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Context: cosmological parameters from the CMB
It is usually assumed that we are looking here at a 
spherical surface at z~1100 with D = D0(z=1100)

But are we?



How far away is the CMB?

Boomerang

closed

open



What is the distance to the CMB?
How relativistic corrections remove the tension with local H

0

measurements
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The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model – which must be understood to at least the same level of precision. Subtle relativistic
e↵ects can lead to biased measurements if they are neglected. One such e↵ect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of H0

and those measured through the CMB and favours a closed universe.

I. INTRODUCTION

Cosmology has entered a precision era. The premier
cosmological dataset is the anisotropies and polarization
of the cosmic microwave background (CMB). This is not
only due to the highly accurate data, but also because
of its simple theoretical description, which allows accu-
rate calculations. Present CMB codes like CAMB [1]
and CLASS [2] are typically 0.1% accurate and, together
with contemporary data, provide a determination of ba-
sic cosmological parameters to the percent level – and
substantially lower in the case of curvature [3]. A key
problem with the current CMB measurements is that the
Hubble parameter H

0

is significantly di↵erent from that
measured locally [4–6]. Why?

Parameter estimation from the CMB is extremely sen-
sitive to dA(z⇤), where z⇤ ' 1090 is the redshift of the
last scattering surface. More precisely it depends on the
angular size of the sound horizon, ✓ = r⇤/dA(z⇤), where
r⇤ is the sound horizon at last scattering. The Planck
collaboration [3] has reported ✓ = (1.04131± 0.00063)⇥
10�2, hence it measures this scale with an accuracy of
better than 10�3. The accuracy of r⇤ is slightly worse,
about 4.5 ⇥ 10�3, which is also the accuracy of dA(z⇤).
These numbers indicate that a change of a few percent
in dA(z⇤) is critical for parameter estimation of the CMB
at the present level of accuracy.

Most calculations of the CMB anisotropies are per-
formed within first-order perturbation theory and only
CMB lensing requires a second-order analysis. We con-
sider here the change in the angular-diameter distance
due to the presence of structures in the Universe to
second-order in perturbation theory. We show that it
is critical to include this change at the present level of
accuracy, as it induces changes to the theoretical model
much larger than the current measurements. It removes

the the tension between the CMB and local values of
H

0

. Furthermore, parameters such as ⌦m can be many
sigma away from their naive values without this relativis-
tic second-order correction.
The observed angular-diameter distance at observed

redshift zs in direction n is

dA(zs,n) = d̄A(zs)[1 +�(zs,n)], (1)

which has a perturbation �(zs,n) about the the back-
ground distance

d̄A(zs) =
1

(1 + zs)

Z zs

0

dz

(1 + z)H =
�s

(1 + zs)
. (2)

Here �s is the comoving distance (in the background ge-
ometry) to the source at redshift zs and H is the comov-
ing Hubble rate. The perturbation �(zs,n) comes from
the fact that the Universe is not actually homogeneous
and isotropic, but contains cosmic structures which in-
duce fluctuations in the geometry. At linear order in
perturbation theory, the lensing convergence  = ��
produces no change in the mean value hdAi (although it
does give a variance) [7]. At second-order, however, non-
linear e↵ects give a relativistic correction to the distance-
redshift relation that a typical observer would expect.
This correction can be calculated from the ensemble av-
erage:

de↵A (zs)=hdA(zs,n)i= d̄A(zs)[1 + h�i(zs)], (3)

where we assume statistically isotropic Gaussian initial
perturbations, so that there is no dependence on direc-
tions (all directions receive the same correction). If it is
not correctly taken into account, the shift in the ‘back-
ground’ distance-redshift relation by h�i results in a shift
in the inferred cosmological parameters which appear in
the distance-redshift relation.
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CUMD14: few% perturbation to CMB area from lensing! 3

Figure 1: Fractional correction h�i(z) to the distance [see (3)] for a fiducial model ⌦m = 0.35, h = 0.65, w = �1 and ns = 1,
showing local (dotted) and total (solid) h�i (left). The correction is negative for z <⇠ 0.25 (dashed), purely from the local

contribution (dotted). At high z >⇠ 10 the corrections are similar to an open ⇤CDM model with ⌦e↵
K ⇡ 0.043 (grey ‘curved’,

shown for high z). An open model with evolving dark energy is a better fit down to z ⇠ 3 [orange, ‘curved+w (high)’]. For
low z an e↵ective open model with percent level changes to the background parameters gives a good approximation to h�i(z)
[red, ‘curved+w (low)’]. Right, we show h�i together with two approximations discussed later in the text [see (20) and below],
illustrating the accumulation of lensing at high redshift.

is the squared amplitude of the primordial curvature per-
turbation at scale k

0

= 0.05Mpc�1, and ns � 1 is the
spectral tilt.

For h�
loc

i, all terms in (4) are proportional to
(rk�0

)2, so h�
loc

i / h(rk�0

)2i, where

h(rk�0

)2i = 1

2
hr?i�0

ri
?�0

i = 1

3

Z
dk kP

0

(k)T 2(k).(10)

This gives a small negative contribution, and is the dom-
inant contribution at low-z (z <⇠ 0.5), as shown in Fig. 1.

The expectation value of the dominant integrated con-
tributions can be reduced to a form convenient for nu-
merical integration (see the Appendix for details):

h�
int

i = ⇡

�s

1X

`=0


`(`+ 1)

2`+ 1

�
2

Z �s

0

d�

�3


16�2�s ln (�s/�)

+18�3 � 19�2�s + �3

s

�
g2(�)

�
P
0

T 2

����
k=(`+1/2)/�

. (11)

For large distances we can estimate analytically the
scaling behaviour when baryons are neglected. A crude
estimate of the transfer function is (adapted from [15])
T (k = `/�) ⇡ 1/

⇥
1 + 0.115(`/�k

eq

)2
⇤
, where k

eq

⇡
0.075⌦mh2 Mpc�1 is the equality scale. The main con-
tribution to the sum in (11) is from small scales with
` > �skeq. Approximately, the ` factors out of the inte-
gral and the sum from �skeq to infinity gives a factor of
⇠ 1/(4k

eq

�s), assuming g ⇠ g1. The integral becomes

⇠ 6.6(k
eq

�s)4, giving

h�
int

i ⇠ 7.5�2

R(k
eq

�s)
3 ⇡ 0.02

✓
⌦mh2

0.14

◆
3

✓
�s

10Gpc

◆
3

.

(12)
For a standard cosmology this implies corrections around
the percent level for 10Gpc distances, making h�

int

i the
dominant part of the signal for z >⇠ 1.
The generic behaviour of h�i(z) is shown in Fig. 1:

at low z the amplitude is small, O(10�4), and negative
for z <⇠ 0.2 � 0.3 depending on the model. At higher
z, the amplitude is positive, implying larger distances,
and grows roughly linearly in z according to (11) reach-
ing percent-level around z ⇠ 5 � 10, thereafter grow-
ing [roughly approximated by (12)] to several percent by
z ⇠ 103. A higher matter density or Hubble constant in-
creases the amplitude of h�i, while increasing the baryon
fraction or including a tilt to ns < 1 decreases it by tens
of percent.

Small-scale sensitivity

The convergence of the sum in (11) is very slow, reflect-
ing the sensitivity to the accumulation of many small-
scale lensing events. We can attempt to estimate the con-
vergence rate analytically to determine the modes that
are important. For the transfer function and approxima-
tions leading to (12), we may replace the formal sum to
infinity with a cuto↵ at `

max

= �skmax

, implying that

Few percent changes to cosmological parameter from CMB 
If correct this would have implications for SN1a cosmology too



Hubble diagram from SN1a - assumes no flux bias from lensing



Outline of talk
• Some preliminaries

• what do we mean by distance in cosmology?
• basics of gravitational lensing - light deflection, shear & magnification

• Historical review:
• Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder
• Weinberg '76 - no effect for transparent lenses (flux conservation)
• Schneider et al. ('84..'94): magnification and focusing theorems

• based on Raychaudhuri, Sachs, ..... 
• Metcalf and Silk '97: ~no mean magnification of the CMB
• Ellis, Bassett & Dunsby ’97 - critique of Weinberg '67
• Kibble & Lieu ’05 - distinguished source and direction averages
• 2nd order cosmological perturbation theory (Umeh++; Marozzi++)

• Clarkson, Ellis++ '12 - large (O(κ2)) source magnification
• Clarkson++ '14 - large (O(κ2)) δ(photosphere area)

• NK + John Peacock arXiv:1503.08506:
• 1) reconcile the above, apparently contradictory, results

• 2) Weinberg’s argument contains a loophole - but it is very small



Preliminaries 1: What do we mean by "distance" in cosmology
• There are lots of ways to directly measure distances in astronomy

• rulers (in principle)
• parallaxes
• radar echoes

• None of these are of much use in cosmology. Instead we have:
• redshift (reflects change in size of the Universe)
• `conformal' or `comoving' distance χ

• appears in spacetime metric ds2 = -dτ2 + a2(τ)(dχ + Sk2(χ) dσ2)
• not observable, but useful to relate other observable

• angular diameter distance: dl = a(τ(χ)) Sk(χ) dθ = DΑ dθ
• luminosity distance: F = L / (4 π DL2)

• these are both "apparent" distances
• require standard "candles" or "measuring rods"

• Here we are interested in DΑ and DL:
• Lensing changes DΑ, DL: they become random functions of direction
• key question: does structure bias angular sizes or flux densities?





