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The next decade of surveys will map the sky in an

unpr

ecedented way
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LSS probes measured:
-Galaxy positions
-Galaxy shapes
-Spec-zs

-CMB lensing

-kSZ

-tSZ

-More!

Not shown:
-21cm
-LIM
-X-ray
-More!
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Anatomy of cosmological data analysis

(and an asynchronous outline of this talk)

P(0|d) oc L (d|u(0)) 7 (6

Raw data compressed to summary statistics

-What are the optimal summary statistics beyond two-point functions?

Models must be built for each summary statistic
-How do we efficiently probe smaller scales?

-Are our models accurate enough for next generation surveys?
on model parameters
-If better models require many nuisance parameters, can we gain prior understanding on them?

*Apologies to those thinking about evidences!
They’re cool too! 3



P(0]d) oc L(d|u(6)) 7(0)

How can we combine all of the modelling tools at our disposal jointly to tackle these
questions?
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Models must be built for each summary statistic

-How do we efficiently probe smaller scales?

-Are our models accurate enough for next generation surveys?



What are the scales we’ll need to model better?
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Multiple approaches to modelling structure formation

Analytic/perturbation theory
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Simulations




P/Pxt1, [Mpc/h]?

Perturbation theory is great, but will inevitably fail!

Simulations, on the other hand, agree well up to scales of k~1 h/Mpc, but face challenges at large scales
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https://arxiv.org/abs/1710.02178
https://arxiv.org/abs/1810.02916

galaxy-halo
connection

Approaches to modeling the galaxy-halo connection

— physical models empirical models _—
Hydrodynamical Semi-analytic Empirical Subhalo Halo .
Simulations Models Forward Abundance Occupation
Modeling Modeling Models
i ; Density peaks Collapsed objects
Simulate halos & E\g:::oT Zfrgiinsglatsy Evolution of density (halos & subhalos) (halos) plus
gas; p Po P peaks plus plus assumptions model for

for gas cooling, star
formation,
feedback

Star formation &
feedback recipes

parameterized star
formation rates

about
galaxy—(sub)halo
connection

distribution of galaxy
number given host
halo properties

Galaxies live in dark matter, but the relationship is not 1:1

Wechsler &

Tinker 2018
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https://arxiv.org/abs/1804.03097
https://arxiv.org/abs/1804.03097

Mathematically relating the two distributions

From the previous slide we can tell the density of the dark matter and of galaxies seems to be

related. This relation is constrained by symmetries of galaxy formation — Galilean invariance.

0g(x,t) = F0;0,P(x, )]

Expanding F in terms of all contributions allowed by symmetries lead to an “effective theory” of

biasing.
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Bias, pictorially

High density peaks, above a threshold, will collapse into halos
: vy R
A

0=vo

~

(Figure courtesy of J. Peacock.)
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Biased tracers in Lagrangian Perturbation Theory

The relationship between tracer density and matter density is encoded in the initial conditions

of structure formation.

To second order we get

1+ 0n(q) = F|0;0;®(q)]

~ 1+[b15(q) + b2 (6°(q) — o°)

“Standard” bias 2

1+ 0n(q) = F[0;0;2(q)]

_|_

Finite-Size
(Effective)
Correction

contributions bsg (32<q) — —0'2) + bVQ V25(q)‘ + 0(53)+

3

Stochastic contributi
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Simulations/analytic approaches describe the same physics

Py
Perturbation theory for @ (q, »)and simulations S
solve for the same quantities. =
1 t A
S
Proposal (Modi, Chen, White 2020): Xe
Let perturbation theory inform f(q) as -
usual, and use ¥ (q, z)frorn simulations?* X
-
Y VY,
-9

d
These models have been termed hybrid effective . ( )
field theories (HEFT). L — q _I_ \II q 13



Hybrid EFT: the Lagrangian fields
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https://arxiv.org/abs/2101.11014

Hybrid EFT: the late-time fields

10.0

‘ N.K.+2021a

59 (.’,B) = 5m(ac) + 6105 (.”13) + b2 Os2 (.’,E) + 0,202 (.il?)
Each panel is showing the exact same particles. + bv2 OVZ (w) + 6(33) + ... 15



https://arxiv.org/abs/2101.11014
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https://arxiv.org/abs/2101.11014
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Summary statistics consistent with LPT
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Free parameters here are the same as in
PT-based analyses of RSD surveys.

