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A Malaise in Galaxy Evolution

• Incomplete knowledge limits us to oversimplified histories

• Toy models used as a substitute for physical understanding

• Empirical constraints on average histories

• Dependent on assumption of no. dens. evolution, or

• Dependent on assumed halo merger trees and MF evol

• All such work assumes SFR-M correlation is deterministic

The result is a picture that does not make full use of the data.

The result is a picture reasonably devoid of astrophysics.

... or least a picture with too much baked into the pie from the start.
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My Starting Point

• Since Tinsley & Larson (1978), through Efstathiou (2000), Dekel et al (2009) we

understand galaxies grow and form stars in steady-state between inflows, outflows,

feedback

• Such quasi-static equlibria imply evolving mass growth rates, with an expectation

of steady-state (i.e. E[�dM/dt] = 0)

• Starting with this expectation, one can write down dM/dt as a nonnegative non-

Markovian stochastic process, use the central limit theorem to derive long-term

expectation values E[dM/dt], E[M ], and Var[dM/dt]
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My Ending Points (i.e. Math is Very Powerful)

• The “Star-Forming Main Sequence” is emergent, and a natural consequence of

stellar mass growth as a stochastic process

• Derive E[(dM/dt)/M ] = 2/t, accurately matching SSFRs over 0<z<10

• Observed intrinsic scatter in SSFR at fixed mass falls right out

• Retrodict stellar mass functions and Madau diagram 3 <⇠z <⇠10

• Infinite set of possible SFHs, including those of local group dwarf gals, MW

• Retrodict quiescent galaxy fractions along flat part of SFMS

• Strongly limits how well one can link specific progenitors with specific descendents

• Must trace full ensembles over cosmic time, but here’s the math to do it

• and another rather amusing surprise pops out as well...
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Starting with my Main Beef

This is the/an SDSS correlation of SFR vs stellar mass

(Peng et al 2010)

The slope in a log-log plot is not super far from unity.

The scatter in SFR at fixed stellar mass is ⇠0.3 dex.

The common interpretation is that more massive galaxies make more stars.
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This Correlation Is Seen at High Redshift

This is the DEEP2/AEGIS correlation of SFR vs stellar mass

(Noeske et al 2007)

The correlation appears to be fundamental; now dubbed “Main Sequence of SF”

The scatter ⇠0.3 dex in SFR at fixed stellar mass relatively constant in M & z
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How Does This Correlation Reflect Galaxy Evolution?

This is a much better SDSS view of specific SFR vs stellar mass:

(Salim et al 2007)

Intrinsic scatter ⇠0.4 dex in SSFR, relatively constant in M

SSFR vs M: relatively flat below logM < 9.5, anticorrelated at higher masses

There must be mass-dependent astrophysics!
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But What Is the Slope Really Saying?

Is SFR per unit stellar mass the best diagnostic of physics?

At high masses, galaxies are bulge-dominated

Bulges tend not to actively form a lot of stellar mass

Change SSFR to SFR per unit disk mass: a lot of the slope goes away

(Abramson, Kelson et al 2014)

Thus expect late-time bulge formation �! flatter SFMS at higher z,
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How Did Our Suggestion Work Out?

Constant hSSFRi at low-mass continued to high z; break at higher mass

(Whitaker et al 2014)
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Is our children learning?

The aggregate mean SSFR(z,M) are then used, as in

(Behroozi et al 2013)

... along with halo merger trees to estimate mean histories of galaxies.

• But do average histories tell us about what individual galaxies actually do?

• And are all these hSSFRi = f(M, z) even being used properly?

Instead of starting with toy models, what if we start with far fewer assumptions?
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Let us begin: Assumption 1 — Steady-state

So let us consider a process, St, as the amount of stellar mass formed over the tth

time interval:

St = Mt+1 �Mt

where Mt is the mass accumulated up to time t.

