LARGE SCALE CLUSTERING IN THE SDSS LUMINOUS RED GALAXY SAMPLE

Eyal Kazin

Center for Cosmology and Particle Physics
New York University

In Collaboration with:
Michael Blanton, NYU
and:

Román Scoccimarro, NYU Andreas Berlind, Vanderbilt Uni. Cameron McBride, Vanderbilt Uni.

Today I will discuss:

- Introduction 13 minutes
 - Quantifying Clustering
 LRGs- Why (should) we like these galaxies so much?
 The Sloan Digital Sky Survey
- Baryonic Acoustic Feature 30 minutes
- Introduction to Redshift Distortions 2 minutes
- Redshift Distortions in Clustering 5 minutes

Large-Scale Structure

The Millennium Simulation Project

Dark Matter Distribution

Mock Galaxy Distribution

Springel et al. (2005)

Quantifying Clustering

$$\varrho(x) = \bar{\varrho}(1 + \delta(x))$$
 ϱ -density δ -overdensity $\delta \ge -1$

2 point functions

correlation function
$$\xi(r) \equiv$$
 Power Spectrum $P(k) \equiv$

Springel et al. (2005)

Luminous Red Galaxies

From a talk by Max Tegmark

2 [Ang]

Padmanabhan et al. (2007)

Not too rare $n(z) \sim 3.10^{-4} (h \text{Mpc}^{-1})^3$

Trace Matter well, "bias" (clustering gain) bin- 2

Easy to identify by color cuts, spectra

The Sloan Digital Sky Survey LRG Sample

>100,00 LRGs between 0.16<z<0.47

Sky Coverage ~8,000 degree2

Comoving Volume 1.6 h^{-3} Gpc³ of which: quasi-volume Limited until z < 0.36 (0.66 h^{-3} Gpc³)

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Today I will discuss:

- Introduction 13 minutes
 - Quantifying Clustering
 LRGs- Why (should) we like these galaxies so much?
 The Sloan Digital Sky Survey
- Baryonic Acoustic Feature 30 minutes
- Introduction to Redshift Distortions 2 minutes
- Redshift Distortions in Clustering 5 minutes

Feature in the early universe:

Feature in the early universe:

Feature in the late universe:

Feature in the early universe:

CMBT-T Larson et al. (2010) 6000 WMAP 7yr ₹ ACBAR ₹ 5000 $I(I+1)C_I^{TT}/(2\pi) [\mu K^2]$ QUaD ₹ 4000 3000 2000 1000 0 100 500 10 1000 1500 2000 Multipole Moment (1)

Feature in the late universe:

sound horizon

$$r_s(z_{dec}) = \int_{0}^{\tau_{dec}} c_s d\tau = \int_{0}^{z_{dec}} c_s / H(z') dz'$$
inifinity

Feature in the early universe:

CMBT-T Larson et al. (2010) 6000 WMAP 7yr ₹ ACBAR ₹ 5000 $I(I+1)C_I^{TT}/(2\pi) [\mu K^2]$ QUaD ₹ 4000 3000 2000 1000 100 500 10 1000 1500 2000 Multipole Moment (1)

Feature in the late universe:

sound horizon

$$r_s(z_{dec}) = \int_{0}^{\tau_{dec}} c_s d\tau = \int_{0}^{z_{dec}} c_s / H(z') dz'$$
inifinity

Zdec, Tdec conformal time and redshift at photon-baryon decoupling

$$d\tau = (1+z)dt = 1/(H(z))dz$$

Feature in the early universe:

Feature in the late universe:

sound horizon

$$r_s(z_{dec}) = \int_{0}^{\tau_{dec}} c_s d\tau = \int_{0}^{z_{dec}} c_s / H(z') dz'$$
inifinity

Zdec, Tdec conformal time and redshift at photon-baryon decoupling

$$d\tau = (1+z)dt = 1/(H(z))dz$$

sound speed $c_s(z) = c/\sqrt{[3(1+R)]}$

baryon to photon ratio $R(z) \equiv 0.750b/0\Upsilon$

The Baryonic Acoustic Feature in Late Universe (reality check)

Deviations from linear theory

- Nonlinear clustering
- Galaxy bias δgal≈blinδ
- Redshift Distortions
- Assuming cosmology

galaxies z-space , non-linear galaxies real space, non-linear matter real space, non-linear matter real space, linear

The Baryonic Acoustic Feature in Late Universe (reality check)

Deviations from linear theory

Nonlinear clustering

€ Galaxy bias δgal≈blinδ

Redshift Distortions

Assuming cosmology

S/N (ξ/σ) depends on

Volume of sample

Density of sample n

 $\sigma \propto (\sqrt{V^{-1}}) (P(k) + N^{-1})$

Unexplained strong signal on large scales when analyzing volumes larger than DR3

Unexplained strong signal on large scales when analyzing volumes larger than DR3

From Blake et al. (2007)

• We measure a hint of excess power relative to the best-fitting cosmological model on the largest scales (the lowest multipole bands in the four redshift slices in Figure 10). If confirmed, this excess power has a range of possible causes: (1) residual systematic errors; (2) cosmic variance; (3) large-scale galaxy biasing mechanisms; (4) new early-Universe physics.