Jointly analyse small scale lensing and

RSD with the same nuisance parameters
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https://arxiv.org/abs/2101.11014
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https://arxiv.org/abs/2101.11014

The combination is better than the sum of its parts
(and can also describe assembly bias + baryon feedback)
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https://arxiv.org/abs/1910.07097

Hybrid EFT can be used for parameter inference
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https://github.com/kokron/anzu
https://arxiv.org/abs/2101.11014

P(O|d) o< L (d|u(0

Models must be built for each summary statistic

-How do we efficiently probe smaller scales?
-Are our models accurate enough for next generation surveys?

(6
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https://arxiv.org/abs/1603.05253
https://arxiv.org/abs/2101.11014

Control variates and variance reduction

When one wishes to estimate the mean of a noisy quantity (such as a power spectrum) but can produce

cheap correlated surrogates, a new estimator can be defined

@Ei_ﬂ(é_ﬂc)

Minimizing the variance of y gives
Cov|z, ¢

b = Var|¢]

Which leads to a variance reduction that depends on the correlation coefficient
Varlj] _ Cov?[z, ¢
Var|z] Var|z]|Var|é

]:1_1026

High correlation -> large reductions in variance!
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The Zel'dovich approximation as a surrogate

For a full 3D cosmological volume, the agreement on large scales between ZA and N-body is strong

Analytic calculations are well understood in this approximation

Zel'dovich densit Nonlinear densit

Difference

40h~*Mpc
s |

N.K.+22
IC codes give you the ingredients needed to predict ZA fields at several redshifts for free*. #


https://arxiv.org/abs/2205.15327

Zel'dovich fields correlate highly with nonlinear simulations
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https://arxiv.org/abs/2205.15327

How powerful of a control variate is the Zel’dovich approximation?

PV (k) = PN% (k) — B(k) (D% (k) — P*A(k))

26



- Effective signal-to-noise increase

Variance reduction for matter 2-pt statistics
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https://arxiv.org/abs/2205.15327

Pg[g, m] [h‘lMpC]_3

Variance reduction for galaxy clustering and lensing

1 —CV Pggy(k) 1§ single Pgy(k)
ws CV Pgm(K) i Single Pgm(k)
= Mean spectrum

Effective signal-to-noise increase
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https://arxiv.org/abs/2205.15327

Effective signal-to-noise increase

General variance reduction for biased tracers

Similar reduction in sample variance for all LPT basis spectra

Requires ~50 CPU hours to produce variance-reduced basis functions for (1024)° sim
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https://arxiv.org/abs/2205.15327

Using simple PT as surrogate N-body sims is powerful

Emulators can be designed with signiﬁcantly smaller boxes
Accurate mock surveys with smaller volumes
Unlike “paired-fixed” simulations, no additional requirements. Just one run of an IC code.

Being extended to redshift space and other summary statistics!

30



Questions?
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P(O|d) o< L (d|u(0

Raw data compressed to summary statistics

-What are the optimal summary statistics beyond two-point functions?

Priors on model parameters

-If better models require many nuisance parameters, can we gain prior understanding on them?

(6
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Hybrid EFT is a field-level model for tracers

HEFT should work at more than just the two-point statistic level. How can we test this?

33



What about beyond two-point?

First example might be to look at higher N-point correlations

EM(er, - eN) ~ (0g(r1) -+ 0 (rn))

But with lots of bias fields, even the bispectrum (3pt function) is combinatorially challenging to

model and measure!

Is there something simpler?

34



Counts in cells are a promising “new” statistic

N-point functions are probing moments of the underlying distribution of galaxies, P (6 g )
How can we probe the distribution directly?

Look at the histogram of galaxy densities in your survey! These are counts-in-cells.
“Probability of

. —— findingkcountsina

sphere of volume V”

Counts-in-cells date back to at least Hubble (1934), who noted the lognormality of the galaxy
density field a5



The information content of counts-in-cells

Generating function of CiC explicitly probes all connected correlation functions (White, 1979)
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https://academic.oup.com/mnras/article/186/2/145/993893

Efficiently probing counts-in-cells statistics

Banerjee & Abel (2020) demonstrated a computationally efficient way to probe CiC statistics

using k nearest-neighbour cumulative distribution functions (kNN-CDFs)

Poisson 1NN
e Particles INN
= Halos INN

CDFk(T) — P>k_1(V) g

k
=1-) Pi(V)

CDF. (’I“) can be measured easily. 1072

Peaked CDF
S

10 15 20 30
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https://arxiv.org/pdf/2007.13342.pdf

Can hybrid EFT describe kNN statistics?