In steady-state, the expectation for St+1 is

E[St+1] = St

We call S a “stationary process.”
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Let us begin: Assumption 1 — Steady-state

Given a sequence of stellar mass growth, S0, S1, S2, . . . , St+1, let us define Xt+1
⇤,

Xt+1 = St+1 � St

In other words,

St = (St � St�1) + (St�1 � St�2) + (St�2 � St�3) + · · ·+ S0

St =
tX

i=1

Xi

And remember that

Mt+1 =
tX

i=1

Si

Mt+1 =
tX

i=1

iX

j=1

Xj

⇤ Warning: astrophysics buried here.
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Let us begin: Assumption 1 — Steady-state

So the SFMS is apparently just a correlation between
Pt

i Xi and
Pt

i

Pi
j Xj.

Can we work out how those two sums should be correlated?

S is stationary, so E[X] = 0. But there is a variance �2
t
⇤:

Var[St � St�1] = �2
t

Believe it or not, we now have almost everything we need to compute a lot of the

evolution of the cosmic ensembles of galaxies!

⇤ Astrophysics buried here!
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The Martingale Central Limit Theorem

If the stochastic di↵erences, X, are i.r.v. centered on zero, then S is called a “mar-

tingale,” and X are “martingale di↵erences.”

Why do you care about this?

Sums of sequences of such numbers obey central limit theorems.

If you have central limit theorems, you can compute probabilities!

(Strap yourself in for the ride now.)
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The Martingale Central Limit Theorem

We need to compute the variance in St:

Var[St] = E[S2
t ]� (E[St])

2

Given that S is stationary, centered on S0 = 0, E[St] = 0, and thus

Var[St] =
tX

i=1

X2
i =

tX

i=1

�2
i

where �i is the expected variance in the stochastic changes to S at time i.

Let’s take an ensemble of N object histories Sn,t, where n 2 {1, 2, 3, . . . , N}.

Each object, n, has a history, with di↵erent variances at every timestep, etc.

We therefore define an RMS stochastic fluctuation for n’s history up to Sn,t:

�n,t =
⇣1
t

tX

i=1

�2
n,i

⌘1/2
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The Martingale Central Limit Theorem

Note these RMS stochastic fluctuations for each n history up to time t,

�n,t =
⇣1
t

tX

i=1

�2
n,i

⌘1/2

have all the physics.

The central limit theorem states that the distribution of Sn,t, normalized by these

RMS fluctuations,
Sn,t

t1/2�n,t

=
1

t1/2�n,t

tX

i=1

Xn,i

is a Gaussian centered in zero with a standard deviation of unity:

Sn,t

t1/2�n,t

d�!N(0, 1)
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Imposing Nonnegativity

Stellar mass growth is almost always nonnegative.

Imposing S � 0 turns S into a submartingale, and S, on average tends to go up.

Every submartingale can be expressed as the sum of:

(1) a martingale (yay!), and

(2) a long-term drift term

The resulting limit for S � 0 is the nonnegative half of the Gaussian:

P
h Sn,t

t1/2�n,t

< x
i
=

⇣2
⇡

⌘1/2
Z x

0

e�x2/2dx

WE NOW HAVE A PROBABILITY DISTRIBUTION.

Let us now skip doing the integrals and just write down the 1st and 2nd moments.

Berkeley Cosmology Seminar 12 May 2015 18



Markovian Expectation Values

So far we have derived a probability distribution for St assuming the timesteps are

independent of each other, and galaxies at time t don’t care what they’ve done

previously.