From Blake et al. (2007)

• We measure a hint of excess power relative to the best-fitting cosmological model on the largest scales (the lowest multipole bands in the four redshift slices in Figure 10). If confirmed, this excess power has a range of possible causes: (1) residual systematic errors; (2) cosmic variance; (3) large-scale galaxy biasing mechanisms; (4) new early-Universe physics.

Unexplained strong signal on large scales when analyzing volumes larger than DR3

Large scale signal difference- Not due to systematics

Las Damas Mock Simulations

E(s~ BA feature scale)

Mock #1	Mock #2	Mock #3	Mock #4	Mock #5	Mock #41	Mock #42	Mock #43	Mock #44	Mock #45
****	* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	*******	**,***	°°,	· · · · · · · · · · · · · · · · · · ·	· . · · · · · · · · · · · · · · · · · ·	· . · · · · · · · · · · · · · · · · · ·
Mock #6	Mock #7	Mock #8	Mock #9	Mock #10	Mock #46	% % % % % % % % % % % % % % % % % % %	Mock #48	Mock #49	Mock #50
•		· · · · · · · · · · · · · · · · · · ·	****	· · · · · · · · · · · · · · · · · · ·	***		· · · · · · · · · · · · · · · · · · ·	·	****
************	1		*********			° · · · · · · · · · · · · · · · · · · ·		~~~~~	00000000
Mock #11	Mock #12	Mock #13	Mock #14 .	Mock #15	Mock #51	Mock #52	Mock #53	Mock #54	Mock #55
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0	****	• • • • • • • • • • • • • • • • • • •	·	**********	·	********	·
Mock #16	Mock #17	Mock #18	Mock #19	Mock #20	Mock #56	Mock #57	Mock #58	Mock #59	Mock #60
* * * * * * * * * * * * * * * * * * * *	***	* * * * * * * * * * * * * * * * * * *	************	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	*****	· · · · · · · · · · · · · · · · · · ·	*******	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Mock #21	Mock #22	Mock #23	Mock #24	Mock #25	Mock #61	Mock #62	Mock #63	Mock #64	Mock #65
************	* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	°, °° °° °° °° °° °° °° °° °° °° °° °° °	*****	° , ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Mock #26	Mock #27	%	Mock #29	Mock #30	Mock #66	Mock #67	Mock #68	Mock #69	Mock #70
* .				•	•			•	
****	**************************************	*****	*****	******	******	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	× , , , , , , , , , , , , , , , , , , ,	* * * * * * * * * * * * * * * * * * * *	° · · · · · · · · · · · · · · · · · · ·
Mock #31	Mock #32	Mock #33 .	Mock #34	Mock #35	Mock #71	Mock #72	Mock #73	Mock #74	Mock #75
****	· · · · · · · · · · · · · · · · · · ·	·	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	**********	·	***********	****	· · · · · · · · · · · · · · · · · · ·	*****
Mock #36	Mock #37	Mock #38	Mock #39	Mock #40	% ** ** ** ** ** ** ** ** ** ** ** ** **	Mock #77	%%%°°°°°° Mock #78	Mock #79	Mock #80
○		•	*****	•				•	•
***********	*****	********	*****	******	**,***	******	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	*****	° , , , , , , , , , , , , , , , , , , ,
Mock #81	Mock #82	Mock #83	Mock #84	Mock #85	Mock #121	Mock #122	Mock #123		Mock #125.
******	****	*	·	****	*	***********************************	·	*****	**********
Mock #86	*° ** Mock #87	Mock #88	% % % % & & & & & & & & & & & & & & & &	Mock #90	, °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	Mock #127	Mock #128	Mock #129	Mock #130
		*						•	
************	° · · ° · · · · · · · · · · · · · · · ·	*****	× , , , , , , , , , , , , , , , , , , ,	* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	******	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	*****	**.
Mock #91	Mock #92	Mock #93	Mock #94	Mock #95	Mock #131	Mock #132	Mock #133	Mock #134	Mock #135
•		٠ • •	*	•	•		•	·	•
******	° · · · · · · · · · · · · · · · · · · ·	******	*****	****	°00°00	*****	******	******	°°°°
Mock #96	Mock #97	Mock #98	Mock #99	Mock #100.	Mock #136.	Mock #137	Mock #138.	Mock #139	Mock #140
·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •	*	*****		· · · · ·	· · · · · · ·	*
Mock #101	00000000	**************************************	%	Mock #105	%%%%%%% Mock #141	° 000 000 000 000 000 000 000 000 000 0	Mock #143	*******	Mock #145
•			*		• • • · · · · · · · · · · · · · · · · ·	•	• ·		•
*******	*****	× 000000000000000000000000000000000000	° • • • • • • • • • • • • • • • • • • •	******	° , ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	*********	° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	****	******
Mock #106	Mock #107	Mock #108	Mock #109	Mock #110	Mock #146	Mock #147	Mock #148	Mock #149	Mock #150
******	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	***	****	* *	· · · · · · · · · · · · · · · · · · ·	****	• • • • •	•	* *
Mock #111	Mock #112	Mock #113	******** Mock #114	Mock #115	Mock #151	Mock #152	Mock #153	Mock #154	Mock #155
	•			\$000 WITO	MOCK #131	MOCK #152	MOCK #100	MUCK #194	MOCK #133
******	× • • • • • • • • • • • • • • • • • • •	******	*****	*****	**********	°	°	*****	° · · · ° · · · · · · · · · · · · · · ·
Mock #116	Mock #117	Mock #118	Mock #119	Mock #120	Mock #156	Mock #157	Mock #158	Mock #159	Mock #160
	•	•	•	•		*	*	•	
*****	*********	*****	*********	. 000,0000000	°,°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	× • • • • • • • • • • • • • • • • • • •	*,***	°°, °°, °°, °°, °°, °°, °°

