

Cosmological constraints from weak lensing: present measurements and future challenges

Fabian Köhlinger

Collaborators: M. Viola, B. Joachimi, W. Valkenburg, M. Eriksen, H. Hoekstra, K. Kuijken

INPA seminar, LBL

11/20/2015

Outline:

I. Introduction

II. Cosmic Shear

III. Galaxy-Galaxy Lensing

IV. Conclusions

I. Introduction

Cosmological model

Two statistics:

shear-position (a.k.a. galaxy-galaxy lensing) shear-shear (a.k.a. cosmic shear)

Weak lensing: Surveys

10² deg² ≺	CFHTLenS RCSLenS	 17 gals/arcmin² 6 gals/arcmin² 	$z_{m} = 0.75$ $z_{m} = 0.60$	completed
10 ³ deg ² <	KIDS HSC DES	 9 gals/arcmin² 20 gals/arcmin² 8 gals/arcmin² 	$z_{m} = 0.70$ $z_{m} = 1.00$ $z_{m} = 0.65$	ongoing
10 ⁴ deg ²	Euclid	30 gals/arcmin ²	z _m = 0.90	> 2020
3	LSST	31 gals/arcmin ²	Z _m = 1.00	9

Weak Lensing: Challenges

1) Accurate photometric redshifts

2) Shape noise:

Bridle et al. (2009)

"The bigger (deeper) the survey the smaller the uncertainties!"

3) Blending (!)

II. Cosmic Shear

"A direct measurement of tomographic lensing power spectra from CFHTLenS"

FK, M. Viola, W. Valkenburg, B. Joachimi, H. Hoekstra, K. Kuijken 2015 (in press at MNRAS; arXiv1510.04071)

Lensing of LSS

Theory:

measurements:

correlation functions \iff power spectra

The CFHTLenS case

~154 deg² (~115 deg²) $n_{gal} = 17$ gals/arcmin² two redshift slices: $z_1: 0.50 < z \le 0.85$ $z_2: 0.85 < z \le 1.30$

minimize intrinsic alignments

!!! PUBLIC data !!!

Erben et al. (2012)

Goal:

measure cosmic shear **lensing power spectrum:**

- include low multipoles (large scales)
- in redshift bins

Why?

- better handling of scale mixing in multipole space (compared to real space analyses)
- coupling to other cosmological probes (CMB)
- account for scale dependent features:

Neutrinos, baryon feedback (e.g. Harnois-Déraps et al. 2015)!

Baryons & neutrinos

Results: Multipole Space

WL power spectra from CFHTLenS (W1, W2, W3 & W4 combined with inverse variance weights)

quadratic estimator method (Hu & White 2001) expanded to include photometric redshift bins

FK+ (in press)

18

Which model describes the data the best?

Evidences

likelihood analysis performed with *Monte Python* (Audren et al. 2012) and *Multinest* (Feroz et al. 2008, 2009, 2013)

Model	$\ln \mathcal{Z}$	$2 \ln K \ (K \equiv Z_i / Z_{\Lambda CDM})$
ΛCDM	-40.96 ± 0.06	0
ΛCDMa	-41.07 ± 0.06	-0.22
$\Lambda CDM + \nu$	-41.63 ± 0.07	-1.34
$\Lambda CDMa + \nu$	-41.83 ± 0.07	-1.74
$\Lambda CDM + A_{bary}$	-41.66 ± 0.06	-1.40
$\Lambda CDM + \nu + A_{bary}$	-42.48 ± 0.07	-3.04
$\Lambda CDM + \Delta z_{\mu}$	-40.75 ± 0.07	0.42
$\Lambda CDM + all$	-42.19 ± 0.07	-2.46

FK+ (in press)

Degeneracy broken: $\Omega_{\rm m} = 0.300$ +/- 0.011, $\sigma_{\rm 8} = 0.818$ +/- 0.013

III. Galaxy-Galaxy Lensing

"Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters"

FK, H. Hoekstra, M. Eriksen 2015 (MNRAS, 453, 3107)

Cluster counts

Cosmological constraints from the CMB are in tension wrt. the ones derived from SZ-cluster counts.

Mass bias & scaling relations

Weak lensing of clusters can be used to derive tight scaling relations independent of the dynamical state of matter for example.

Cluster counts revised

Scaling relations gauged with weak lensing masses alleviate the tension...

The possibilities

If the uncertainty on the mass bias can be reduced to 1%, tight constraints on the total mass of neutrinos are possible.

Cosmic shear as noise

Cosmic noise must be taken into account for deriving realistic uncertainties.

Statistical uncertainties

A *Euclid* cluster survey will yield very precise mass measurements of galaxy clusters.

Systematic errors

cluster member scattering (due to photo-z errors) miscentring

Miscentring

Euclid and *eROSITA* promise to become a powerful tool for constraining the total neutrino mass.

IV. Conclusions

A direct extraction of the lensing power spectrum is the "cleanest" way to compare data with theory.

The power spectrum results show overall consistency with previous results based on correlation-functions.

Future weak lensing galaxy cluster surveys will provide unprecedented statistical power, however, this requires to account also for (tiny) systematic errors.

If these are accounted for, cluster surveys are a powerful, complementary approach for testing ACDM extensions.