You get 1st and 2nd moments of dP/dx, plus the integral of the 1st moment:

E
hSt

�

i
=

⇣2
⇡

⌘1/2

t1/2

Var
hSt

�

i
=

1

2
E
hSt

�

i2

E
hMt

�

i
=

⇣2
3

⌘⇣2
⇡

⌘1/2

t3/2
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A Markovian Star-Forming Main Sequence

If galaxies grow in a sort of steady-state, with stochastic changes to their growth

rates, and every stochastic change to a galaxy’s growth rate is independent of the

other stochastic changes in its history, one gets this SFMS:

E
h St

Mt

i
=

⇣ 3

2t

⌘

Sig
h St

Mt

i
=

1p
2
E
h St

Mt

i

Sig
h
ln

St

Mt

i
⇡ 1p

2

Sig
h
log

St

Mt

i
⇡ 0.3 dex

Remember how all the physics went into �? It canceled out when calculating S/M !
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A Markovian Star-Forming Main Sequence

If galaxies grow in a sort of steady-state, with stochastic changes to their growth

rates, and every stochastic change to a galaxy’s growth rate is independent of the

other stochastic changes in its history, one gets this SFMS:

E
h St

Mt

i
=

⇣ 3

2t

⌘

Sig
h St

Mt

i
=

1p
2
E
h St

Mt

i

Sig
h
ln

St

Mt

i
⇡ 1p

2

Sig
h
log

St

Mt

i
⇡ 0.3 dex

But the bad news is that galaxies aren’t Markovian.
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Covariant Stochasticity: Timesteps are Correlated

In reality, a galaxy’s history has long- and short-term correlations between stochastic

changes to its growth:

St =
tX

i=1

mX

j=0

ci,i�jXi�j

There is an unknown, seemingly unconstrained set of covariances between stochastic

changes in S.

Pick up football, cry, walk home?
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Covariant Stochasticity: Timesteps are Correlated

In reality, a galaxy’s history has long- and short-term correlations between stochastic

changes to its growth:

St =
tX

i=1

mX

j=0

ci,i�jXi�j

There is an unknown, seemingly unconstrained set of covariances between stochastic

changes in S.

NO!

Sums of m-dependent random variables also obey limit theorems!
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Covariant Stochasticity: Timesteps are Correlated

If the covariances have a “moving average” form, such as what one would largely

find in a cosmological setting with a matter power spectrum correlating stochas-

tic changes to the states of quasi-static equilibria over a broad/infinite range of

timescales, then...
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Covariant Stochasticity: Convergence in Distribution
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Covariant Stochasticity: fractional Brownian motion
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Covariant Stochasticity: fractional Brownian motion

Berkeley Cosmology Seminar 12 May 2015 27



fractional Brownian motion: the long and the short of it

We already derived what is e↵ectively the Brownian case.

The fBm models are generalizations governed by the Hurst parameter: 0  H  1.

Technically the bounds are not inclusive, but...
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fractional Brownian motion: the long and the short of it

We already derived what is e↵ectively the Brownian case.

The fBm models are generalizations governed by the Hurst parameter: 0  H  1.

Technically the bounds are not inclusive, but...

because when H = 1 the integral only converges at t = 1.
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fractional Brownian motion: the long and the short of it

We already derived what is e↵ectively the Brownian case.

The fBm models are generalizations governed by the Hurst parameter: 0  H  1.

Technically the bounds are not inclusive, but...

because when H = 1 the integral only converges at t = 1.

For such a case, it would be like galaxies never forgot what happened to them.

(Hmmmm.)
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Nonnegative fBm: Expectation Values

Serving both the interests of the audience and the speaker, let us just jump to:

E[St] = �
⇣2
⇡

⌘1/2⇣ tH

2H

⌘

Sig[St] = H1/2E[St]

E[Mt] = �
⇣2
⇡

⌘1/2h tH+1

2(1 +H)H

i
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Nonnegative fBm: Example Scale-Free Histories
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Nonnegative fBm: Example Scale-Free Growth Histories
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Nonnegative fBm: The Star-Forming Main Sequence

The expectation values for St and Mt, again, are both proportional to �.