S [h-1Mpc]

http://lss.phy.vanderbilt.edu/lasdamas/

Andereas Berlind Michael Busha Jeff Gardner Cameron McBride Román Scoccimarro Frank van den Bosch Risa Wechsler

- Large Suite of DM sims
- We use: 160 SDSS-II mock LRG realizations
- Emphasize on many observational effects:
 - Light-cone, z-space
 - SDSS-II geometry
 - Radial selection function

Results in most realistic uncertainties of clustering measurements to date

McBride et al.; in prep.

SDSS-III (BOSS) Prediction

Unexplained strong signal on large scales when analyzing larger volumes than DR3

SDSS-II Results

Large scale signal difference- Not due to systematics

SDSS-III (BOSS) Prediction

Unexplained strong signal on large scales when analyzing larger volumes than DR3

SDSS-II Results

Large scale signal difference- Not due to systematics Λ CDM is consistent with data within 1.50

SDSS-III (BOSS) Prediction

SDSS-II Results

Large scale signal difference- Not due to systematics

ΛCDM is consistent with data within 1.5σ

SDSS-III (BOSS) Prediction

According to \(\Lambda\)CDM, strong signal should not appear at a high CL

SDSS-II Results

60 80 100 120 140 160 180 200 s [h⁻¹Mpc]

Large scale signal difference- Not due to systematics ACDM is consistent with data within 1.50

SDSS-II volume mock catalogs indicate a > 10% chance of not detecting an apparent signature -based on mock catalogs provided by LasDamas (McBride et al.; in prep) and Horizon-Run mocks (Kim et al. 2009)-

SDSS-II volume mock catalogs indicate a > 10% chance of not detecting an apparent signature -based on mock catalogs provided by LasDamas (McBride et al.; in prep) and Horizon-Run mocks (Kim et al. 2009)-

s [h-1 Mpc]

SDSS-II volume mock catalogs indicate a > 10% chance of not detecting an apparent signature -based on mock catalogs provided by LasDamas (McBride et al.; in prep) and Horizon-Run mocks (Kim et al. 2009)-

60 80 100 120 140 160 180 200 **s** [h⁻¹Mpc]

~45% (75 of 160) of realizations do show indication of a clear peak

Baryonic Acoustic Feature in SDSS LRGs MONOPOLE

SDSS-II volume mock catalogs indicate a > 10% chance of not detecting an apparent signature -based on mock catalogs provided by LasDamas (McBride et al.; in prep) and Horizon-Run mocks (Kim et al. 2009)-

60 80 100 120 140 160 180 200 **s** [h⁻¹Mpc]

~45% (75 of 160) of realizations do show indication of a clear peak

SDSS-II LRGs <u>do</u> reveal a Baryonic Acoustic Feature in various redshifts and luminosity cuts

The Baryonic Acoustic Feature as a Standard Ruler

Early Universe ($z_{dec}\sim1090$):

CMB temp fluctuations determines $r_s\sim147$ Mpc ($\delta r_s/r_s\sim1.3\%$; Komatsu et al. 2009)

Late Universe:

Galaxy Clustering (z~ 0.3, 0.6)