Preliminaries 2: basic of grav. lensing: deflection & shear

• Basic quantities in gravitational lensing
• Gravitational time delay (Shapiro): Δt = 2⎰dλ Φ/c2

• λ = distance: Φ = gravitational field from Δρ/ρ
• measured in solar system 
• and in "strong lensing" - multiple images of quasars

• Light deflection θ1 ~ ⎰dλ∇Φ/c2 ~ GM/bc2 ~ (Hλ/c)2Δ
• cumulative deflection is a "random walk"

• θ ~ N1/2 θ1 ~ (Hλ/c)3/2Δ
• Δ = Δρ/ρ ~ ξ1/2 ~ 1/λ

• so θ dominated by large scale structure (~30 Mpc)
• quite large ~ few arc-minutes ~ 10-3 radians at high z
• but not directly observable 





Preliminaries 2: basic of grav. lensing: deflection & shear
• Basic quantities in gravitational lensing

• Time delay Δt = 2⎰dλ Φ/c2

• λ = distance: Φ = gravitational field from Δρ/ρ
• Light deflection θ1 ~ ⎰dλ∇Φ/c2 ~ GM/bc2 ~ (Hλ/c)2Δ

• cumulative deflection θ ~ N1/2 θ1 ~ (Hλ/c)3/2Δ
• Δ = Δρ/ρ ~ ξ1/2 ~ 1/λ
• so θ dominated by large scale structure (~30 Mpc)

• quite large ~ few arc-minutes ~ 10-3 radians at high z
• but not directly observable 

• Observable in WL is the gradient of the deflection angle
• described by a 2x2 image distortion tensor

• trace: κ (kappa) → magnification (changes size of objects)
• 2 other components: γ (gamma) → image shear (changes shapes)

• κ , γ ~ 10-2 at ~ degree scales for sources at z ~ 1
• κ2 , γ2 ~ 10-3 at ~ degree scales for sources at z >> 1 (e.g. CMB)
• but scales with size of structure as ~ λ-1 

• so potentially very large effects from small-scale structures
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Weinberg 1976 - no effect (flux conservation)19
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Weinberg's argument (that <magnification> = 1)

telescope  
aperture

But this assumes that the total area is unchanged
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Lensing and caustic effects

on cosmological distances.

G. F. R. Ellis1, B. A. Bassett1,2, and P. K. S. Dunsby1

1 Department of Applied Mathematics, University of Cape Town,

Rondebosch 7700, Cape Town, South Africa.

2 International School for Advanced Studies, SISSA - ISAS

Via Beirut 2-4, 34014, Trieste, Italy.

December 4, 2013

Abstract

We consider the changes which occur in cosmological distances
due to the combined effects of some null geodesics passing through
low-density regions while others pass through lensing-induced caus-
tics. This combination of effects increases observed areas correspond-
ing to a given solid angle even when averaged over large angular scales,
through the additive effect of increases on all scales, but particularly
on micro-angular scales; however angular sizes will not be significantly
effected on large angular scales (when caustics occur, area distances
and angular-diameter distances no longer coincide). We compare our
results with other works on lensing, which claim there is no such ef-
fect, and explain why the effect will indeed occur in the (realistic)
situation where caustics due to lensing are significant. Whether or not
the effect is significant for number counts depends on the associated
angular scales and on the distribution of inhomogeneities in the uni-
verse. It could also possibly affect the spectrum of CBR anisotropies
on small angular scales, indeed caustics can induce a non-Gaussian
signature into the CMB at small scales and lead to stronger mixing of
anisotropies than occurs in weak lensing.

Subject headings:

cosmology - gravitational lensing - cosmic microwave background

1

Figure 1: A lens L and resulting caustics on the past light cone C−(P )
(2-dimensional section of the full light cone), showing in particular the cross-
over line L2 and cusp lines L−1, L1 meeting at the conjugate point Q. The
intersection of the past light cone with a surface of constant time defines
exterior segments C−, C+ of the light cone together with interior segments
C1, C2, C3.

7

EBD '98



Ellis, Bassett & Dunsby '98 critique of Weinberg '76
• EDB98 make two points:
• Weinberg assumes that which 

is to be proven
• we agree: W76 assumes 

that the surface of constant 
z around a source (or 
observer) is a sphere

• Small scale strong lensing 
causes the surface to be 
folded over on itself so total 
area greatly enhanced
• quite possibly true

• Thus Weinberg's claim is 
disproved
• we disagree: W76 still 

applies if multiple images 
are unresolved

Lensing bias in the distance-redshift relation 7

Figure 2. Grossly exaggerated illustration of the form of the sur-
face of constant redshift in the case of strong lensing. The lines are
rays of light that start on, and are perpendicular to, a wavefront
on the left. This surface is distorted as a result of time delays
induced by the lenses that the light has previously encountered
(not shown). The rays are propagated to a constant redshift sur-
face on the right. This can either be viewed as the surface of
sources that an observer sees to have redshift z at some epoch,
or as the surface around a source hosting observers who see that
source to have redshift z. Weinberg’s flux conservation argument
relies on the assumption that e.g. the area of the outer surface
here is identical to the area of a sphere of the same constant z
in an unperturbed universe. If it is, the flux density, averaged
over observers on this surface is the same as for a homogeneous
universe. In reality, this surface is slightly deformed, and its area
is biased, so the mean flux density is not precisely unbiased. But
as we argued in the caption to Figure 1 and discuss further in
§3 and in appendix A, the bias is predominantly caused by large-
scale density perturbations that are well understood, and the bias
is extremely small and, for all practical purposes, negligible.

2.2.1 Conservation of inverse magnification

Kibble & Lieu discussed the average magnification using a
model of uncorrelated random clumps of matter. But more
significantly they emphasised the important and general dis-
tinction between averages over sources – or equivalently over
areas on the source plane – and averages over directions on
the sky (i.e. averages weighted by solid angle):

“We may choose at random one of the sources at redshift z,
or we may choose a random direction in the sky and look for
sources there. These are not the same; the choices are di↵erently
weighted. If one part of the sky is more magnified, or at a closer
angular-size distance, the corresponding area of the constant-z
surface will be smaller, so fewer sources are likely to be found
there. In other words, choosing a source at random will give on
average a smaller magnification or larger angular-size distance.”

For source averaging, Kibble & Lieu reason that since
the distance is, by definition, D =

p
dA/d⌦ and the flux

density S is proportional to 1/D2 then, if D
0

is the distance

for a standard source viewed along an unperturbed path,
the amplification is µ = D2

0

/D2 and its average over area on
the source (or observer) surface is

hµi
A

= D2

0

⌧
d⌦
dA

�

A

= D2

0

R
dA (d⌦/dA)R

dA
=

4⇡D2

0

A
. (10)

We have already invoked this result above in saying that
Weinberg’s result hµi

A

= 1 implicitly assumes that the area
is A = 4⇡D2

0

and is una↵ected by lensing.
For direction averaging, they show that a precisely anal-

ogous statement can be made concerning hµ�1i
⌦

:

hµ�1i
⌦

= D�2

0

⌧
dA

d⌦

�

⌦

=

R
d⌦ (dA/d⌦)

D2

0

R
d⌦

=
A

4⇡D2

0

(11)

so, again if one assumes the total area A is unperturbed, it
is the direction average of µ�1 that is conserved.