Implicit check of ability to model //

N-point functions.

Each bias parameter induces a unique
small-scale response in KNN-CDFs.
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https://arxiv.org/abs/2107.10287
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Internal consistency of HEFT .

0.005
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clustering and lensing spectra of halos
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https://arxiv.org/abs/2107.10287

P(k) analysis
B ANN analysis
H P (k) + kNN analysis .
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https://arxiv.org/abs/2107.10287

P(0|d) oc L (d]|u(6

Raw data compressed to summary statistics

-What are the optimal summary statistics beyond two-point functions?

Priors on model parameters

-If better models require many nuisance parameters, can we gain prior understanding on them?

(6
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Field-level bias parameters

Previously, we fit to “galaxy” or halo samples by maximizing fits to clustering and lensing

correlation functions
99 _ <5 0 >

— <5 g Om >
These parameters don’t necessarily describe all other statistics. Analysis affected by sample

variance. Consider the residuals between the galaxy field and the bias fields
e(x) =0d4(x) — Om(x) — g b; O;(x)

Minimizing (€“)leads to an analytic estimator for bias parameters that is easy to implement

42



Probing stochasticity with field-level bias models

With an estimate of best-fit parameters we can then directly probe the residuals of these bias

models for 27y model of the galaxy-halo connection

E(K) = 6y (k) — 5, (K) = 3~ BiOs(K)

Perr — <€€>

From symmetries, this function should broadly behave as (Desjacques et al 2018)

Perr:i[a1+a2k2_|—"°}a
T

a =1 is the Poisson shot-noise prediction. Is the Poisson approximation good enough?

For samples of red galaxies, how well does the above form hold?
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Red galaxy stochasticity
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phenomenology N.K.+21b
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https://arxiv.org/abs/2112.00012

Biases themselves

Beyond studying stochasticity, we can also use
field-level inference to study bias parameters

themselves.

Priors on higher—order biases are crucial to not
dilute cosmological information using these

analyses (Zennaro+21, Cabass+22, Philcox+22)

Lagrangian bias is also a “Rosetta stone” of
galaxy—halo connection models!

-Ongoing work with Mahlet Shiferaw, a 2nd year Stanford PhD student
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https://arxiv.org/abs/2110.05408
https://arxiv.org/abs/2201.07238
https://arxiv.org/abs/2206.02800
https://arxiv.org/abs/2112.00012

What do priors enable?

Planck
P-lens
KiDS+
unWISE
BOSS
Il DESI

As models become more and more complicated, better priors

on parameters are needed.

Informed priors will maximize cosmology results.

Improved models

+

Priors on stochasticity

+

Priors on bias parameters

0.4 0;5 016 017 018 0j9 1.0
Redshift (2)

White et al (incl N.K.), arXiv:2111.09898


http://arxiv.org/abs/2111.09898

All together: BAO + RSD + CMB lensing

All observables self-consistently

0 Planckl18
modelled in LPT with the same set : Fii2+BA0
of bias parameters. — +Kg (S2)

—— +kg (£ > 80)

Limited by degeneracies in biases.
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. e Sl (@)
Picture will sharpen 51gn1ﬁcantly in
coming vears! L : ; ; ; ;
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Qm Ho

Chen, White, DeRose, N.K 2022.



https://arxiv.org/abs/2204.10392
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Wrapping up
Modern cosmological inference is challenging on many fronts.

Thinking about problems at each step of an analysis from a multitude of angles can lead to

solutions that are more powerful than any individual tool!

Models of galaxy survey observables can be made more efficient, more accurate, and more
constraining by thinking about them from a perspective that combines simulations and analytic

techniques.

This juncture of PT and simulations is a powerful lens through which to think about the

formation of large—scale structures.
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Thanks for having me!



https://github.com/kokron/anzu
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