QSOs Lyman-α Forest (z~ 2.5)

Baryonic Acoustic Feature on (and off) the defining Line of Sight

$$d = cz/H_0$$

$$\chi = c \int dz'/H(z')$$

 $D_A = \chi/(1+z)$

Hubble's Law for proper distance

$$\chi = c \int dz' / H(z')$$
 comoving distance $\chi = d(1+z)$

angular distance (not comoving!)

measuring

transverse feature $S_{\perp} = \Delta \Omega D_A (1+z)$

line of sight feature $S | | = \Delta \chi$

yields ...

$$\int dz'/H(z') = s_{\perp}/\Delta\alpha/c$$

$$H(\langle z \rangle) \sim c\Delta z/s_{\parallel}$$

measurable with BA feature known knowns...

New Mexico (and, eventually, my desktop)

meaning

 s_{\perp} constrains integral (a lot of degeneracy)

constrains H at a specific redshift! Can constrain expansion rate!!

BUT....

Line of sight signal is Noisy (I will show this soon... promise...)

SO....

by using the angle averaged signal

 $\langle \xi \rangle$ (aka monopole),

 $\langle \xi \rangle = \int \xi(s,\theta) \sin(\theta) d\theta$

we measure the Volume Average (effective) Distance

$$D_V(z) = [(1+z)^2 D_A^2 c / H(z)]^{1/3}$$

 $\propto [s_1^2 s_{11}]^{1/3}$

meaning $\langle \xi \rangle$ constrains $D_A^2/H(z)$

Pinpointing Baryonic Acoustic Feature Peak in SDSS LRGs Monopole

Velocity-Dispersion Effect (aka Finger of God) effects small scales ~ few Mpc

Real Comoving Space

Redshift Space

Squashing Effect effects large scales ~ 10'sMpc

Real Comoving Space

Redshift Space

Velocity-Dispersion Effect (aka Finger of God) effects small scales ~ few Mpc

Real Comoving Space

Squashing Effect effects large scales ~ I 0'sMpc

no dynamical distortions (linear theory)

Clustering as Function of Polar Angle with Squashing Effect

no dynamical distortions (linear theory)

Clustering as Function of Polar Angle with Squashing Effect

squashing effect only (linear theory; Matsubara 2004)

Clustering as Function of Polar Angle with Squashing Effect

squashing effect only (linear theory; Matsubara 2004)

ABSTRACT

From Gaztañaga et al. (2008)

We study the clustering of LRG galaxies in the latest spectroscopic SDSS data releases, DR6 and DR7, which sample over $1 \text{ Gpc}^3/\text{h}^3$ to $z{=}0.47$. The 2-point correlation function $\xi(\sigma,\pi)$ is estimated as a function of perpendicular σ and line-of-sight π (radial) directions. We find a significant detection of a peak at $r \simeq 110 \text{Mpc/h}$, which shows as a circular ring in the $\sigma-\pi$ plane. There is also significant evidence for a peak along the radial direction whose shape is consistent with its originating from the recombination-epoch baryon acoustic oscillations (BAO). A $\xi(\sigma,\pi)$ model with no radial BAO peak is disfavored at 2σ . The radial data enable, for the first time, a direct measurement of the Hubble parameter H(z) as a function of redshift. This is independent from earlier BAO measurements which used the spherically averaged (monopole) correlation to constrain an integral of H(z). Using the BAO peak position as a standard ruler in the radial

ABSTRACT

From Gaztañaga et al. (2008)

We study the clustering of LRG galaxies in the latest spectroscopic SDSS data releases, DR6 and DR7, which sample over $1 \text{ Gpc}^3/\text{h}^3$ to $z{=}0.47$. The 2-point correlation function $\xi(\sigma,\pi)$ is estimated as a function of perpendicular σ and line-of-sight π (radial) directions. We find a significant detection of a peak at $r \simeq 110 \text{Mpc/h}$, which shows as a circular ring in the $\sigma-\pi$ plane. There is also significant evidence for a peak along the radial direction whose shape is consistent with its originating from the recombination-epoch baryon acoustic oscillations (BAO). A $\xi(\sigma,\pi)$ model with no radial BAO peak is disfavored at 2σ . The radial data enable, for the first time, a direct measurement of the Hubble parameter H(z) as a function of redshift. This is independent from earlier BAO measurements which used the spherically averaged (monopole) correlation to constrain an integral of H(z). Using the BAO peak position as a standard ruler in the radial

ABSTRACT

T [h-1Mpc]

00

-100

-100

0

100

From Gaztañaga et al. (2008)

