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Context: cosmological parameters from the CMB
It 1s usually assumed that we are looking here at a

spherical surface at z~1100 with D = Dy(z=1100)
But are we?




How far away is the CMB?
D = fﬁ dz
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What is the distance to the CMB?
How relativistic corrections remove the tension with local H;, measurements

Chris Clarkson!, Obinna Umeh?, Roy Maartens?® and Ruth Durrer?
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Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.
2 Physics Department, University of the Western Cape, Cape Town 7535, South Africa
3 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
* Département de Physique Théorique & Center for Astroparticle Physics,
Université de Geneve, Quai E. Ansermet 24, CH-1211 Geneéeve 4, Switzerland.

The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model — which must be understood to at least the same level of precision. Subtle relativistic
effects can lead to biased measurements if they are neglected. One such effect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of Hy
and those measured through the CMB and favours a closed universe.




CUMD14: few% perturbation to CMB area from lensing!
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Figure 1: Fractional correction (A)(z) to the distance [see (3)] for a fiducial model €2, = 0.35,h = 0.65,w = —1 and ns; = 1,
showing local (dotted) and total (solid) (A) (left). The correction is negative for z < 0.25 (dashed), purely from the local
contribution (dotted). At high z 2 10 the corrections are similar to an open ACDM model with Q5 ~ 0.043 (grey ‘curved’,
shown for high z). An open model with evolving dark energy is a better fit down to z ~ 3 [orange, ‘curved+w (high)’]. For
low z an effective open model with percent level changes to the background parameters gives a good approximation to (A)(z)
[red, ‘curved+w (low)’]. Right, we show (A) together with two approximations discussed later in the text [see (20) and below],
illustrating the accumulation of lensing at high redshift.

Few percent changes to cosmological parameter from CMB
It correct this would have implications for SN1a cosmology too



Hubble diagram from SN1a - assumes no flux bias from lensing
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Outline of talk

« Some preliminaries

- what do we mean by distance in cosmology?

* basics of gravitational lensing - light deflection, shear & magnification
- Historical review:

« Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder

« Weinberg "76 - no effect for transparent lenses (flux conservation)

« Schneider et al. ('84..'94): magnification and focusing theorems

- based on Raychaudhuri, Sachs, .....

« Metcalf and Silk '97: ~no mean magnification of the CMB

 Ellis, Bassett & Dunsby ’97 - critique of Weinberg '67
Kibble & Lieu ’05 - distinguished source and direction averages
2nd order cosmological perturbation theory (Umeh++; Marozzi++)
 Clarkson, Ellis++ '12 - large (O(%?)) source magnification
* Clarkson++ '14 - large (O(%2)) o(photosphere area)

« NK + John Peacock arXiv:1503.08506:
« 1) reconcile the above, apparently contradictory, results

« 2) Weinberg’s argument contains a loophole - but it is very small



Preliminaries 1: What do we mean by "distance" in cosmology

« There are lots of ways to directly measure distances in astronomy
 rulers (in principle)
« parallaxes
 radar echoes
« None of these are of much use in cosmology. Instead we have:
 redshift (reflects change 1n size of the Universe)
« conformal' or comoving' distance
 appears in spacetime metric ds? = -dt? + az(t)(dy + Sk2(y) do?)
« not observable, but useful to relate other observable
- angular diameter distance: dl = a(t(y)) Sk(y) dO = Da dO
« luminosity distance: F =L/ (4 wDy?)
» these are both "apparent" distances
 require standard "candles" or "measuring rods"
« Here we are interested in Da and Dr.
« Lensing changes Da, Dy: they become random functions of direction
« key question: does structure bias angular sizes or flux densities?
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Preliminaries 2: basic of grav. lensing: deflection & shear

« Basic quantities 1in gravitational lensing
+ Gravitational time delay (Shapiro): At =2 | d\ ®/c2

+ A = distance: ® = gravitational field from Ap/Q
« measured in solar system
« and in "strong lensing" - multiple images of quasars

- Light deflection 01 ~ | dAV®/c2 ~ GM/bc? ~ (HM/c)2A

 cumulative deflection 1s a "random walk"
« 0 ~N120; ~HMc)32A
« A=AQ/p~EV2~1/MN
 so 0 dominated by large scale structure (~30 Mpc)
« quite large ~ few arc-minutes ~ 10-3 radians at high z
 but not directly observable
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Preliminaries 2: basic of grav. lensing: deflection & shear

« Basic quantities in gravitational lensing
+ Time delay At =2 | d\ ®/c?

