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Quantum 
Fluctuations

Inflation

Challenge 1: 
Test the physics of inflation.

How:
Measure B-mode polarization in the CMB using 
BICEP and CMB-S4.

Calibrate instrument and control systematics 
with extreme precision.
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Dark Energy
Accelerated expansion

Challenge 2: 
Measure large-scale structure 
over larger volumes to test the 
physics of dark energy and 
neutrinos.

How:
Millimeter-wave line intensity 
mapping (LIM).

Demonstrate on-chip 
spectrometers with SuperSpec 
and SPT-SLIM.



NASA/WMAP 
Science Team

11

Quantum 
Fluctuations

Inflation



12

Planck Collab. 2018



The CMB temperature across the sky is remarkably uniform...

...but a causally-connected region when the CMB was emitted is only ~1°!  

Planck Collab. 2018
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Expansion of the Universe
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The Inflationary Paradigm
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Inflation predicts a background of primordial gravitational waves 
imprinting B-mode polarization in the CMB!

Particle/antiparticle pair

Particles moved out of 
causal contact



The power spectrum quantifies 
the fluctuations in a map as a 
function of angle or length.

Natural domain for comparing 
observation to theory.

Planck, 
1807.06205



Small 
scales

Large 
scales

19

18° 2° 0.5°



20

18° 2° 0.5°



21

18° 2° 0.5°



22

18° 2° 0.5°

Inflation is  
parametrized by the 
tensor-to-scalar ratio

which is related to 
the energy scale of 
the expansion:
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18° 2° 0.5°

Large classes of models that naturally explain the shape of the temperature 
power spectrum imply r ~ 0.001 - 0.1. 
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18° 2° 0.5° This is a hard 
measurement!

Extremely faint signal 
- Maximize sensitivity

Astrophysical foregrounds
- Measure with several 

frequencies to remove the 
Galaxy

- Remove lensing B modes 

Instrumental systematics 
- Calibrate telescopes with 

extreme precision
- Mitigate systematics in 

analysis

~nK-level signal!
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The BICEP/Keck Array Collaboration



The BICEP/Keck Telescopes Lens

Lens

Focal plane

Refrigerator

1.2 m

Simple, on-axis refractors optimized for 
degree-scale polarization measurements

Transition edge sensor bolometers held at 
~250 mK, coupled to planar antenna arrays 26

Maximize sensitivity



Martin A. Pomerantz 
Observatory

Dark Sector 
Laboratory

South Pole superb for CMB observations:
● Low water vapor (high and dry)
● Stable atmosphere during 6-month night
● 24-hour view of observing patch

Main station

27

Maximize sensitivity



BICEP2, 2010-2012
BICEP3, 2016-

Keck Array, 2011-2019
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Measure with several 
frequencies to remove Galactic 
dust and synchrotron



South Pole 
Telescope, 
2007- 
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Remove lensing B modes 

SPT-3G can reconstruct B 
modes induced by 
gravitational lensing

SPT lensing convergence
Wu+ 2019



Calibrate Telescopes with Extreme Precision
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Nonidealities in the instrument can induce false, systematic B-mode polarization 
that biases the r measurement:

● Mismatched main beams
● Bandpass variations
● Sidelobes coupling to the ground
● Reflections in optics
● Gain variations
● Crosstalk
● Detector transfer functions
● Radio interference

Dedicated calibration campaigns needed to quantify these effects.
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Artificial sources mounted on masts

Beam Shape (Point Spread Function) Measurement

Karkare+, SPIE 2016
+ Tyler St. Germaine,
    Clara VergesDegrees
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BK18 Foreground-Cleaned B-Mode Spectrum

BICEP Collaboration,
Phys. Rev. Lett. 2021 34

Best-fit CMB spectrum after 
removing Galactic 
foregrounds

 



r

Marginalized r likelihood:             r < 0.036   (95%)                

Statistical uncertainty:             σ(r) = 0.009
 

0.04 0.08 0.12 0.16

BK18 r constraint BICEP Collaboration,
Phys. Rev. Lett. 2021
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Beam Systematics Analysis
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BICEP Collaboration
ApJ 2019 (Karkare lead)

A

B
Beam shape differences leak the 
CMB temperature into polarization!

Use beam maps to identify beam 
differences and calculate/remove the 
systematic contribution to r.