We study the clustering of LRG galaxies in the latest spectroscopic SDSS data releases, DR6 and DR7, which sample over 1 ${\rm Gpc^3/h^3}$ to z=0.47. The 2-point correlation function $\xi(\sigma,\pi)$ is estimated as a function of perpendicular σ and line-of-sight π (radial) directions. We find a significant detection of a peak at $r\simeq 110{\rm Mpc/h}$, which shows as a circular ring in the $\sigma-\pi$ plane. There is also significant evidence for a peak along the radial direction whose shape is consistent with its originating from the recombination-epoch baryon acoustic oscillations (BAO). A $\xi(\sigma,\pi)$ model with no radial BAO peak is disfavored at 2σ . The radial data enable, for the first time, a direct measurement of the Hubble parameter H(z) as a function of redshift. This is independent from earlier BAO measurements which used the spherically averaged (monopole) correlation to constrain an integral of H(z). Using the BAO peak position as a standard ruler in the radial

ABSTRACT

From Gaztañaga et al. (2008)

We study the clustering of LRG galaxies in the latest spectroscopic SDSS data releases, DR6 and DR7, which sample over 1 ${\rm Gpc^3/h^3}$ to z=0.47. The 2-point correlation function $\xi(\sigma,\pi)$ is estimated as a function of perpendicular σ and line-of-sight π (radial) directions. We find a significant detection of a peak at $r\simeq 110{\rm Mpc/h}$, which shows as a circular ring in the $\sigma-\pi$ plane. There is also significant evidence for a peak along the radial direction whose shape is consistent with its originating from the recombination-epoch baryon acoustic oscillations (BAO). A $\xi(\sigma,\pi)$ model with no radial BAO peak is disfavored at 2σ . The radial data enable, for the first time, a direct measurement of the Hubble parameter H(z) as a function of redshift. This is independent from earlier BAO measurements which used the spherically averaged (monopole) correlation to constrain an integral of H(z). Using the BAO peak position as a standard ruler in the radial

ABSTRACT

From Gaztañaga et al. (2008)

We study the clustering of LRG galaxies in the latest spectroscopic SDSS data releases, DR6 and DR7, which sample over 1 ${\rm Gpc^3/h^3}$ to z=0.47. The 2-point correlation function $\xi(\sigma,\pi)$ is estimated as a function of perpendicular σ and line-of-sight π (radial) directions. We find a significant detection of a peak at $r\simeq 110{\rm Mpc/h}$, which shows as a circular ring in the $\sigma-\pi$ plane. There is also significant evidence for a peak along the radial direction whose shape is consistent with its originating from the recombination-epoch baryon acoustic oscillations (BAO). A $\xi(\sigma,\pi)$ model with no radial BAO peak is disfavored at 3.2σ , whereas a model with no magnification bias is disfavored at 2σ . The radial data enable, for the first time, a direct measurement of the Hubble parameter H(z) as a function of redshift. This is independent from earlier BAO measurements which used the spherically averaged (monopole) correlation to constrain an integral of H(z). Using the BAO peak position as a standard ruler in the radial

Full LRG sample

Baryonic Acoustic Feature in SDSS LRGs

Line of Sight Detection?

ABSTRACT

From Gaztañaga et al. (2008)

We study the clustering of LRG galaxies in the latest spectroscopic SDSS data releases, DR6 and DR7, which sample over 1 ${\rm Gpc^3/h^3}$ to z=0.47. The 2-point correlation function $\xi(\sigma,\pi)$ is estimated as a function of perpendicular σ and line-of-sight π (radial) directions. We find a significant detection of a peak at $r\simeq 110{\rm Mpc/h}$, which shows as a circular ring in the $\sigma-\pi$ plane. There is also significant evidence for a peak along the radial direction whose shape is consistent with its originating from the recombination-epoch baryon acoustic oscillations (BAO). A $\xi(\sigma,\pi)$ model with no radial BAO peak is disfavored at 2σ . The radial data enable, for the first time, a direct measurement of the Hubble parameter H(z) as a function of redshift. This is independent from earlier BAO measurements which used the spherically averaged (monopole) correlation to constrain an integral of H(z). Using the BAO peak position as a standard ruler in the radial

Full LRG sample

Kazin et al. (in prep.)

- SDSS-II does not contain enough modes to measure the line of sight BA feature at $\theta < 3^{\circ}$
- The strong signal at 110 h-1Mpc, although unlikely, is consistent with being noise

Baryonic Acoustic Feature in BOSS LRGs in Line of Sight and Transverse Directions

Baryonic Acoustic Feature in BOSS LRGs in Line of Sight and Transverse Directions

$$\int dz'/H(z') = s_{\perp}/\Delta\alpha/c$$

$$H(\langle z \rangle) \sim c\Delta z/s_{||}$$

Baryonic Acoustic Feature in BOSS LRGs in Line of Sight and Transverse Directions

The strong SDSS-II signal at 110 h-1Mpc is predicted to be ruled out by BOSS

BOSS does contain enough modes to measure the line of sight BA feature, although for $r_p < 5.5 \text{ h}^{-1}\text{Mpc}$ the signal is noisy.

