(best case)

B-modes: Signals
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B-modes: Instrumental Noise

• Pixel noise:

                            is determined by noise-equivalent temperature and array size.

                            is the observation time for each pixel.

• Define inverse weight per solid angle:

• Noise power spectrum:

• Fiducial experiments:
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B-modes: Foregrounds

• For simplicity, we focus on a single frequency: 150 GHz. 
• Dominant foreground is polarized emission from dust (PED) in the Galaxy.
• Assumption:
   PED power spectrum obeys a power law

• Assumption:
   Theoretical templates such as FGPol 
   provide reasonable ballpark predictions.

• Assumption:
   Can read off the amplitude from the variance in the PED template.
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• Assumption:
   There’s some percentage of patches better avoided: 67% (outside knowledge)
• Assumption:
   Average dust polarization fraction outside the galactic plane is 3.6% or 10%.

• For a 15-degree patch size (with 3.6% PED normalization), we get:

• There’s room for improvement!

B-modes: Foregrounds



• The signal, noise and foregrounds:

B-modes: The Good, the Bad and the Ugly
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B-mode Surveys: Simulations
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B-mode Surveys: Simulations

What do we measure?
• Initially: the PED amplitude.
• Ultimately: the CMB B-modes.
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• In a ML analysis, the Fisher forecast for the error in measured amplitude:

• Assumption:
   Likelihood function is Gaussian in the vicinity of its maximum:

• The ``1-sigma'' error for each multipole:

• Patch error:

B-modes: Statistics and Simulations
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• Patch error:
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• How do we judge a survey (bandit) strategy?
   Figure-of-merit is the ``1-sigma'' error for the tensor-to-scalar ratio:

   (when comparing to the null hypothesis)

• After total observing time                   :

B-modes: Statistics and Simulations
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We consider three scenarios: 

•  Pessimistic: normalization to 10%, no de-lensing. 

•  Conservative: normalization to 3.6%, no de-lensing.

•  Optimistic: normalization to 3.6% and 80% de-lensing.

We use 1,000 simulations to acquire an ensemble average for comparison. 

Results: Scenarios



• In the pessimistic scenario (experiment 1):

   

Results



• In the optimistic scenario (experiment 1):

     

Results
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Results: B-mode detection
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Recap:

•  Pessimistic scenario:      Up to 75% improvement on average. 

•  Conservative scenario:    Up to 50% improvement on average. 

•  Optimistic scenario:        Up to 40% improvement on average. 

•  Similar improvements when comparing worst-case performances.

•  Improvement in any experiment. Maximized with high resolution + sensitivity.

(Some) Caveats:  

•  Single frequency. In practice, remain with (non-zero) foreground residuals. 

•  Cost of moving telescope target. This should be taken into account.

Actual performance may deteriorate. However:

•  Methods can be optimized further.

•  Identification of optimal patches will reap future benefits.

Discussion
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• 21-cm stochastic fluctuations.
   A 3D-bandit problem.
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MAB Strategies Elsewhere

• 21-cm stochastic fluctuations.
   A 3D-bandit problem.
   Adds another dimension.
   MWA: Greedy
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MAB Elsewhere

• Deep-field imaging: 
   From HST to JWST?
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Conclusion
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