+ A =distance: ® = gravitational field from Ag/Q
. Light deflection 01 ~ | dAV®/c2 ~ GM/bc? ~ (HMc)2A

 cumulative deflection 6 ~ N2 0, ~ (HA/c)32A
+ A=AQ/p~EV2~1/MN
 so 0 dominated by large scale structure (~30 Mpc)
« quite large ~ few arc-minutes ~ 10-3 radians at high z
 but not directly observable
« Observable in WL 1s the gradient of the deflection angle
+ described by a 2x2 image distortion tensor
 trace: ® (kappa) — magnification (changes size of objects)
« 2 other components: v (gamma) — image shear (changes shapes)
* %,V ~ 102 at ~ degree scales for sources at z ~ 1
« %2,Y?~ 1073 at ~ degree scales for sources at z>> 1 (e.g. CMB)
» but scales with size of structure as ~ A’!
* so potentially very large effects from small-scale structures



OBSERVATIONS IN A UNIVERSE HOMOGENEOUS IN THE MEAN

Ya. B. | Zel’dovich

Translated from Astronomicheskii Zhurnal, Vol. 41, No. 1,

pp. 19-24, January-February, 1964

Original article submitted June 12, 1963

A local nonuniformity of density due to the concentration of matter of the universe into separate

galaxies produces a significant change in the angular dimensions and luminosity of distant ob-
jects as compared to the formulas for the Friedman model.

The propagation of light in a homogeneous and
isotropic model of the expanding universe (irst
studied by A. A. Friedman) has been investigated
in a number of papers [1, 2, 3].

In these papers expressions wereobtained for
the observed angular diameter ® and the observed
brightness of an object with a known absolute diam-
eter and absolute brightness as a function of the dis-
tance or, strictly speaking, the red shift of the ob-
ject A = (wy — w) /wy.

In particular, there is a remarkable feature
in the function ®(A), namely, the presence of a
minimum when A is approximately equal to 1/2.
Formula (10) and Fig. 6 in the appendix show the
variation of the function f(A) =rH/c® which is in-
versely proportional to ® for a given density of mat-
ter. Here r is the radius of the object, His Hubble's

Fig. 2.

A mass situated between these rays bends the
latter in such a way that ® is increased (Fig. 2).
What we have in mind is the bending of light rays
by the gravitational field predicted by Einstein; this
bending amounts to 1.75" for a light ray passing
near the limb of the solar disc and has been con-
firmed by observation.




ON THE PROPAGATION OF LIGHT IN INHOMOGENEOUS
COSMOLOGIES. I. MEAN EFFECTS

James E. GUNN

. ifornia Institute of Technology and Jet Propulsion Laboratory
¢ Received February 23, 1967 revised May 23, 1967

\ ABSTRACT

The statistical effects of local inhomogeneities on the propagation of light are investigated, and
deviations (including rms fluctuations) from the idealized behavior in homogeneous universes are in-
vestigated by a perturbation-theoretic approach. The effect discussed by Feynman and recently by
Bertotti of the density of the intergalactic medium being systematically lower than the mean mass
density is examined, and expressions for the effect valid at all redshifts are derived.

I. INTRODUCTION

In an unpublished colloquium given at the California Institute of Technology in
1964, Feynman discussed the effect on observed angular diameters of distant objects
if the intergalactic medium has lower density than the mean mass density, as would
be the case if a significant fraction of the total mass were contained in galaxies. It is
an obvious extension of the existence of this effect that luminosities will also be affected,
though this was apparently not realized at the time. This realization prompted the
conviction that the effect of known kinds of deviations of the real Universe from the
homogeneous isotropic models (upon which predictions had been based in the past)
upon observable quantities like luminosity and angular diameter should be investigated.
The author (1967) has recently made such a study for angular diameters; the present
work deals primarily with mean statistical effects upon luminosity. A third paper will
deal with possible extreme effects one may expect to encounter more rarely. Some of
the results discussed here have been discussed independently by Bertotti (1966) and
Zel’dovich (1965).