Thus one obtains a generalized SFMS of:

E[St/Mt] =
(H + 1)

t

Sig[St/Mt] = H1/2E[St/Mt]

The amazing thing about this result is that the predicted scatter is independent

of any long-term drift changes in expectations (such as when galaxy environments

evolve to su�ciently modify long-term expectations of gas supply, etc).
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Nonnegative fBm: The Star-Forming Main Sequence

The expectation values for St and Mt, again, are both proportional to �.

Thus one obtains a generalized SFMS of:

E[St/Mt] =
(H + 1)

t

Sig[St/Mt] = H1/2E[St/Mt]

In other words, systematic changes in long-term expectations will not a↵ect the

relative scatter.
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Back to the Star-Forming Main Sequence
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Back to the Star-Forming Main Sequence

These data look like a fracking mess. How would when even begin to

test whether the predictions are correct?
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Rethinking those Measurements

Turns out that di↵erent people measure di↵erent things, artificially in-

flating the apparent disagreement among datasets.
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The di↵erence between a mean and a median

Recall that

E[St/Mt] =
(H + 1)

t
Sig[St/Mt] = H1/2E[St/Mt]

This scatter translates directly to an o↵set between the mean and median SSFR.

Let’s fit A/t to the mean SSFRs and B/t to the medians and compute logA/B:

The green line is what one predicts for di↵erent values of H.
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So galaxies are a bit like elephants

Here the violet solid line is the predicted locus for Median[SSFR] vs redshift.

The violet dashed line is the predicted locus for the Mean[SSFR] vs redshift.

You might ask how unique this is...
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And I would answer, in part, thusly

We derived that the Median[S/M ] on the flat-part of the SFMS is identically 2/t.
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And I would answer, in part, thusly

We derived that the Median[S/M ] on the flat-part of the SFMS is identically 2/t.

The implication is that ever published Median[S/M ] is therefore a cosmic clock.
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And I would answer, in part, thusly

We derived that the Median[S/M ] on the flat-part of the SFMS is identically 2/t.

The implication is that ever published Median[S/M ] is therefore a cosmic clock.

IOW: 2/t goes right through the medians, and 2/t⇥ 1.57 right through the means.

To a few pct.
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What about the expectation value for the scatter?

Schreiber et al (2015)
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What about the expectation value for the scatter?

Schreiber et al (2015)

In SDSS Salim et al (2007) quote 0.4 dex intrinsic.

At high redshift Gonzalez et al (2014) quote ⇠0.5 dex.

Very di�cult to measure right; selection biases matter a lot.

Do not measure for SF gals only!
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Let Us Breath And Quickly Take Stock

• The SFMS is emergent.

• The SFMS does not imply that more massive galaxies form stars at greater rates!

• Rather: in order for a galaxy of mass M to have formed by z, it had to have

formed stars more vigorously than lower mass galaxies.

• Correlation does not imply causation, except in this case, star-formation causes

stellar mass.

• The set of SFHs implied by fBm is quite diverse (and infinite).

• Implied histories show activity on a range of timescales, such that, e.g., “quiescent”

SFHs aren’t actually dead. Some of them get better!
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At Early Times SSFR is Not Correlated with Mass

At low redshift and moderately high galaxy masses, SSFR is anticorrelated with M.

That means we need to input some physics to alter long-term expectations under

the hood.

The lack of dependence of SSFR on M at early times implies we have a fully formed

model of galaxy ensembles at those epochs.
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At Early Times SSFR is Not Correlated with Mass

At low redshift and moderately high galaxy masses, SSFR is anticorrelated with M.

That means we need to input some physics to alter long-term expectations under

the hood.

The lack of dependence of SSFR on M at early times implies we have a fully formed

model of galaxy ensembles at those epochs.

Except that we derived: E[Mt] = �t2/(2
p
2⇡).

Up until now, we have treated � as a nuisance, as something we can ignore.

But � normalizes the SFRs and stellar masses, and is thus critical for computing

stellar mass functions over time!