 $\int dz'/H(z') = s_{\perp}/\Delta\alpha/c$ $H(\langle z \rangle) \sim c\Delta z/s_{\parallel}$

Baryonic Acoustic Feature in BOSS LRGs in Line of Sight and Transverse Directions

The expected separation btw line-of-sight and transverse signals for large $\Delta\theta$ raise optimism for disentangling $H(\langle z \rangle)$ and $D_A(\langle z \rangle)$

 $\int dz'/H(z') = s_{\perp}/\Delta\alpha/c$ $H(\langle z \rangle) \sim c\Delta z/s_{\parallel}$

- The strong SDSS-II signal at 110 h-1Mpc is predicted to be ruled out by BOSS
- BOSS does contain enough modes to measure the line of sight BA feature, although for $r_p < 5.5 \, h^{-1} Mpc$ the signal is noisy.

Baryonic Acoustic Feature in BOSS LRGs in Line of Sight and Transverse Directions

The expected separation btw line-of-sight and transverse signals for large $\Delta\theta$ raise optimism for disentangling $H(\langle z \rangle)$ and $D_A(\langle z \rangle)$

$$\int dz'/H(z') = s_{\perp}/\Delta\alpha/c$$

$$H(\langle z \rangle) \sim c\Delta z/s_{\parallel}$$

- The strong SDSS-II signal at 110 h-1Mpc is predicted to be ruled out by BOSS
- BOSS does contain enough modes to measure the line of sight BA feature, although for $r_p < 5.5 \text{ h}^{-1}\text{Mpc}$ the signal is noisy.

Kazin et al. coming very soon...

Today I will discuss:

- Baryonic Acoustic Feature 30 minutes
- Introduction to Redshift Distortions 2 minutes
- Redshift Distortions in Clustering 5 minutes

Quantifying the Squashing Effect

Kaiser 1987: conservation of number of objects when going from real-space to z-space

$$n(s)d^3s = n(r)d^3r$$

where
$$\mu = \cos(\theta)$$

$$P^{(s)}(k,\mu) = (1+f\mu^2)^2 P(k)$$

real space matter

$$\mu = \cos(\theta)$$
 $f = d\ln(D_1)/d\ln(a)$
 $f = d\ln(D_1)/d\ln(a)$

overdensity
$$\delta(a) \approx D_1 \delta_{initial} D_1$$
—linear growth factor $a=1/(1+z)$ expansion factor

Quantifying the Squashing Effect

Kaiser 1987: conservation of number of objects when going from real-space to z-space

z-space matter

$$n(s)d^3s = n(r)d^3r$$

where
$$\mu \equiv \cos(\theta)$$
 $f \equiv d\ln(D_1)/d\ln(a)$

$$P^{(s)}(k,\mu) = (1+f\mu^2)^2 P(k)$$

real space matter

and

overdensity
$$\delta(a) \approx D_1 \delta_{initial} D_1$$
—linear growth factor $a=1/(1+z)$ expansion factor

where

$$P^{(s)}_{gal}(k,\mu) = (1 + \beta \mu^2)^2 P_{gal}(k)$$

z-space tracer

$$= (b + f\mu^2)^2 P(k)$$

Extracting information from the Squashing Effect

growth index

Kaiser 1987: $\beta = f(z)/b_1 \approx \Omega_M^{\gamma}(z)/b_1$

ACDM: Y-0.56

So: $\beta \leftrightarrow \Omega_{\mathcal{M}}$

DGP: Y-0.68

Or: $\beta \leftrightarrow \text{gravity}$ (through γ ; Linder 2005)

Or: $\beta \leftrightarrow \text{break (bias)} \sigma_8 \text{ degeneracy}$

Extracting information from the Squashing Effect

growth index

Kaiser 1987:
$$\beta = f(z)/b_1 \approx \Omega_M^{\gamma}(z)/b_1$$

So:
$$\beta \leftrightarrow \Omega_M$$

Or:
$$\beta \leftrightarrow \text{gravity}$$
 (through γ ; Linder 2005)

Or:
$$\beta \leftrightarrow \text{break (bias)} \sigma_8$$
 degeneracy

Quadrupole Test: No dependence on scale!

$$Q = \frac{P_2(k)/P_0(k)}{P_0(k)} = (4/3\beta + 4/7\beta^2)/(1 + 2/3\beta + 1/5\beta^2)$$