Kantowski '69

CORRECTIONS IN THE LUMINOSITY-REDSHIFT RELATIONS
OF THE HOMOGENEOUS FRIEDMANN MODELS

R. KANTOWSKI®

Southwest Center for Advanced Studies, Dallas, Texas
Received January 22, 1968, revised March 22, 1968

ABSTRACT

In this paper the bolometric luminosity-redshift relations of the Friedmann dust universes (A = 0)
are corrected for the presence of inhomogeneities. The “locally” inhomogeneous Swiss-cheese models
are used, and it is first shown that the introduction of clumps of matter into Friedmann models does not
significantly affect the R(z) or R(v) relations (Friedmann radius versus the redshift or affine parameter)
along a null ray. Then, by the use of the optical scalar equations, a linear third-order differential equation
is arrived at for the mean cross-sectional area of a light beam as a function of the affine parameter. This
differential equation is confirmed by rederiving its small redshift solution from an interesting geometrical
point of view. The geometrical argument is then extended to show that “mild” inhomogeneities of a
transparent type have no effect on the mean area of a light beam.
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Fi1c. 1.—Spacelike section of a typical Swiss-cheese universe




Dyer & Roeder '72

THE DISTANCE-REDSHIFT RELATION FOR UNIVERSES
WITH NO INTERGALACTIC MEDIUM

C. C. DYEr* AND R. C. ROEDERT

Kitt Peak National Observatory,i Tucson, Arizona
Recetved 1972 April 19

ABSTRACT

The distance-redshift relation is derived for model universes in which there is negligible intergalactic
matter and in which the line of sight to a distant object does not pass close to intervening galaxies. When
fitted to observations, this relation yields a higher value of gy than does a homogeneous model.

No. 3, 1972 DISTANCE-REDSHIFT RELATION L117
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F16. 1.—The dimming, relative to the homogeneous model, assuming that the beam passes far from
any intervening galaxies (Jlower curve) and assuming that the beam passes no closer than 2 kpc to the
center of galaxies similar to our own (upper curve).




Weinberg 1976 - no effect (flux conservation)
APPARENT LUMINOSITIES IN A LOCALLY INHOMOGENEOUS UNIVERSE

STEVEN WEINBERG

Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory; and
Department of Physics, Harvard University
Received 1976 April 6, revised 1976 May 20

ABSTRACT

Apparent luminosities are considered in a locally inhomogeneous universe, with gravitational
deflection by individual clumps of matter taken into account. It is shown that as long as the clump
radii are sufficiently small, gravitational deflection by the clumps will produce the same average

effect as would be produced if the mass were spread out homogeneously. The conventional formulae
for luminosity distance as a function of redshift consequently remain valid, despite the presence

of any local inhomogeneities of less than galactic dimensions. For clumps of galactic size, the validity
of the conventional formulae depends on the selection procedure used and the redshift of the object
studied.

Subject headings: cosmology — galaxies: redshifts — gravitation




Weinberg's argument (that <magnification> = 1)

telescope
aperture

But this assumes that the total area iIs unchangead



Lensing and caustic effects
on cosmological distances.

G. F. R. ErLuis!, B. A. BasserT!?, AND P. K. S. DUNSBY!

1 Department of Applied Mathematics, University of Cape Town,

Rondebosch 7700, Cape Town, South Africa.