In the absence of strong lensing both of the above results
are unexceptionable. But with multiple imaging the last step
in (11) is questionable: if an element of surface area can
be reached via paths that start in disjoint elements of solid
angle, it would be counted multiple times – so that one would
expect

R
d⌦ (dA/d⌦) to be greater than A. Kibble & Lieu

claim that (11) is of general validity, but in doing so they
take a very di↵erent definition of magnification than the
one employed here. Rather than taking D2

0

µ�1 to be the
modulus of dA/d⌦, they include the sign of the Jacobian of
the transformation from angle to area coordinates, so that
for some images µ�1 is formally negative. When there are
multiple images, and in general there are an odd number
2n+ 1 of these, then n of them have odd parity (Blandford
& Narayan 1986); these therefore have negative Jacobian,
which e↵ectively cancels the multiple counting of areas. In
(10) the integral over area is understood to be over the outer
surface – which has a one-to-one mapping to solid angle –
and the parity of the outer surface is, as shown again by
Blandford & Narayan, always even. Since the parity is not
easily observable, (11) is of limited practical utility when
there are strong lenses. But to the extent that strong lensing
can be ignored – if the optical depth is very low or if one is
concerned with unresolved compact sources or with the size
of large structures (such as acoustic peak scale ripples in the
CMB) – then it is the mean of the inverse of the absolute
magnification that is conserved.

These results can also be understood in terms of the
probability distribution for amplification. One can imagine
calculating µ = D2

0

d⌦/dA for an ensemble of rays fired in
random directions and propagated a path length D

0

. Denot-
ing the probability distribution for µ in such an experiment
by P

⌦

(µ) then P
⌦

(µ)dµ is the fraction of solid angle for
which µ lies in a range dµ around µ, so P

⌦

(µ)dµ = d⌦/4⇡.
If there are no multiple images, the element d⌦ maps to an
area dA = D2

0

d⌦/µ. The fraction of the total area is thus
dA/A = D2

0

d⌦/µA = (4⇡D2

0

/A)µ�1P
⌦

(µ)dµ; but this must
also be equal to P

A

(µ)dµ, where P
A

(µ) is the probability
distribution for µ over area, so the two probability distribu-
tion functions are related by P

A

(µ) = (4⇡D2

0

/A)µ�1P
⌦

(µ).

c
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Enter Schneider, Ehlers, Seitz etc... ('80s, '90s)

• Two consistent threads:
• Lens equation:

• at least one image is made brighter
• Optical scalar equations (Sachs 1961):

• -> focusing theorem (Seitz et al. 1994)
• Things viewed through 'clumpiness' are further 

than they appear...



Seitz, Schneider & Ehlers (1994)



Seitz, Schneider & Ehlers 94

2 Kaiser & Peacock

magnification µ ⌘ S/S
0

, where S is the actual flux density
and S

0

is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµi

A

= 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD2

0

/D2i
A

= 1,
where D

0

is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R

↵�

k↵k�/2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D

0

, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D

0

in the denominator, to obtain the linearised averaged focus-
ing theorem

hD̈i/D
0

= �h⌃2i < 0. (2)

This implies that hDi < D
0

so objects viewed through inho-
mogeneity have distances that are systematically decreases

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D

0

⇠ h2i, where  is the usual
first order lensing convergence and �D ⌘ D�D

0

. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h2i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.
Furthermore, h2i is a strongly decreasing function of aver-
aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0

/D2i
A

= 1. First, the focusing theorem is concerned
with hD/D

0

i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i

⌦

it is the
inverse magnification that is conserved: hµ�1i

⌦

= 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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More on the focusing theorem: 

• Derived from Sachs '61 "optical scalars"
• from A.K. Raychaudhuri's (Landau) equation

• transport of expansion, vorticity and shear
• R = Rabkakb where Rab is the Ricci curvature 

• local focusing by matter in the beam
• Σ2 is the cumulative effect of Weyl curvature

• i.e. the tidal effect of matter outside the beam
• Σ being the rate of image shearing

• Like cosmological acceleration equation:
• d2a/dt2 = - 4πG(ρ+3P/c2)a
• so Σ2 here plays the role of pressure???

• Also like Hawking-Ellis singularity theorem
• both terms are positive => focusing

• e.g. Narlikar (Introduction to Relativity):
• "Thus the normal tendency of matter 
• is to focus light rays" 

2 Kaiser & Peacock

magnification µ ⌘ S/S
0

, where S is the actual flux density
and S

0

is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµi

A

= 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD2

0

/D2i
A

= 1,
where D

0

is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R

↵�

k↵k�/2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D

0

, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D

0

in the denominator, to obtain the linearised averaged focus-
ing theorem

hD̈i/D
0

= �h⌃2i < 0. (2)

This implies that hDi < D
0

so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D

0

⇠ h2i, where  is the usual
first order lensing convergence and �D ⌘ D�D

0

. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h2i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.
Furthermore, h2i is a strongly decreasing function of aver-
aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0

/D2i
A

= 1. First, the focusing theorem is concerned
with hD/D

0

i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i

⌦

it is the
inverse magnification that is conserved: hµ�1i

⌦

= 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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Narlikar on the focusing theorem



even more on the focusing theorem: 
• Schneider et al are adding lenses to a background - no compensation.

• e.g. discussion is Schneider, Ehlers & Falco book "the apparent 
contradiction ... disappears .... masses .... change the geometry.." 

• Does this explain the apparent conflict with flux conservation?
• No. In a cosmological context we are interested in how D deviates from 

the background value D = D0 + D1 + ...
• If we take the average, and linearise, 

• and assuming <δR>=0 we have the averaged focusing theorem

• There is an inevitable tendency for beams to focus
• Not difficult to show that this predicts decrease of distance that is 

qualitatively the same as found by Clarkson et al. 2014
• i.e. a big - and possibly divergent - effect!

• So Weinberg was wrong?

2 Kaiser & Peacock

magnification µ ⌘ S/S
0

, where S is the actual flux density
and S

0

is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµi

A

= 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD2

0

/D2i
A

= 1,
where D

0

is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R

↵�

k↵k�/2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D

0

, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D

0

in the denominator, to obtain the linearised averaged focus-
ing theorem

hD̈i/D
0

= �h⌃2i < 0. (2)

This implies that hDi < D
0

so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D

0

⇠ h2i, where  is the usual
first order lensing convergence and �D ⌘ D�D

0

. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h2i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.
Furthermore, h2i is a strongly decreasing function of aver-
aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0

/D2i
A

= 1. First, the focusing theorem is concerned
with hD/D

0

i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i

⌦

it is the
inverse magnification that is conserved: hµ�1i

⌦

= 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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2 Kaiser & Peacock

magnification µ ⌘ S/S
0

, where S is the actual flux density
and S

0

is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµi

A

= 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD2

0

/D2i
A

= 1,
where D

0

is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R

↵�

k↵k�/2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D

0

, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D

0

in the denominator, to obtain the linearised averaged focus-
ing theorem

hD̈i/D
0

= �h⌃2i < 0. (2)

This implies that hDi < D
0

so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D

0

⇠ h2i, where  is the usual
first order lensing convergence and �D ⌘ D�D

0

. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h2i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.
Furthermore, h2i is a strongly decreasing function of aver-
aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0

/D2i
A

= 1. First, the focusing theorem is concerned
with hD/D

0

i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i

⌦

it is the
inverse magnification that is conserved: hµ�1i

⌦

= 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);

c
� 0000 RAS, MNRAS 000, 000–000



THE ASTROPHYSICAL JOURNAL, 489 :1È6, 1997 November 1
1997. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

GRAVITATIONAL MAGNIFICATION OF THE COSMIC MICROWAVE BACKGROUND

R. BENTON AND JOSEPHMETCALF SILK

Departments of Physics and Astronomy and Center for Particle Astrophysics, University of California, Berkeley, Berkeley, CA 84720
Received 1996 November 6 ; accepted 1997 June 12

ABSTRACT
Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing

causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond l D 2000. We also Ðnd that lensing produces a nonzero mean magniÐcation of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magniÐcation
has a negligible a†ect on the CMB power spectrum. A new expression for the lensed power spectrum is
derived, and it is found that future precision observations of the high-l tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.
Subject headings : cosmic microwave background È gravitational lensing

1. INTRODUCTION

Previous discussions of gravitational lensing by large-
scale structure have concentrated on calculating the shear
and convergence along unperturbed light paths, i.e., what
the geodesics would be were there no Ñuctuations (see, e.g.,

and references cited therein). Three basicSeljak 1996
methods have been adopted. The Ðrst is by numerical simu-
lation (see, e.g., Makino, & EbisuzakiFukushige, 1994).
This method often su†ers from limited resolution and
overly idealized cosmological models. Another method has
been to use a model where light travels freely in a constant
background density between clumps of localized mass den-
sities et al. Dunsby, & Ellis(Fukushige 1994 ; Bessett, 1997).
This is not considered to be a realistic cosmological model
because of the wide range of length scales on which galaxy
clustering is observed. What appears to be the best method
thus far is to take a smooth Ðeld of density Ñuctuations and
calculate the shear and convergence along unperturbed
light paths. This can be done by using optical scalars (Gunn

et al. or equivalently by using1967 ; Blandford 1991)
methods based on those of Kaiser (1992).