Extracting information from the Squashing Effect

growth index

Kaiser 1987: $\beta = f(z)/b_1 \approx \Omega_M^{\gamma}(z)/b_1$

ACDM: Y-0.56

So: $\beta \leftrightarrow \Omega_M$

DGP: Y-0.68

Or: $\beta \leftrightarrow \text{gravity}$ (through γ ; Linder 2005)

Or: $\beta \leftrightarrow \text{break (bias)} \sigma_8$ degeneracy

Quadrupole Test: No dependence on scale!

$$Q = \frac{P_2(k)/P_0(k)}{P_0(k)} = \frac{(4/3\beta + 4/7\beta^2)}{(1+2/3\beta + 1/5\beta^2)}$$

In configuration space (Hamilton 1992):

$$Q = \frac{\xi_2(s)}{[\xi_0(s)-(\xi_0(s))]} = \frac{(4/3\beta+4/7\beta^2)}{(1+2/3\beta+1/5\beta^2)}$$

where $\xi_{l}(s) = (2l+1)/2/\xi(\mu',s) \mathcal{L}_{l}(\mu') d\mu'$

B through the Quadrupole Test
Non-Linear Theory

$$Q = \frac{\xi_2(s)}{[\xi_0(s)-(\xi_0(s))]} = (4/3\beta+4/7\beta^2)/(1+2/3\beta+1/5\beta^2)$$

$$\beta = f(z)/b_1 \approx \Omega_M^{\gamma}(z)/b_1$$

β through the Quadrupole Test Non-Linear Theory

$$Q = \frac{\xi_2(s)}{[\xi_0(s)-(\xi_0(s))]} = (4/3\beta + 4/7\beta^2)/(1+2/3\beta + 1/5\beta^2)$$

B through the Quadrupole Test SDSS-II Results

$$Q = \frac{\xi_2(s)}{[\xi_0(s)-(\xi_0(s))]} = (4/3\beta + 4/7\beta^2)/(1+2/3\beta + 1/5\beta^2)$$

Quadrupole Test- Cosmological Significance

Quadrupole Test- Cosmological Significance

B through the Quadrupole Test Non-Linear Theory

$$Q = \frac{\xi_2(s)}{[\xi_0(s)-(\xi_0(s))]} = (4/3\beta + 4/7\beta^2)/(1+2/3\beta + 1/5\beta^2)$$

B through the Quadrupole Test Non-Linear Theory

$$Q = \frac{\xi_2(s)}{[\xi_0(s)-(\xi_0(s))]} = (4/3\beta + 4/7\beta^2)/(1+2/3\beta + 1/5\beta^2)$$

Summary

Monopole Baryonic Acoustic Feature in SDSS-II ξ Monopole

Apparent in LRG clustering, and consistent with ΛCDM cosmology.

 \overline{U} Can be used to measure distance to $z\sim0.28$ at accuracy of 3%

Prediction: Strong signal at s~130 h-1Mpc will not appear in BOSS

Maryonic Acoustic Feature in Line of Sight ξ

Not measurable in SDSS-II due to lack of modes

 \overline{U} Will be noisy in BOSS when restricting to thin angular slice ($\theta < 3^{\circ}$)

Using wider wedges- BOSS will be able to be distinguished from transverse signal, enabling disentanglement of H(z) and $D_A(z)$

Redshift Distortions in Clustering

Cosmological constraints

"All astronomers do these days is count photons, galaxies and citations", M.R.B

Summary

- Monopole Baryonic Acoustic Feature in SDSS-II ξ Monopole
 - Mapparent in LRG clustering, and consistent with ΛCDM cosmology.
 - Can be used to measure distance to z~0.28 at accuracy of 3%
 - Prediction: Strong signal at s~130 h-1Mpc will not appear in BOSS
- Maryonic Acoustic Feature in Line of Sight ξ
 - Not measurable in SDSS-II due to lack of modes
 - \overline{U} Will be noisy in BOSS when restricting to thin angular slice ($\theta < 3^{\circ}$)
 - Using wider wedges- BOSS will be able to be distinguished from transverse signal, enabling disentanglement of H(z) and $D_A(z)$
- Redshift Distortions in Clustering
 - $\overline{\mathbf{V}}$ Yields $\sigma_{\beta}/\beta \sim 10\%$ @ $z \sim 0.28$ (sample variance)
 - Cosmological constraints

"All astronomers do these days is count photons, galaxies and citations", M.R.B

ξ, c_{ij} results as well as LRG sample may be obtained here! http://cosmo.nyu.edu/~eak306/LSS.html