2 International School for Advanced Studies, SISSA - ISAS
Via Beirut 2-4, 34014, Trieste, Italy.

December 4, 2013

Abstract

We consider the changes which occur in cosmological distances
due to the combined effects of some null geodesics passing through
low-density regions while others pass through lensing-induced caus-
tics. This combination of effects increases observed areas correspond-
ing to a given solid angle even when averaged over large angular scales,
through the additive effect of increases on all scales, but particularly
on micro-angular scales; however angular sizes will not be significantly
effected on large angular scales (when caustics occur, area distances
and angular-diameter distances no longer coincide). We compare our
results with other works on lensing, which claim there is no such ef-
fect, and explain why the effect will indeed occur in the (realistic)
situation where caustics due to lensing are significant. Whether or not
the effect is significant for number counts depends on the associated
angular scales and on the distribution of inhomogeneities in the uni-
verse. It could also possibly affect the spectrum of CBR anisotropies
on small angular scales, indeed caustics can induce a non-Gaussian
signature into the CMB at small scales and lead to stronger mixing of
anisotropies than occurs in weak lensing.

EBD '98

Figure 1: A lens L and resulting caustics on the past light cone C~(P)
(2-dimensional section of the full light cone), showing in particular the cross-
over line Lo and cusp lines L_1, L1 meeting at the conjugate point ). The
intersection of the past light cone with a surface of constant time defines
exterior segments C'~, C' of the light cone together with interior segments

Cl) 027 03'



Ellis, Bassett & Dunsby '98 critique of Weinberg 76
EDB98 make two points:

Weinberg assumes that which
1S to be proven

* we agree: W76 assumes
that the surface of constant
z around a source (or
observer) 1s a sphere

I\

Small scale strong lensing
causes the surface to be
folded over on itself so total
area greatly enhanced

* (uite possibly true

1|

Thus Weinberg's claim 1s
disproved

» we disagree: W76 still
applies if multiple images
are unresolved




Enter Schneider, Ehlers, Seitz etc... ('80s, '90s)

» Two consistent threads:
» Lens equation:
» at least one 1mage 1s made brighter

* Optical scalar equations (Sachs 1961):
* -> focusing theorem (Seitz et al. 1994)

» Things viewed through 'clumpiness' are further
than they appear...



Seitz, Schneider & Ehlers (1994)

Finally, we have derived an equation for the size of a light beam in a clumpy universe,
relative to the size of a beam which is unaffected by the matter inhomogeneities. If we
require that this second-order differential equation contains only the contribution by
matter clumps as source term, the independent variable is uniquely defined and agrees
with the y-function previously introduced [see SEF, eq. (4.68)] for other reasons. This
relative focusing equation immediately yields the result that a light beam cannot be less

focused than a reference beam which is unaffected by matter inhomogeneities, prior to
the propagation through its first conjugate point. In other words, no source can appear

fainter to the observer than in the case that there are no matter inhomogeneities close

to the line-of-sight to this source, a result previously demonstrated for the case of one
(Schneider 1984) and several (Paper I, Seitz & Schneider 1994) lens planes.




Seitz, Schneider & Ehlers 94

1992). Taking a somewhat different approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D = v/ A obeys the ‘focusing
equation’:

D/D=—(R+X?). (1)

Here D is the second derivative of D with respect to affine
distance along the bundle; R = R,sk®k” /2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
32 is the squared rate of shear from the integrated effect
of up-beam Weyl focusing — i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,




More on the focusing theorem: D/D = —(R+%7)

Derived from Sachs '61 "optical scalars”
from A.K. Raychaudhuri's (Landau) equation
« transport of expansion, vorticity and shear
R = Rapk?k? where Rap is the Ricci curvature
 local focusing by matter in the beam

22 1s the cumulative effect of Weyl curvature
- 1.e. the tidal effect of matter outside the beam
« 2 being the rate of image shearing

Like cosmological acceleration equation:

« d?%a/dt? = - 4nG(p+3P/c?)a

» so 27 here plays the role of pressure???
Also like Hawking-Ellis singularity theorem
 both terms are positive => focusing

e.g. Narlikar (Introduction to Relativity):

« "Thus the normal tendency of matter

* 15 to focus light rays"




Fig. 18.3. The bundle of
geodesics focusses in the
future with its cross section A
decreasing to zero. This effect
was discussed in the context o
spacetime singularity by A. K.
Raychaudhuri.