Bias from beam systematics in 
BK18 is     
  Δr = 0.0015 ± 0.0011   

…which is much smaller than the 
statistical uncertainty of 
σ(r) = 0.009      



The Inflationary Landscape is Shrinking
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The Inflationary Landscape is Shrinking: BK+SPT
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BICEP Array + SPT-3G delensing: anticipate σ(r) ~ 0.003. 
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“Ultimate” ground-based CMB experiment, 
~2030-2036 

Surveys from two sites to address:

1. Primordial Gravitational Waves and Inflation
2. The Dark Universe
3. Mapping Matter in the Cosmos
4. The Time-Variable Millimeter-Wave Sky

Cross critical thresholds in constraining r 
and light relic particles Neff

South Pole

Atacama Desert, Chile
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2. Thermal history of the 
Universe and light relic particles

3. Map all of the mass with lensing; 
find all massive clusters and 
characterize hot gas with SZ

4. Produce transient alerts - learn about LIGO/IceCube events, GRBs, 
TDEs, AGNs, planets, comets, asteroids…



The Inflationary Landscape is Shrinking: CMB-S4
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Models that naturally explain the deviation from scale invariance, with a 
characteristic scale equal to or larger than the Planck mass, predict r > 10-3. 

Inflation Survey Goal: σ(r) ~ 0.0005

If r > 0.003:   Measure at ~5σ

If r = 0:          Limit r ≤ 0.001  (95%)



CMB-S4 at the South Pole
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Large-Aperture Telescope 
(LAT) for delensing

18 Small-Aperture Telescopes 
(SATs) for deep degree-scale 
measurements

3 telescopes per mount



Minimize Systematics in Optical Design
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We want to measure nK fluctuations on a 3 K 
background, from a 300 K environment!

Optimized SAT shield and baffling geometry, 
enabling selection of “three-tube” cryostat

+ Fred Matsuda
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L3 lead: 
Calibration Equipment for 
Small-Aperture Telescopes 
(DOE scope)

CMB-S4 Org Chart
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Defining calibration requirements needed for σ(r) ~ 0.0005.
Equipment design and production requires large-scale effort!

Far-field chopper and mast Redirecting mirror

Near-field beam mapperFourier Transform spectrometer

L3: Calibration for CMB-S4 Small Aperture Telescopes

x6Polarization angle cal

Amplified sources….and much more!



CMB-S4 SAT Calibration and Systematics Plan

● 2022: Define calibration requirements for σ(r) ~ 0.0005.                                
Begin designing and prototyping equipment

● 2025: Lab-based equipment needed for SAT integration and commissioning

● 2028: Pole-based equipment needed for in situ calibration

● 2030: Survey begins. L3 role naturally transitions to systematics analysis

Immediate opportunities for systematics analysis development:

● Incorporate measured systematics into CMB-S4 simulations
● Use machine learning to analyze calibration data

47
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Dark Energy
Accelerated expansion

Challenge 2: 
Measure large-scale structure 
over larger volumes to test the 
physics of dark energy and 
neutrinos.

How:
Millimeter-wave line intensity 
mapping (LIM).

Demonstrate on-chip 
spectrometers with SuperSpec 
and SPT-SLIM.
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Redshift z: proxy for 
cosmological distance

CMB
z ~ 1100

Galaxy Surveys
z < 2-3



The Matter Power Spectrum 
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Li+ 2015



The Matter Power Spectrum 
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Massive neutrinos

Expansion history 
(dark energy)

Primordial 
non-Gaussianity 
(inflation)

Li+ 2015



Why measure LSS at higher redshift?
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Wide redshift lever arm alleviates 
parameter degeneracies

Karkare & Bird, PRD 2018: 
mm-wave line intensity mappers 
could test DE beyond galaxy surveys

MANY more modes available

Smaller nonlinearities, better 
correlated with initial 
conditions



Line Intensity Mapping (LIM)

Low resolution: integrate over many 
emitters while retaining large-scale 
information.

Observe an atomic/molecular line with a 
spectrometer. The wavelength direction 
corresponds to redshift/distance.

Li+ 2015 55



Ionized carbon 
fine-structure line 
[CII], C+

Joaquin Vieira

Carbon monoxide 
J→J-1 rotational 
ladder

56

Pick a line to target: Far-IR lines in star-forming 
galaxies



Ionized carbon 
fine-structure line 
[CII], C+

Joaquin Vieira

Carbon monoxide 
J→J-1 rotational 
ladder

57

LIM observations from 80-300 GHz would detect CO/[CII] from LSS at 
redshifts 0 < z < 10.