In particular, has applied the techniques ofSeljak (1996)
to the lensing of the CMB. He found thatKaiser (1992)

lensing results in a relatively small smoothing of the CMB
power spectrum that makes peaks and troughs somewhat
less distinct. This smoothing is because of Ñuctuations in the
magniÐcation of structures on the surface of last scattering.
The average magniÐcation was assumed to be zero, as it is
to Ðrst order. Seljak also found that evolving the deÑecting
density Ñuctuations by linear or nonlinear theory makes
little di†erence in the results for l \ 1000.

We show here that deviations of the light paths from their
form in an unperturbed universe result not only in Ñuctua-
tions in the magniÐcation around a mean of zero but also in
a shift in the mean to a positive value. Light paths are
attracted by regions of overdensity and repelled by regions
of underdensity. This means that the column density of
mass seen by the observer is larger on average than what
would be expected using unperturbed light paths. The pre-
dominantly positive second derivatives of the potential in
overdense regions produce a shear between light paths that
acts to magnify images. At the same time, the average shear

between light paths is, to a lesser extent, reduced by the
increase in the density of light paths in overdense regions.
The net result is that objects on surfaces of equal redshift or
cosmological time will on average appear larger than in an
unperturbed universe. The apparent violation of Ñux con-
servation can be resolved by realizing that the area of a
surface of constant redshift is smaller when light paths are
perturbed. In angular size coordinates, light travels
““ slower ÏÏ in regions of low potential.

The other and more important aim of this paper is to
show that after lensing, the CMB power spectrum will be
enhanced over the unlensed power spectrum at small
angular scales or large l. Power is transferred upward in l
in the damping tail. This e†ect was Ðrst treated by

& Schneider in their early paper onBlanchard (1987)
lensing of the CMB. It is independent of the existence of a
nonzero mean magniÐcation.

This paper is organized as follows : In the next section, we
introduce the formalism used to calculate the lensing e†ects
of large scale structure. In it is shown how lensing will° 3
change a generic CMB power spectrum. In the formal-° 4
ism is applied to some speciÐc cosmological models.

2. CALCULATING THE MAGNIFICATION

Throughout this paper, the universe is assumed to have
Robertson-Walker geometry together with small Ñuctua-
tions. This implies that the density Ñuctuations are isotropic
and the universe is homogeneous on average. We also
assume that the lensing is weak so that there are not multi-
ple images of a single source. It can be shown without diffi-
culty that the cross section of regions with densities over the
critical density required to produce multiple images is
rather small, so that they should not play an important role
in the statistical properties of lensing over large regions of
sky Ehlers, & Falco(Schneider, 1992 ; Kochanek 1995).

In the longitudinal gauge with conformal time, the metric
takes the form

ds2\ a(q)2[[(1 ] 2/)dq2] (1 [ 2/)dx2] ,

dx2\ dr2] g(r)2[d2h ] sin2 (h)d2/] , (1)

where / > 1 and g(r) \ MR sinh (r/R), r, R sin (r/R)N for the
open, Ñat, and closed global geometries, respectively. The
curvature scale is BecauseR\ o H

0
(1 [ )[ )")1@2 o~1.
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ABSTRACT
Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing

causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond l D 2000. We also Ðnd that lensing produces a nonzero mean magniÐcation of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magniÐcation
has a negligible a†ect on the CMB power spectrum. A new expression for the lensed power spectrum is
derived, and it is found that future precision observations of the high-l tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.
Subject headings : cosmic microwave background È gravitational lensing

1. INTRODUCTION

Previous discussions of gravitational lensing by large-
scale structure have concentrated on calculating the shear
and convergence along unperturbed light paths, i.e., what
the geodesics would be were there no Ñuctuations (see, e.g.,

and references cited therein). Three basicSeljak 1996
methods have been adopted. The Ðrst is by numerical simu-
lation (see, e.g., Makino, & EbisuzakiFukushige, 1994).
This method often su†ers from limited resolution and
overly idealized cosmological models. Another method has
been to use a model where light travels freely in a constant
background density between clumps of localized mass den-
sities et al. Dunsby, & Ellis(Fukushige 1994 ; Bessett, 1997).
This is not considered to be a realistic cosmological model
because of the wide range of length scales on which galaxy
clustering is observed. What appears to be the best method
thus far is to take a smooth Ðeld of density Ñuctuations and
calculate the shear and convergence along unperturbed
light paths. This can be done by using optical scalars (Gunn

et al. or equivalently by using1967 ; Blandford 1991)
methods based on those of Kaiser (1992).

In particular, has applied the techniques ofSeljak (1996)
to the lensing of the CMB. He found thatKaiser (1992)

lensing results in a relatively small smoothing of the CMB
power spectrum that makes peaks and troughs somewhat
less distinct. This smoothing is because of Ñuctuations in the
magniÐcation of structures on the surface of last scattering.
The average magniÐcation was assumed to be zero, as it is
to Ðrst order. Seljak also found that evolving the deÑecting
density Ñuctuations by linear or nonlinear theory makes
little di†erence in the results for l \ 1000.

We show here that deviations of the light paths from their
form in an unperturbed universe result not only in Ñuctua-
tions in the magniÐcation around a mean of zero but also in
a shift in the mean to a positive value. Light paths are
attracted by regions of overdensity and repelled by regions
of underdensity. This means that the column density of
mass seen by the observer is larger on average than what
would be expected using unperturbed light paths. The pre-
dominantly positive second derivatives of the potential in
overdense regions produce a shear between light paths that
acts to magnify images. At the same time, the average shear

between light paths is, to a lesser extent, reduced by the
increase in the density of light paths in overdense regions.
The net result is that objects on surfaces of equal redshift or
cosmological time will on average appear larger than in an
unperturbed universe. The apparent violation of Ñux con-
servation can be resolved by realizing that the area of a
surface of constant redshift is smaller when light paths are
perturbed. In angular size coordinates, light travels
““ slower ÏÏ in regions of low potential.

The other and more important aim of this paper is to
show that after lensing, the CMB power spectrum will be
enhanced over the unlensed power spectrum at small
angular scales or large l. Power is transferred upward in l
in the damping tail. This e†ect was Ðrst treated by

& Schneider in their early paper onBlanchard (1987)
lensing of the CMB. It is independent of the existence of a
nonzero mean magniÐcation.

This paper is organized as follows : In the next section, we
introduce the formalism used to calculate the lensing e†ects
of large scale structure. In it is shown how lensing will° 3
change a generic CMB power spectrum. In the formal-° 4
ism is applied to some speciÐc cosmological models.

2. CALCULATING THE MAGNIFICATION

Throughout this paper, the universe is assumed to have
Robertson-Walker geometry together with small Ñuctua-
tions. This implies that the density Ñuctuations are isotropic
and the universe is homogeneous on average. We also
assume that the lensing is weak so that there are not multi-
ple images of a single source. It can be shown without diffi-
culty that the cross section of regions with densities over the
critical density required to produce multiple images is
rather small, so that they should not play an important role
in the statistical properties of lensing over large regions of
sky Ehlers, & Falco(Schneider, 1992 ; Kochanek 1995).