Narlikar on the focusing theorem

The Raychaudhuri equation can be stated in a slightly different form
as a focussing theorem. In this form it describes the effect of gravity
on a bundle of null geodesics spanning a finite cross section. Denoting
the cross section by A, we write the equation of the surface spanning
the geodesics as [/ = constant. Define the normal to the cross-sectional
surface by &, = df/dx'. Figure 18.3 shows the geometry of the bundle.

Using a calculation similar to that which led to the geodetic deviation
equation in Chapter 5, we get the focussing equation as

| &A1
JA da? 2
Equation (18.10) is similar to the Raychaudhuri equation with |o |

being the square of the magnitude of shear, With Einstein’s equations,
we can rewrite (18.10) as

| VA
JA da?

For dust we have 7;,, = pu,u,, and this condition is satisfied with
the left-hand side equalling p(u, k' )%, (Remember that £; is a null vector,
$O ik k™ = 0.) Thus the normal tendency of matter is to focus light
rays by gravity.

R.EK" — o, (18.10)

e (r,,,, - ;g,,,T) Kk™ — o). (18.12)



even more on the focusing theorem:  H/D = —(R + ¥?)

Schneider et al are adding lenses to a background - no compensation.

* e.g. discussion 1s Schneider, Ehlers & Falco book "the apparent
contradiction ... disappears .... masses .... change the geometry.."

Does this explain the apparent conflict with flux conservation?

No. In a cosmological context we are interested in how D deviates from
the background value D = Do + D; + ...

If we take the average, and linearise,

 and assuming <OR>=0 we have the averaged focusing theorem
(D)/Dy = —(X?) < 0.

There 1s an 1nevitable tendency for beams to focus

Not difficult to show that this predicts decrease of distance that is
qualitatively the same as found by Clarkson et al. 2014

* 1.€.abig - and possibly divergent - effect!

So Weinberg was wrong?



GRAVITATIONAL MAGNIFICATION OF THE COSMIC MICROWAVE BACKGROUND

R. BENTON METCALF AND JOSEPH SILK
Departments of Physics and Astronomy and Center for Particle Astrophysics, University of California, Berkeley, Berkeley, CA 84720
Received 1996 November 6 ; accepted 1997 June 12

ABSTRACT

Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing
causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond /7 ~ 2000. We also find that lensing produces a nonzero mean magnification of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magnification
has a negligible affect on the CMB power spectrum. A new expression for the lensed power spectrum 1s
derived, and 1t 1s found that Tuture precision observations of the high-/ tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.

Subject headings: cosmic microwave background — gravitational lensing




GRAVITATIONAL MAGNIFICATION OF THE COSMIC MICROWAVE BACKGROUND

R. BENTON METCALF AND JOSEPH SILK
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ABSTRACT

Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing
causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond 7 ~ 2000. We also find that lensing produces a nonzero mean magnification of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magnification
has a negligible affect on the CMB power spectrum. A new expression for the lensed power spectrum 1s
derived, and 1t 1s found that Tuture precision observations of the high-/ tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.

Subject headings: cosmic microwave background — gravitational lensing
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Kibble & Lieu (2005)

AVERAGE MAGNIFICATION EFFECT OF CLUMPING OF MATTER

T. W. B. KiBBLE
Blackett Laboratory, Imperial College, London SW7 2AZ, UK; kibble@imperial.ac.uk

AND

RicHARD LIEU
Department of Physics, University of Alabama at Huntsville, Huntsville, AL 35899; lieur@cspar.uah.edu

Received 2004 December 9, accepted 2005 June 20

ABSTRACT

The aim of this paper is to reexamine the question of the average magnification in a universe with some inhomoge-
neously distributed matter. We present an analytic proof, valid under rather general conditions, including clumps of
any shape and size and strong lensing, that as long as the clumps are uncorrelated, the average “‘reciprocal” magnifica-
tion (in one of several possible senses) 1s precisely the same as in a homogeneous universe with an equal mean density.
From this result, we also show that a similar statement can be made about one definition of the average “direct” mag-
nification. We discuss, in the context of observations of discrete and extended sources, the physical significance of the
various different measures of magnification and the circumstances in which they are appropriate.