Summary

- Monopole Baryonic Acoustic Feature in SDSS-II ξ Monopole
 - Mapparent in LRG clustering, and consistent with ΛCDM cosmology.
 - Can be used to measure distance to z~0.28 at accuracy of 3%
 - Prediction: Strong signal at s~130 h-1Mpc will not appear in BOSS
- Maryonic Acoustic Feature in Line of Sight ξ
 - Not measurable in SDSS-II due to lack of modes
 - Will be noisy in BOSS when restricting to thin angular slice $(\theta < 3^{\circ})$
 - Using wider wedges- BOSS will be able to be distinguished from transverse signal, enabling disentanglement of H(z) and $D_A(z)$
- Redshift Distortions in Clustering
 - \checkmark Yields $\sigma_{\beta}/\beta\sim$ 10% @ $z\sim$ 0.28 (sample variance)
 - Cosmological constraints

"All astronomers do these days is count photons, galaxies and citations", M.R.B

ξ, c_{ij} results as well as LRG sample may be obtained here! http://cosmo.nyu.edu/~eak306/LSS.html

Luminous Red Galaxies

Padmanabhan et al. (2007)

based on Bruzual&Charlot (2003) model

- Luminous > Enable large volume limited samples
- Not too rare $n(z) \sim 3.10^{-4} (h \text{Mpc}^{-1})^3$
- Frace Matter well, "bias" (clustering gain) bin- 2
- Easy to identify by color cuts, spectra

δgal≈blinδ

Some Cosmography

Hubble Equation; assumptions: low z's $v_H < < c$

$$cz = V_H = H_0 d = H_0 \chi / (1+z)$$

Comoving distances generalized

$$\chi(z) = c \int_{0}^{z} dz' / H(z')$$

Assuming flat ACDM

expansion rate
$$\text{CDM } H(z) = H_0 \{ \Omega_M (1+z)^3 + \Omega_\Lambda f(z) \}^{o.5}$$
 where
$$f(z) \equiv \exp[3\int_0^z dz' (1+w(z'))/(1+z')]$$
 equation of state $W \equiv P_\Lambda/Q_\Lambda$

Some Cosmography

$$\chi(z) = c \int_{0}^{z} dz' / H(z') \quad \text{comoving distance}$$

$$D_{A} = sin\{ \sqrt{(-\Omega_{K})}\chi \} \quad \text{angular distance (note that the properties of th$$

 $D_A = sin\{\sqrt{(-\Omega_K)\chi}\}$ angular distance (not comoving!)

 $\Omega_{\rm K} > 0$ open universe $\Omega_{\rm K} < 0$ closed

Redshift Distortions

The Alcock&Paczynski Effect

Real Space

$$\frac{\Delta z}{\alpha z} = 1$$

 $H(z + \Delta z)$

$$H(z-\Delta z)$$

Redshift Space
$$\frac{\Delta z}{\alpha z} > 1$$

$$\frac{\Delta z}{\alpha z} = z^{-1} [\Omega_{\Lambda} + \Omega_{MO} (1+z)^{3}]^{1/2} \int_{1}^{2+1} dy (\Omega_{\Lambda} + \Omega_{MO} y^{3})$$

Quantifying the Squashing Effect

Kaiser 1987: Spherical Harmonics

$$P_{gal}^{(S)}(\mathbf{k},\mu) = (1 + \beta \mu^2)^2 P_{gal}(\mathbf{k})$$
 $P_{gal}^{(S)}(\mathbf{k},\mu) = \mathcal{L}_0(\mu) P_0^{(S)}(\mathbf{k}) + \mathcal{L}_2(\mu) P_2^{(S)}(\mathbf{k}) + \mathcal{L}_4(\mu) P_4^{(S)}(\mathbf{k})$

where

 $P_{l}(k) = 0.5(2l+1)\int \frac{1}{l} \left(\frac{k}{l} \mathcal{L}_{\ell}(\mu') d\mu'\right)$

Legendre Polynomials

$$\mathcal{L}_{0}(\mu) = 1$$
 $\mathcal{L}_{2}(\mu) = 0.5(3\mu^{2}-1)$
 $\mathcal{L}_{4}(\mu) = 0.125(35\mu^{2}-30\mu+3)$

and

$$f = dln(D_1)/dln(a)$$

$$\beta = f/b_1$$
 $\delta = \delta$

$$\beta = f/b_1$$
 $\delta_{gal} \approx b_1 \delta$

 $\mu \equiv \cos(\theta)$

$$P_o^{(5)}(k) = B_o(\beta) P_{gal}(k)$$

$$P_2^{(s)}(k) = B_2(\beta) P_{gal}(k)$$

$$P_4^{(s)}(k) = B_4(\beta) P_{gal}(k)$$

$$B_0(\beta) = (1+2/3\beta+1/5\beta^2)$$

$$B_2(\beta) = (4/3\beta + 4/7\beta^2)$$

$$B_4(1) = 8/35^{12}$$

What Should We Expect from BOSS?

What Should We Expect from BOSS?

dotted: NL thoery solid: SDSS-11