In the longitudinal gauge with conformal time, the metric
takes the form

ds2\ a(q)2[[(1 ] 2/)dq2] (1 [ 2/)dx2] ,

dx2\ dr2] g(r)2[d2h ] sin2 (h)d2/] , (1)

where / > 1 and g(r) \ MR sinh (r/R), r, R sin (r/R)N for the
open, Ñat, and closed global geometries, respectively. The
curvature scale is BecauseR\ o H

0
(1 [ )[ )")1@2 o~1.
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FIG. 1.ÈFirst two moments of b(s) for some CDM models are given here. The straight line is in a COBE-normalized model. The two curves ofSb
A
(s)T

each type are (upper) and (lower). The COBE-normalized models have only linear evolution of the matter power spectrum. All the modelsSb
A
(s)T Sb

M
(s)T

have h \ 0.6, and is the rms density Ñuctuation in a sphere of radius 8 h~1 Mpc.p
8

FIG. 2.ÈThe lensed CMB power spectrum for a CDM model with h \ 0.6, 1, and The top panels are the lensed and unlensed spectra,)
0
\ )

b
\ 0.04.

and on the bottom are their ratios. The left-hand panels show n \ 1.0, normalized models. The linear matter power spectrum evolution and thep
8
\ 0.6

isotropic lensing approximations are shown. The right-hand panels show the e†ect of tilting the power spectrum with COBE normalization and linear
evolution. In the top right-hand panel, the solid curves are the unlensed spectra.
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MaxwellÏs equations are conformally invariant, for the
purpose of Ðnding light paths, the expansion of the universe
can be ignored as long as conformal time is used. In general,
light follows a geodesic that is a solution to

d
dj gkl

dxl(j)
dj \

1
2

gab,k
dxa(j)

dj
dxb(j)

dj ;

p0\
dq
dj \ a(t)~1

dt
dj . (2)

(In this paper, except where otherwise speciÐed, commas in
subscripts refer to partial derivatives with respect to the
coordinates whose labels follow the comma.) Choosing
j \ q by normalizing p0 and taking the unperturbed path to
be the r-axis, the evolution equation to Ðrst order in the
potential / becomes

d2dh
dq2 \ [2g(r)~2/

,h \ [2g(r)~1/
,M

. (3)

Since to Ðrst order in /, this equation can beq\ [r ] q
0solved as a function of r :

dh
i
(r)\

dx
i
(r)

g(r)
\ [

2
g(r)

P
0

r
dr@g(r [ r@)/

,i
(r@) . (4)

This must be evaluated along the path that the light bundle
has followed. The Ðrst-order e†ects arise from evaluating it
along the unperturbed path. To Ðnd the correction because
of the perturbation of the path, we expand the potential to
Ðrst order :

dh
i
(r)\

dx
i
(r)

g(r)
\ [

2
g(r)

P
0

r
dr@g(r [ r@)

] [/
,i
(r@) ] dxk(r@)/

,ik
(r@)] , (5)

where the potential is now evaluated along the unperturbed
path. Repeated indices are summed over the two com-
ponents perpendicular to this path. Likewise, the dx(r@)
inside the integral can be approximated by the Ðrst-order
deÑection calculated from evaluated along theequation (4)
unperturbed path. The shear tensor that measures the dis-
tortion and expansion of an inÐnitesimally thin beam is
then

'
ij

4

Ldh
i

Lh
j

\ '
ij
o ] *'

ij
\

[2
g(r)

P
0

r
dr@g(r@)g(r [ r@)/

,ij
(r@)

]
4

g(r)
P
0

r
dr@
P
0

r@
drAg(r [ r@)g(r@[ rA)

] [g(r@)/
,k
(rA)/

,ijk
(r@) ] g(rA)/

,jk
(rA)/

,ik
(r@)] . (6)

In general, this expansion is not justiÐed for Ñuctuations of
all scales. However, it can be shown by explicit calculation
that higher order terms are quite small in realistic models. If
we assume that the relevant scales are much smaller than
the curvature scale we can Fourier decompose the potential

/(r) \
P d3k

(2n)3
/8 (k,q\ q

0
[ r)e~ikxe~i*rkr`g(r)Á Õ kM+ . (7)

In this section we assume that the angles involved are small
enough that a local Cartesian coordinate system, can beh6 ,
set up with the usual inner product.

The average value of the shear tensor can be found by
substituting into and using theequation (7) equation (6)
assumption that the Fourier components are uncorrelated,
i.e., q)d(k [ k@). In the caseS/8 (k,q)/8 (k@, q)*T \ (2n)3PÕ(k,
of the linear evolution of the potential Ñuctuations in a
universe dominated by nonrelativistic matter, the time
dependence of the potentials can be factored out of its
Fourier components, In this case,/8 (k, q) \ D(q)/8 (k).

S'
ij
T \ [2d

ij

P d3k
(2n)3

k
M
2 k

M
2 PÕ(k)W [r, rk

r
, g(r)h6 Æ k

M
] ,

(8)

W (r, rk
r
, g(r)h6 Æ k

M
)\

1
g(r)

P
o

r
dr@
P
0

r@
drAD(q@)D(qA)

] g(r [ r@)g(r@[ rA)[g(r@)[ g(rA)]
] e~iK(r@~rA)kr`*g(r@)~g(rA)+Á Õ dkML . (9)

can be interpreted as consisting of two contri-Equation (9)
butions. The term with g(r@) is because the average potential,
as sampled by the light paths, is below average. The g(rA)
term results from the density of light paths being higher in
areas of low potential. The reduced separation between
light paths makes them converge less rapidly. The second
term almost cancels the Ðrst term because in popular
models the k values that contribute most are large enough
that the oscillations of the exponential restrict r@[ rA to be
small. It appears that the coherence length of structure is
small enough to make this magniÐcation negligible.

The time enters into these calculations because it is a
function of the radial coordinate that parameterizes the
light path. All of the signiÐcant quantities calculated in this
section, such as the second term in contain twoequation (9),
integrations over this parameter. However, when
o r@[ rA o (\o q@[ qA o ) is large, larger than some ill-deÐned
““ coherence length,ÏÏ the potential Ñuctuations at these
two points are uncorrelated and do not contribute signi-
Ðcantly to the integrals. If the potential changes slowly
enough, it will not change signiÐcantly in the time it takes
light to travel one ““ coherence length,ÏÏ and we can take
S/8 (k, q)/8 (k@, q@)*T \ (2n)3D[q6 \ (q] q@)/2]2PÕ(k)d(k [ k@).
We will call this the average time assumption. It can be
avoided at the expense of complicating the evaluation of the

These complications of time evolution are largelyintegrals.1
avoided in the Ñat cold dark matter (CDM) model because
the potential is time independent in linear theory.

The quantity of interest for applications to the CMB is
the di†erence in the deÑections of light paths that are
observed to have an angular separation of on our sky.s6
This can be found by integrating the shear tensor

b
i
(s) 4

P
~s@2

s@2 '
ij
(h)dh

j
. (10)

b(s) has both a small average because of second-order terms
and a variance that is dominated by Ðrst-order terms. Com-

1 If a signiÐcant amount of hot dark matter exists or there has been
substantial nonlinear evolution, the factorization of into k- and q-/8
dependent parts will not be possible. In these models the whole power
spectrum must be kept within the r integrals, which in general must be
evaluated numerically.
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ABSTRACT

The aim of this paper is to reexamine the question of the average magnification in a universe with some inhomoge-
neously distributed matter. We present an analytic proof, valid under rather general conditions, including clumps of
any shape and size and strong lensing, that as long as the clumps are uncorrelated, the average ‘‘reciprocal’’ magnifica-
tion (in one of several possible senses) is precisely the same as in a homogeneous universe with an equal mean density.
From this result, we also show that a similar statement can be made about one definition of the average ‘‘direct’’ mag-
nification.We discuss, in the context of observations of discrete and extended sources, the physical significance of the
various different measures of magnification and the circumstances in which they are appropriate.