Subject headings: cosmology: miscellaneous — distance scale — galaxies: distances and redshifts —
oravitational lensing



Kibble & Lieu 2005

There 1s another important distinction to be made. We may
choose at random one of the sources at redshift z, or we may
choose a random direction in the sky and look for sources there.
These are not the same; the choices are differently weighted. If
one part of the sky 1s more magnified, or at a closer angular-size
distance, the corresponding area of the constant-z surface will
be smaller, so fewer sources are likely to be found there. In other
words, choosing a source atrandom will give on average a smaller
magnification or larger angular-size distance.

* Weinberg: <u> = 1 when averaged over sources (or area)

» Kibble & Lieu: <1/u> =1 when averaged over directions on the sky
» latter 1s more relevant for CMB observations
* Dbut strictly only valid in weak lensing regime



Recap of historical review

Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder
« structure makes things look fainter on average
« for opaque lenses at least
Weinberg "/6 - no effect tor transparent lenses (flux conservation)
Schneider et al. ('84..'94) (from Raychaudhuri, Sachs, Narlikar):
« magnification and focusing theorems
« structure makes things look nearer (1.€. brighter)- a big effect
Ellis, Bassett & Dunsby '97
- critique of Weinberg '76 - effect of strong lensing on small scales
Metcalf and Silk '97: mean magnification of the CMB =0 + O(02) ~ 106
Kibble & Lieu '05
- distinction between source and direction averages
« Weinberg: <u> = 1 averaged over sources (or area on source sphere)
« K+L: <1/pu>=1 when averaged over directions (as e.g. for CMB)
Outstanding questions:
- How do we make sense of these apparently conflicting results?
« What is the relation to recent results from 2nd order Pert" Theory?



Recent developments...

Relativists: "have cosmologists erred 1n failing to take into account the
inherent non-linearity of Einstein's equations?”

« cosmologists tend to do background + linear theory calculations
 but Einstein's equations (metric <-> matter) are non-linear

» averaging and non-linearity "do not commute"

« so maybe dark energy 1s a mirage”?

requires calculations in 2nd order perturbation theory (v. technical)
now mostly accepted that effects are too small to explain acceleration
but maybe there are still interesting percent level effects:

 Clarkson, Ellis++ '12 - large (O(%?)) source magnification

« Clarkson++ '14 - similarly large z-surface area increase
« violates Weinberg's assumption
« "backreaction" strikes back?

and the size of the effect 1s qualitatively consistent with expectation of the
focusing theorem (Schneider, Ehlers & Sietz)
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What is the distance to the CMB?
How relativistic corrections remove the tension with local H;, measurements
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The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model — which must be understood to at least the same level of precision. Subtle relativistic
effects can lead to biased measurements if they are neglected. One such effect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of Hy
and those measured through the CMB and favours a closed universe.




Clarkson et al. 2014

(A) ~ g <<5§A)2> — g (K?) (1.5)

where k is the usual linear lensing convergence. This is actually the leading contribution
to the expected change to large distances. We prove this remarkably simple and important
result in a variety of ways in several appendices. It implies that the total area of a sphere of
constant redshift will be larger than in the background. Physically this is because a sphere
about us in redshift space is not a sphere in real space — lensing implies that this ‘sphere’
becomes significantly crumpled in real space, and hence has a larger area. When interpreted

-

~

4 Conclusions

We have demonstrated an important overall shift in the distance redshift relation when the
aggregate of all lensing events is considered, calculated by averaging over an ensemble of
universes. This result is a consequence of flux conservation at second-order in perturbation
theory. This is a purely relativistic effect with no Newtonian counterpart — and it is the first
quantitative prediction for a significant change to the background cosmology when averaging
over structure [21]. The extraordinary amplification of aggregated lensing comes mainly

from the integrated lensing of structure on scales in the range 1-100 Mpc, although structure
down to 10kpc scales contributes significantly. We have estimated the size of the effect using



NK + Peacock 2015

Weinberg assumes that the area of a surface of constant redshift 1s
unperturbed by lensing by intervening structures

» same assumption 1s made by Kibble & Lieu

« seems reasonable since static lenses do not atfect redshift

 and leads to conservation of e.g. source-averaged flux density
* but not strictly true and breaks down at some level

What is the change 1n the area of the constant-z surface (or cosmic
photosphere) caused by structure?