CMB instruments already make extremely sensitive mm-wave 
measurements of faint, diffuse fluctuations on large scales, over 
thousands of square degrees.

Just add spectroscopy!

Pick a line to target: Far-IR lines in star-forming 
galaxies



SuperSpec (Superconducting Spectrometer)
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The SuperSpec On-chip mm-wave Spectrometer

A spectrometer that retains the wide bandwidth and high sensitivity of a 
grating, but in a much smaller package.

23 cm

32 cm

Li+ 2018

SuperSpec: 3.6 x 5.7 x 0.05 cm
                    ~ 1 cm3 

Erik Shirokoff
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TIME grating: 32 x 23 x 1 cm
                      ~ 736 cm3



A Filter-Bank Spectrometer Printed on Silicon

Kovacs & Zmuidzinas 2010

Feed 
line

Filter + 
detector

Karkare+ 
J. Low Temp. Phys. 2020

3.1 cm 60



Lab-tested... Cryostat with detector inside 
(operates at 10-250 mK)

Fourier Transform Spectrometer 
(measure spectral profiles)

61

+ Ryan McGeehan, 
Calder Sheagren



...and ready to deploy!

The filter bank works: each channel sees a different mm-wave frequency.

Noise levels are suitable for ground-based observations.

Karkare+ 
J. Low Temp. Phys. 2020
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Imminent Demonstration on the 50-m 
Large Millimeter Telescope
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Sierra Negra 
(15,000 ft)

Pico de Orizaba (18,400 ft), 
3rd highest mountain in NA



The South Pole Telescope
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Inside the SPT Receiver Cabin
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SPT-3G

SPT-3G 
Secondary

SPT-3G 
Tertiary

From 
Primary

Primarily houses the 
SPT-3G receiver, 
which will observe 
until ~2025…
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From 
Primary

Room for an auxiliary receiver 
(with additional optics)

Karkare+ 
2111.04631

Inside the SPT Receiver Cabin



SPT-SLIM: SPT Summertime Line Intensity Mapper

Funded in 2021:
Karkare co-PI of Fermilab LDRD

LIM Pathfinder using on-chip spectrometers

Observe in 2023/2024 Austral summer season 

68

Karkare+ 
2111.04631



SPT-SLIM: SPT Summertime Line Intensity Mapper

The first demonstration of LIM with on-chip spectrometers

18x dual-pol, 120-180 GHz, R=300
69

18 dual-pol 
spectrometers

Karkare+ 
2111.04631



SPT-SLIM: SPT Summertime Line Intensity Mapper

Goal 1: First demonstration of LIM with on-chip spectrometers.

SPT-SLIM will validate technology and observational techniques needed for 
LIM cosmology!

The next-generation SPT receiver (2026+) will deploy a LIM focal plane 
incorporating lessons learned from SPT-SLIM. 70

Karkare+ 
2111.04631



Future LIM Projections for Snowmass 2021
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Spec-hrs Example Timescale [yr] 𝛔(M𝜈) [eV] 𝛔(w0) 𝛔(fNL)

105 TIME, SPT-SLIM 1-2 

106 TIME-EXT 4 0.047 0.03     13

107 SPT, 1 tube 6 0.028 0.013 4

108 SPT, 7 tubes 9 0.013 0.005  1.5

109 CMB-S4, 85 tubes 15 0.007 0.003 0.5

Adapted from Moradinezhad Dizgah+ 2021 
(incl. Karkare), ApJ in press 

Forecast constraints on neutrinos, dark energy, primordial 
non-Gaussianity as a function of spectrometer-hours (sensitivity)
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BICEP3
(2015-)

BICEP Array
(2020-)

Keck Array
(2012-2019)

BICEP2
(2010-2012)

Stage 2 Stage 3

How do we duplicate this for LIM?

● Higher packing density 
● Improve spectral resolution (R~1000) 
● Improve readout multiplexing factor 



New mm-wave instruments and technologies are pushing our understanding of 
cosmology to the limit.

● BICEP constrains inflation to 𝛔(r) ~ 0.009.  
● CMB-S4 will limit r < 0.001, testing well-motivated inflation models.
● LIM is a promising high-redshift observable.  First detections coming soon, 

but much more sensitivity is required for cosmology.

My plans:

● CMB-S4 inflation survey calibration - ensure that r constraints are 
statistics- and not systematics-limited.

● Advance LIM with on-chip spectrometers using SuperSpec, SPT-SLIM, 
and future instruments.

Thank you and stay tuned!
74