Subject headinggs: cosmology: miscellaneous — distance scale — galaxies: distances and redshifts —
gravitational lensing

1. INTRODUCTION

There has been considerable debate about the average magni-
fication effect of gravitational lensing by randomly distributed
clumps of matter. Weinberg (1976) argued that the average mag-
nification produced by randomly distributed masses is exactly the
same as that in a homogeneous universe of equal mean (or pre-
clumping) density—the magnification produced by the clumps is
largely canceled by the Dyer-Roeder effect (Dyer&Roeder 1972,
1973). However, his arguments have been criticized by Ellis et al.
(1998), who pointed out that they ignore the effects of caustics.
These authors also introduced an important distinction between
two measures of distance, which they called ‘‘area distance’’ and
‘‘angular-size distance,’’ although in fact both can be applied to
either lengths or areas. Holz & Wald (1998) developed a general
formalism for estimating the probability distribution ofmagnifica-
tion, as well as shear and rotation, and obtained numerical results
for a range of cosmological parameters using Monte Carlo simu-
lation of light paths. Claudel (2000) studied a number of differ-
ent examples and concluded that to first order, small deviations
from homogeneity would not change the average magnifica-
tion. On the other hand, Rose (2001) gave an analytic argument
using a spherically symmetric model of the universe with the
aim of showing that objects in an inhomogeneous universe ap-
pear, on average, more magnified than those at the same redshift
in a homogeneous universe with the same mean density. This is
not in contradiction with Claudel’s result, because the effect
Rose finds is of second order.

The purpose of this paper is to reexamine this question us-
ing a simple and explicit analytic approach.We show that under
rather general conditions there is at least one measure by which
the average reciprocal magnification is exactly the same as in a
Friedmann-Robertson-Walker (FRW) universe with the same
mean density. When there is strong lensing, the different mea-
sures of distance diverge. It is easier to deal initially with recip-
rocal magnification, because it goes to zero rather than infinity
on the caustics. Later, however, we do consider average direct
magnification.

Our starting point is in some respects similar to that of Holz
&Wald (1998), based on using the geodesic deviation equation
to follow the paths of light signals back in time. Our goal is
more restricted, in that we focus only on average magnification,
not rotation and shear. On the other hand, we are seeking ana-
lytic rather than purely numerical estimates, so the assumptions
we make are slightly more restrictive, although still, we believe,
of wide applicability.
Specifically, we assume that in addition to a smooth, homoge-

neousmatter component with density !h, there is another compo-
nent comprising widely separated, slow moving, and randomly
distributed mass clumps (say, galaxies, groups, or clusters). For
simplicity, we suppose initially that each clump has the same
mass M. However, it is easy to generalize the discussion to in-
clude a distribution of masses, even an evolving one.
Holz & Wald (1998) assumed that the universe can be de-

scribed by a ‘‘Newtonianly perturbed FRWuniverse’’ (Futumase
& Sasaki 1989), i.e., the metric is an FRW metric with the time
and space parts multiplied by (1þ 2") and (1" 2"), respectively,
where the convention of c ¼ 1 is adopted here and henceforth.
With various assumptions on " and the matter distribution, they
showed that " obeys a Poisson equation with #! ¼ !" !̄ on
the right-hand side, where ! is the density and !̄ is the density of
the corresponding FRWuniverse defined by setting " ¼ 0. They
argue that to determine the way a light signal propagates, it is
sufficient to look explicitly only at the gravitational potential of
nearby clumps.
According to our assumptions, the density perturbation would

comprise two contributions, a spatially uniform negative back-
ground !h " !̄ and an occasional large positive contribution from
one of the clumps. For most of its journey, a light signal will be
traveling through a uniform background, but when it does pass
near a clump, the effects will be much larger. Under these con-
ditions it is reasonable to assume that we can deal with the ef-
fects of the clumps individually. We assume that the clumps are
small and slow moving enough that the gravitational effect of
each one may be treated in a Newtonian approximation, with a
time-independent Newtonian potential!. Moreover, we use the
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• Weinberg: <μ> = 1 when averaged over sources (or area)
• Kibble & Lieu: <1/μ> = 1 when averaged over directions on the sky

• latter is more relevant for CMB observations
• but strictly only valid in weak lensing regime

‘‘plane lens approximation,’’ that is, we compute the angle of
deviation due to the clump by integrating the gradient of the
potential along the undeviated light path and assume that the
deviation effectively occurs at the central plane. As pointed out
by Metcalf & Silk (1997), this induces a small error because the
true light path passes closer to the center. However, the discrep-
ancy in the minimum distance from the center is very small, of
order the Schwarzschild radius of the clump. Hence, the error is
tiny and consistently negligible in the Newtonian approxima-
tion. Finally, we also assume that far from the clumps there is no
appreciable source of shear, so that theWeyl tensor vanishes. Of
course, no such assumption is made about the field near each
clump.

One criticism that might be made is of our assumption that the
clumps are well separated and randomly distributed. This does
not mean, however, that only one clump can significantly affect
a light signal at any time (although that may often be true), but
rather that the effects of different clumps are purely additive. This
seems to us generally a good approximation. The most serious
objection would probably be to the assumption that the clumps
are uncorrelated. Such correlations may invalidate the assump-
tion that there is no source of shear far from the clumps. Even in
such cases, the effect on the average magnification should be
small, since according to the Raychaudhuri equation the effect of
shear on expansion is of second order. These correlations might
also be thought to call into question the validity of the plane-lens
approximation, but this would be true only if the clumps are cor-
related in such a way that the deviated light paths sample a sig-
nificantly different environment. Given the extremely small error
in the deviation angle  (typically of the order of  2), this seems
very unlikely.

It is important to note that the ‘‘average magnification’’ for a
given redshift can mean several different things. In the strong-
lensing case, when caustics are present, imaged areas fold back
on themselves. In one sense, the magnification is negative in the
region beyond the caustic, because images are reversed. In
the distinction made by Ellis et al. (1998), in computing the
‘‘angular-size distance,’’ these regions are indeed counted neg-
atively, whereas the ‘‘area distance’’ is concerned with the total
area, including all the folds; in that case, every contribution is
taken positively.

There is another important distinction to be made. We may
choose at random one of the sources at redshift z, or we may
choose a random direction in the sky and look for sources there.
These are not the same; the choices are differently weighted. If
one part of the sky is more magnified, or at a closer angular-size
distance, the corresponding area of the constant-z surface will
be smaller, so fewer sources are likely to be found there. In other
words, choosing a source at randomwill give on average a smaller
magnification or larger angular-size distance.

Which of these definitions is appropriate depends on what
we choose to look at and what questions we want to ask. We re-
turn to the question of which definition to use in various circum-
stances in x 6.

Let us concentrate for the moment on the random-direction
averaging. The question we wish to address is this: How is the
average magnification affected by whether the matter is clumped
rather than smoothly distributed? We do this by examining the
geodesic deviation equation in the presence of clumps.

One other preliminary point should be made. What we are in-
terested in observationally is the averagemagnification of sources
at a given redshift z. But what we actually calculate is the average
of sources at the same affine distance k (along the backward null
geodesics from the present), which is not exactly the same thing.

We argue, however, that the difference is undetectably small. The
effect of passing near a clump of massM affects the relationship
between z and k in much the same way as the conventional grav-
itational time delay. Thus, the difference in z for fixed k is of the
order of H0GM times a logarithmic factor, which is negligible
under any reasonable conditions.

2. NULL GEODESICS

The Robertson-Walker line element for an open universe, with
k ¼ " kj j and c ¼ 1, is

ds2 ¼ dt 2 " a2(t)
dr 2

1þ kj jr 2
þ r 2 d#2 þ sin2# d’2

! "# $
; ð1Þ

or, equivalently, with ! ¼
R
dt/a(t) and r ¼ kj j"1/2 sinh ( kj j1/2"),

ds2 ¼ a2(!)

#
d! 2 " d"2

" 1

kj j
sinh2 kj j1=2"

% &
d#2 þ sin2# d’ 2
! "$

: ð2Þ

Of course, in the flat-space limit, kj j ! 0, r and " become
identical.

The Friedmann equation is

H2¼ 1

a2
da

dt

' (2
¼ 8#G

3
$m þ kj j

a2
þ !

3
; ð3Þ

where $m is the density of matter (assumed to be pressureless).
Consequently, the relation between the Hubble parameterH and
the redshift z ¼ a0/a(t)" 1 is H ¼ H0E(z), where

E 2(z) ¼ "m(1þ z)3 þ (1" "m " "!)(1þ z)2 þ "!; ð4Þ

in which, as usual, "m ¼ 8#G$m0/3H 2
0 and "! ¼ ! /3H 2

0.
We consider backward null geodesics from the origin at the

present time t0, with affine parameter k normalized so that ṫ(0) ¼
"1, where the dot denotes a derivative with respect to k. Then,

"!̇(k) ¼ "̇(k) ¼ ½1þ z (k)'2

a0
: ð5Þ

We now assume that in addition to a uniform distribution of
matter, there are random clumps present. Specifically, the mat-
ter density parameter "m may be written "m ¼ "h þ "g, where
"h represents a homogeneous distribution and "g represents a
random distribution of widely separated clumps, each of massM.
( It is easy to generalize the discussion to a distribution of masses,
or even to allow for a distribution changing with cosmic time.)