KP2013: closing the loophole in Weinberg’s argument

Surface of constant distance travelled

Surface of constant
cosmic time 1
l"

|

~ 5
T @ dA
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\
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2 effects:
wiggly lines don't get as far as straight lines
wrinkly surface has more area than a smooth one

but both effects are ~(bending angle)2 ~ 106



What 1s the area of a wavy surface?




Key features of KP15 calculation of area of photosphere

» Calculations are rather technical, some key features are:
*  Weak field assumption:
- we model the metric as weak field limit of GR
 but we allow for non-rel motion of sources
» these have negligible effects
 similarly for gravitational waves
« "photons can't surf a gravitational wave"
« going beyond 1st order can be estimated and is tiny effect
* the problem is isomorphic to light propagation in "lumpy glass"
« Boundary conditions:
 Perturbation theory calculations assume photosphere 1s constant z
* Not true. It 1s more realistically a surface of constant cosmic time
 Pert. theo. results may be qualitatively OK, but fail quantitatively
 Final result for perturbation to the area of the photosphere is
A0
(AA)/Ag = % A\ (2200 — A) +AD)J(\).  where
0

0
0

_ / _ 2 but J = d<06>>/d\ and JX is on the
= -8 / dy§¢(y)/y—2W/kA¢(k) dln k, order of 10-6

— o0



NK + Peacock 2015 - 2nd point

Perturbation to the area is on the order of the mean squared cumulative
deflection angle

This 1s a one-part-in-a-million effect
» and dominated by large-scale structure

Relativistic perturbation theory, focussing theorem etc. give perturbation
to the distance that 1s on the order of the mean squared shear (or
convergence)

* this 1s much larger
» and dominated by small-scale structure (possibly divergent)
All claims for large ettects are purely statistical effects:

« The mean flux magnification | of a source 1s unity
* SO <A!J>source =0
* but p1s a fluctuating quantity

* s0 any non-linear function of p(e.g. D/Do=1/ Vv w) will not average to
unity



KP15: Statistical biases...

Example: Source averaged distance bias:
 D/Dp=wl2=(1+Au"2=1-An/2+3(An?8 + ...

* 50 <D/Do>source = 1 + 3<(AW)>>/8 + ...=1 + 3<u?>/2 + ...
Similarly for source averaged mean inverse magnification

« <D?/Do’>source = 1 +4 <u?>+ ...

These are precisely the results for the mean perturbation to the distance
and distance squared found by Clarkson et al. 2014

But e.g. the latter 1s not the perturbation to the constant z surface area
» that would be the average over directions rather than over sources

Similarly, Clarkson et al. 2012 claim mean source averaged flux
magnification is <u>=1+ <3n2 +y>+ ... =1 + <4u>> + ...

» but this 1s the direction averaged magnification
These come from non-commutativity of averaging and non-linearity
» <f(x)> !=1(<x>) if x 1s a fluctuating quantity

 and have nothing to do with the non-linearity of Einstein's equations



What about the "focusing theorem"? (D)/Do = —(%?) < 0.

« 2 lessons from foregoing:

. 1% The theorem applies to a bundle of rays fired
along a given direction

* 1.e. adirection - not source-averaged quantity
» and paths to sources avoid over-densities
5o care 1s needed 1n interpreting this

- 2) D 1s a non-linear function of A

* s0, because A 1s a fluctuation quantity, we
automatically expect a statistical bias in D

* and the size of the effect 1s ~ <u?>

* So 1s there a "normal tendency of matter to focus
light rays"?

» as inferred from the averaged focusing theorem

« or 1s this simply a statistical effect?

' f.
C ; A - D
Fig. 18.3. The bundle of
geodesics focusses in the
future with its cross section A
decreasing to zero. This effect
was discussed in the context of

spacetime singularity by A. K.
Raychaudhuri,



KP15 on the "focusing theorem"? (D)/Do = —(%%) < 0.