Can we calculate � a priori?
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A Characteristic Stochastic Fluctuation Amplitude

Let us start with

E
hdM
dt

i
=

�p
2⇡

t

Let us then take the first derivative, and investigate ensembles for which the RMS

fluctuation is roughly independent of time:

d

dt
E
hdM
dt

i
=

�p
2⇡

E
hd2M
dt2

i
=

�p
2⇡

Let us simplify dM/dt as the rate of accretion of baryons, converted to stars with

some fraction ✏, where vb is the infall velocity and ⇢b is the ambient density:

dM

dt
= ✏⇢bvb
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A Characteristic Stochastic Fluctuation Amplitude

We’ll use a simple top-hat approximation, and other assumptions about the density

of the ambient medium being relatively constant over a short enough timescale at

the start of the stochastic process S, so that:

d2M

dt2
= ✏⇢b

dvb
dt

= ✏⇢b
GMh

R2
h

which eventually will look like

d2M

dt2
= ✏fb

⇣4⇡178
3

⌘2/3

GM
1/3
h ⇢5/3

Using characteristic halo mass at the onset of star-formation, and the matter density

at that epoch, one then has a characteristic d2M/dt2, and thus a characteristic �⇤
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A Characteristic Stochastic Fluctuation Amplitude

Popular halo mass functions for z ⇠ 10 have characteristic Mh ⇠ 6 ⇥ 109M� (e.g.

Warren et al 2006, Tinker et al 2008).

Let us adopt a rate of conversion of baryons to stars of 2%, and baryon fraction

fb = 0.2.

This number is what goes in front of, e.g., E[Mt] = �t2/(2
p
2⇡):

�⇤ ⇡
⇣ ✏

0.02

⌘⇣ fb
0.2

⌘⇣ 1 + z

1 + 10

⌘5⇣ Mh

6⇥ 109M�

⌘1/3

⇥
⇣
1.4⇥ 10�7M�/yr

2
⌘

• Plug in t = 1 Gyr, you get 1.4⇥ 1011M� (⇠ M ⇤ at z ⇠ 5� 6)

• Plug in t = 10 Gyr, you get 2⇥ 1013M� (stellar mass of clusters).
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High-z Stellar Mass Functions and Madau Diagram

One can also work out that the expected spectrum of �’s should have a low-� slope

of ↵ ⇠ �2.

(SFRD from Madau & Dickinson 2014; mass functions from various.)

Given systematics in SFRDs, and high-z MFs, we’re doing pretty well.
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In the Local Universe, Low Mass Galaxies

Our derivations should also explicitly match those low-z galaxies that have stellar

masses where the SFMS is still flat today.

Here are some growth histories derived from local dIrr, dTrans, dE galaxies:

(Weisz et al 2014)
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Implications for the Scatter in SSFR at Fixed Mass

The intrinsic scatter in SSFR means “quiescent” often 6= dead

(Data from Tomczak et al 2014)

Over long baselines in z, galaxies below the median will move above, and vice versa.
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My Ending Points (i.e. Math is Very Powerful)

• The “Star-Forming Main Sequence” is emergent, and a natural consequence of

stellar mass growth as a stochastic process

• Derive E[(dM/dt)/M ] = 2/t, accurately matching SSFRs over 0<z<10

• Surprise! We used the published SSFRs to derive, e.g., H0 to ⇠3%!

• Observed intrinsic scatter in SSFR at fixed mass falls right out

• Retrodict stellar mass functions and Madau diagram 3 <⇠z <⇠10

• Infinite set of possible SFHs, including those of local group dwarf gals, MW

• Retrodict quiescent galaxy fractions along flat part of SFMS

• Strongly limits how well one can link specific progenitors with specific descendents

• Must trace full ensembles over cosmic time, but we now have math to help us!

• This framework is not yet complete — must incorporate a little more physics to

get long-term evolution of massive galaxies (merging? gas depletion? AGN?)
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