Consider a fiducial backward null geodesic and a second neigh-
boring null geodesic from the same point. We choose a Vierbein
e(%) at the origin, with e(0) in the t-direction and e(3) " e(0) tangent
to the fiducial geodesic. Then we parallel-propagate the Vierbein
along this geodesic and introduce transverse coordinates l ¼
(l 1; l 2), such that the transverse separation between the geode-
sics at affine distance k is

&x%¼ l' e
%
(' )(k): ð6Þ

AVERAGE MAGNIFICATION EFFECT OF MATTER CLUMPING 719



Recap of historical review
• Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder

• structure makes things look fainter on average
• for opaque lenses at least

• Weinberg '76 - no effect for transparent lenses (flux conservation)
• Schneider et al. ('84..'94) (from Raychaudhuri, Sachs, Narlikar): 

• magnification and focusing theorems
• structure makes things look nearer (i.e. brighter)- a big effect

• Ellis, Bassett & Dunsby '97
• critique of Weinberg '76 - effect of strong lensing on small scales

• Metcalf and Silk '97: mean magnification of the CMB = 0 + O(θ2) ~ 10-6

• Kibble & Lieu '05
• distinction between source and direction averages

• Weinberg: <μ> = 1 averaged over sources (or area on source sphere)
• K+L: <1/μ> = 1 when  averaged over directions (as e.g. for CMB)

• Outstanding questions:
• How do we make sense of these apparently conflicting results?
• What is the relation to recent results from 2nd order Pertn Theory?



Recent developments...
• Relativists: "have cosmologists erred in failing to take into account the 

inherent non-linearity of Einstein's equations?"
• cosmologists tend to do background + linear theory calculations
• but Einstein's equations (metric <-> matter) are non-linear
• averaging and non-linearity "do not commute"
• so maybe dark energy is a mirage?

• requires calculations in 2nd order perturbation theory (v. technical)
• now mostly accepted that effects are too small to explain acceleration
• but maybe there are still interesting percent level effects:

• Clarkson, Ellis++ '12 - large (O(κ2)) source magnification
• Clarkson++ '14 - similarly large z-surface area increase

• violates Weinberg's assumption
• "backreaction" strikes back?

• and the size of the effect is qualitatively consistent with expectation of the 
focusing theorem (Schneider, Ehlers & Sietz)
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Appendix B: Alternative presentation of the area distance

This presentation groups terms into boundary terms and line of sight integrated terms.
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What is the distance to the CMB?
How relativistic corrections remove the tension with local H
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The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model – which must be understood to at least the same level of precision. Subtle relativistic
e↵ects can lead to biased measurements if they are neglected. One such e↵ect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of H0

and those measured through the CMB and favours a closed universe.

I. INTRODUCTION

Cosmology has entered a precision era. The premier
cosmological dataset is the anisotropies and polarization
of the cosmic microwave background (CMB). This is not
only due to the highly accurate data, but also because
of its simple theoretical description, which allows accu-
rate calculations. Present CMB codes like CAMB [1]
and CLASS [2] are typically 0.1% accurate and, together
with contemporary data, provide a determination of ba-
sic cosmological parameters to the percent level – and
substantially lower in the case of curvature [3]. A key
problem with the current CMB measurements is that the
Hubble parameter H

0

is significantly di↵erent from that
measured locally [4–6]. Why?

Parameter estimation from the CMB is extremely sen-
sitive to dA(z⇤), where z⇤ ' 1090 is the redshift of the
last scattering surface. More precisely it depends on the
angular size of the sound horizon, ✓ = r⇤/dA(z⇤), where
r⇤ is the sound horizon at last scattering. The Planck
collaboration [3] has reported ✓ = (1.04131± 0.00063)⇥
10�2, hence it measures this scale with an accuracy of
better than 10�3. The accuracy of r⇤ is slightly worse,
about 4.5 ⇥ 10�3, which is also the accuracy of dA(z⇤).
These numbers indicate that a change of a few percent
in dA(z⇤) is critical for parameter estimation of the CMB
at the present level of accuracy.

Most calculations of the CMB anisotropies are per-
formed within first-order perturbation theory and only
CMB lensing requires a second-order analysis. We con-
sider here the change in the angular-diameter distance
due to the presence of structures in the Universe to
second-order in perturbation theory. We show that it
is critical to include this change at the present level of
accuracy, as it induces changes to the theoretical model
much larger than the current measurements. It removes

the the tension between the CMB and local values of
H

0

. Furthermore, parameters such as ⌦m can be many
sigma away from their naive values without this relativis-
tic second-order correction.
The observed angular-diameter distance at observed

redshift zs in direction n is

dA(zs,n) = d̄A(zs)[1 +�(zs,n)], (1)

which has a perturbation �(zs,n) about the the back-
ground distance

d̄A(zs) =
1

(1 + zs)

Z zs

0

dz

(1 + z)H =
�s

(1 + zs)
. (2)

Here �s is the comoving distance (in the background ge-
ometry) to the source at redshift zs and H is the comov-
ing Hubble rate. The perturbation �(zs,n) comes from
the fact that the Universe is not actually homogeneous
and isotropic, but contains cosmic structures which in-
duce fluctuations in the geometry. At linear order in
perturbation theory, the lensing convergence  = ��
produces no change in the mean value hdAi (although it
does give a variance) [7]. At second-order, however, non-
linear e↵ects give a relativistic correction to the distance-
redshift relation that a typical observer would expect.
This correction can be calculated from the ensemble av-
erage:

de↵A (zs)=hdA(zs,n)i= d̄A(zs)[1 + h�i(zs)], (3)

where we assume statistically isotropic Gaussian initial
perturbations, so that there is no dependence on direc-
tions (all directions receive the same correction). If it is
not correctly taken into account, the shift in the ‘back-
ground’ distance-redshift relation by h�i results in a shift
in the inferred cosmological parameters which appear in
the distance-redshift relation.
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JCAP11(2014)036
Figure 1. Fractional correction h�i(z) to the distance [see (1.3)] for a fiducial model ⌦m = 0.3, h =
0.68,!2

b = 0.0222, w = �1 and ns = 0.96. The correction is negative for z . 0.25, purely from the
local contribution. At higher redshift the shift arises from the aggregated lensing term (2.1). For
z & 10 the corrections grow / �3

s, and are similar to an open ⇤CDM model with ⌦e↵

K ⇡ 0.0066 (grey
‘curved’, shown for high z).

The linear term vanishes on average by definition: h�d
A

i = 0. Then, flux conservation
implies, on average, h�2d

A

i ' 3h(�d
A

)2i/�
s

and consequently

h�i ' 3

2

*✓
�d

A

�
s

◆2
+

=
3

2

⌦
2

↵
, (1.5)

where  is the usual linear lensing convergence. This is actually the leading contribution
to the expected change to large distances. We prove this remarkably simple and important
result in a variety of ways in several appendices. It implies that the total area of a sphere of
constant redshift will be larger than in the background. Physically this is because a sphere
about us in redshift space is not a sphere in real space — lensing implies that this ‘sphere’
becomes significantly crumpled in real space, and hence has a larger area. When interpreted
as a shift to the background geometry, this would have important implications for the analysis
of the CMB. An observed patch of the CMB sky such as a hot or cold spot of a fixed observed
angular scale will correspond to a physical area which is larger than the background value,
since the distance to it is larger. E↵ectively, it is the angular size of these hot and cold
spots, combined with a theoretical model for calculating both the distance to the CMB
and the sound horizon scale at last scattering, that determine many key parameters of the
cosmological standard model. Consequently, we anticipate a shift in the inferred background
cosmology when aggregated lensing is taken into account.

Here we quantify this shift for a flat ⇤CDM (concordance) background, see the result
plotted in figure 1, and we explore the potential consequences for precision cosmology. At low
redshifts the change to d̄

A

is small (|h�i| . 10�4), negative and dominated by local e↵ects
(from coupled velocity and Sachs-Wolfe terms). Recently [8] have estimated the e↵ect of this
change onH0 and especially on its variance measured with low-z data. For z & 0.5 the change
becomes positive and is dominated by second-order lensing e↵ects. It grows monotonically
until last scattering, and the distance to the CMB is increased by about one percent.