We have developed the optical scalar transport equations in a form
appropriate when one wishes to specity the metric fluctuations as a
stochastic random field (with zero mean for k=0 component)

* interesting subtlety: one should not assume <OR> = (

» 1n inflationary context, small scale space-time curvature fluctuations have
to accommodate themselves within the (flat-space) boundary conditions
imposed when the larger regions accelerate outside of horizon

We have solved these to obtain the ensemble average of the perturbation to
the area of a beam of specified solid angle fired oft from the observer and
propagating back to the source surface.

We perform a double expansion, working to second order in 0(metric) and
to lowest order in the inverse of "coherence scale"/Hubble scale

Cancellation: Not just "Born level", but 1st "beyond Born" also

We were only able to solve for the case where metric fluctuations are non-
evolving (like in Einstein - de Sitter) but were able to obtain the "un-
focusing theorem": <AA/A>=-2JN3 + ...

- this 1s consistent with the more general result (variable J) found by more
straightforward approach.

An exactly analogous calculation for <AD/D> does not show cancellation
and results in much larger (O(%?)) result. But just the statistical bias. QED



Optical scalars (in weak-

r = V.n Geodesic equation
n o= [(1 - 26(r)/c*) /(1 + 2¢(r) /)]

Optical tensor transport equation:
K = (ViVk — KO )t — Vet Vit — K - K

Optical scalar transport equations:

S AYE . 2 2 2

> =({V.V.} —2o\)7n —{V.aV. 7} — 205
Solve for 6

The solution of A/2A4 = 6(\) = X\71 + Af(N) is
A
A=QNexp |2 / d\ AO(\)

0

field GR or lumpy glass)

Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
i = dr/d\ (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the



KP15 on the "focusing theorem"? (D)/Do = —(%%) < 0.

We have developed the optical scalar transport equations in a form
appropriate when one wishes to specity the metric fluctuations as a
stochastic random field (with zero mean for k=0 component)

* interesting subtlety: one should not assume <OR> = (

» 1n inflationary context, small scale space-time curvature fluctuations have
to accommodate themselves within the (flat-space) boundary conditions
imposed when the larger regions accelerate outside of horizon

We have solved these to obtain the ensemble average of the perturbation to
the area of a beam of specified solid angle fired oft from the observer and
propagating back to the source surface.

We perform a double expansion, working to second order in 0(metric) and
to lowest order in the inverse of "coherence scale"/Hubble scale

Cancellation: Not just "Born level", but 1st "beyond Born" also

We were only able to solve for the case where metric fluctuations are non-
evolving (like in Einstein - de Sitter) but were able to obtain the "un-
focusing theorem": <AA/A>=-2JN3 + ...

- this 1s consistent with the more general result (variable J) found by more
straightforward approach.

An exactly analogous calculation for <AD/D> does not show cancellation
and results in much larger (O(%?)) result. But just the statistical bias. QED



Concluding comments....

The problem of how lensing by cosmic structure affects the mean
distance-redshift relation (or the mean area of a surface of constant

redshift) goes |

pack for at least 50 years

This 1s an intel

lectually compelling problem, and 1s also potentially

important for interpretation of SN1a and CMB observations in the age of
"precision cosmology"

A major conflict arose in the '80s between Weinberg's flux conservation
argument and the contrary indications from the focussing theorem

This has remained unresolved and resurfaced recently 1n results of
relativistic 2nd order perturbation theory.



Concluding comments continued...

NK+Peacock (2015): we have reconciled the conflicts

We support Weinberg:

 lensing affects individual source flux densities in a random way

 but in the mean the flux density of sources is almost exactly unperturbed
and Kibble and Lieu

« who emphasised the distinction between source and direction averaging
Our main results:

- Relativistic effects have confused physical effects and statistical biases.

» there is a bias 1n the area of constant z or photosphere surfaces - but it 1s
very, very small ~ 10-¢

» we have shown that the celebrated "focusing theorem", despite its name,
does not imply any intrinsic tendency for bundles of rays to be focused
as they wend their wiggly way through the lumpy cosmos

Implication: conventional methods for analysing the CMB & SN1a
(mostly) are valid.