– 3 –
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Hence taking this shift to the distance into account together with local observations, the
CMB data remains consistent with a minimal flat ⇤CDM model. This is in contrast to
the standard calculation of distance where it is di�cult to relieve the tension between local
measurements of H0 [3–6] and the value from CMB observations.

Clearly, the analysis presented here is not definitive for several reasons. First, as men-
tioned above, the Planck measurements of cosmological parameters are not independent and
especially the Planck value of !

m

is not completely independent of the distance d
A

. We
have also assumed a simple linear transfer function [17]. A full likelihood analysis should be
performed with h�i properly included.

Furthermore, aggregated lensing not only leads to a average shift in the distance to the
CMB but � is actually direction dependent [13]. We expect its fluctuations to be imprinted
as additional fluctuations in the CMB. However, since the dominant contribution comes
from very small scales, we expect them to show up mainly at high ` > 2000 and we believe
that the e↵ect on the mean distance discussed here is the dominant one in present CMB
experiments. To do a fully consistent analysis, which combines second order fluctuations in
the distance with temperature perturbations, a 3rd order Boltzmann solver would be needed.
A interesting future project which is (far!) beyond the scope of the present paper.

We also note that higher-order contributions to h�i will be small, though ultimately
necessary as observations improve. We anticipate they will be dominated by terms such as
(�d

A

)4, which will lead to a percent level correction to our second-order correction. Thus,
the main contribution to aggregated lensing is from (2.1).

4 Conclusions

We have demonstrated an important overall shift in the distance redshift relation when the
aggregate of all lensing events is considered, calculated by averaging over an ensemble of
universes. This result is a consequence of flux conservation at second-order in perturbation
theory. This is a purely relativistic e↵ect with no Newtonian counterpart — and it is the first
quantitative prediction for a significant change to the background cosmology when averaging
over structure [21]. The extraordinary amplification of aggregated lensing comes mainly
from the integrated lensing of structure on scales in the range 1–100Mpc, although structure
down to 10kpc scales contributes significantly. We have estimated the size of the e↵ect using
a linear transfer function which slightly underestimates power on small scales at high redshift,
so this provides a robust lower limit to the overall amplitude. Higher-order corrections from
relativistic perturbation theory will enter O((�d

A

)4), making (2.1) the main contribution
in general.

This isotropic shift is particularly important for high redshift, apparently giving a change
to the distance to the CMB of one percent. What does this mean? We have argued that
the shift can be interpreted as a change to the inferred background cosmology. Assuming
that observations of the CMB really measure the area distance implies that fitting to the
minimal ⇤CDM model leads to an underestimation of the Hubble parameter by 5%. We
have considered the consequences for analysing the CMB, and have argued that parameter
estimation could be strongly a↵ected — parameter constraints can be shifted by more than
1�. Because the shift h�i increases the distance relative to the background, the corrections
to the background to compensate for this increase in distance are achieved by increasing h.
In particular, we have shown that a higher h is naturally preferred over the low value found
by Planck [3], in line with local data [4]. For current and future redshift surveys, the e↵ective

– 9 –
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• Weinberg assumes that the area of a surface of constant redshift is 
unperturbed by lensing by intervening structures
• same assumption is made by Kibble & Lieu
• seems reasonable since static lenses do not affect redshift
• and leads to conservation of e.g. source-averaged flux density

• but not strictly true and breaks down at some level
• What is the change in the area of the constant-z surface (or cosmic 

photosphere) caused by structure?



KP2015: closing the loophole in Weinberg’s argument4 Kaiser & Peacock

dA

λ

cosmic time

Surface of constant distance travelled

Surface of constant

Ωd

0

Figure 1. In a hypothetical universe with inhomogeneity in some
finite region of space, consider the mean fractional change to the
area of a surface of constant redshift, or cosmic time, which, in
the absence of structure, lies at comoving distance �

0

(note that
our notation here di↵ers from that of Weinberg 1976, who used
� to denote a�ne parameter). We find that the area is biased,
but to an extremely small extent, as a result of two competing
e↵ects: (1) the radius reached by light rays is reduced because
they are not straight; (2) the surface is ‘wrinkled’ owing to time
delays induced by the density fluctuations. Regarding the first
e↵ect, a single lensing structure would cause a deflection ⇥

1

⇠ �
where � is the metric perturbation (or the dimensionless New-
tonian potential) and the corresponding fractional decrease in
distance reached would be �r/r ⇠ ⇥2

1

. The e↵ect of N ⇠ �/L
of these structures with metric fluctuations of random sign – as-
sumed to have size L and lying along a path length � – would be
N times larger. So h�ri/r ⇠ h⇥2

i ⇠ �2�/L where h⇥2

i ⇠ N⇥2

1

is
the cumulative mean square deflection. As for the second e↵ect,
one can draw an analogy with the surface of a swimming pool
perturbed by random waves of small amplitude. These cause a
fractional increase in the area of the surface that is on the order
of the mean square tilt of the surface. Here the surface is per-
pendicular to the light rays, so we expect that the area increase
is also, to order of magnitude, h�Ai/A ⇠ h⇥2

i. Both e↵ects are
caused predominantly by structures on scales of tens of Mpc, and
these give only a part-in-a-million e↵ect, counter to much larger
recent claims from relativistic perturbation theory. This is the
main new result of this paper, discussed at length in §3.

above arise partly from failing to make this distinction be-
tween distance bias and flux-density bias, but mostly from
ignoring the distinction between averaging over sources and
averaging over direction. We find that the RHS of (3) is the
direction averaged (rather than source averaged) amplifica-
tion and (4) is the bias in the source-averaged distance, while
the direction averaged distance, which is more relevant for
CMB observations, is

hD/D
0

i
⌦

= 1� 1
2
h2i. (6)

The RHS of (5) is the source averaged inverse amplification
hµ�1 = D2/D2

0

i
A

rather than the average over the observer’s
sky (it also happens to be the direction average of µ) and so
it does not reflect any increase in the area of the photosphere
or surface of constant z.

The rest of the paper consists of a calculation of the
perturbation to the area of a surface of constant redshift.

This is the net result of the competing e↵ects of wiggling of
rays, which reduces the radius they reach, and the wrinkling
of the surface via time delays, which increases its area. We
show, using both the the geodesic equation (appendix A)
and via the much more arduous route of the optical scalars
formalism (appendix D), that the area bias is on the order
of the mean squared cumulative deflection angle, not the
much larger mean squared convergence. This means that,
at least as far as sub-horizon scale structure is concerned,
Weinberg’s flux-conservation argument is actually good to
about one part in a million, and no radical changes to SN1a
cosmological inferences need to be made. The calculation
is somewhat involved, but a (only slightly over-simplified)
order-of-magnitude argument for why this should be the case
is given in the caption to Figure 1.

The outline of the paper is as follows: In §2 we com-
pute the statistical bias in quantities such as the apparent
distance under the assumption that area is unbiased by lens-
ing. In §2.1 we consider biases that arise when averaging over
sources. In §2.2, turning to the CMB, we consider the statis-
tics of quantities that are averaged over direction, rather
than averaging over sources. In §2.2.1 we consider the argu-
ment of Kibble & Lieu (2005) that the direction averaged
inverse magnification is conserved, and in §2.3 we recall the
calculations of Metcalf & Silk (1997). In §2.4 we calculate
the mean inverse magnification caused by a thin screen of
lenses and find this is zero, consistent with Kibble & Lieu
and we discuss the generalisation of this to a shell containing
deflectors of a finite size. We then give the statistical bias in
the direction averaged distance and magnification and show
that the latter nicely accounts for (3).

In §3 we expand on the simple-minded argument in the
caption to Figure 1 and attempt to give a heuristic expla-
nation of the results of the detailed calculation presented
in appendix A. We note that the argument above is over-
simplified in one respect, but we show that this does not
significantly alter the basic conclusion that the area bias
is essentially zero. In §3.3 we identify the scale of struc-
tures that dominate the ensemble e↵ect on the area. In §3.4
we consider fluctuations about the ensemble average area
increase that we have calculated. We argue that for sub-
horizon scale density perturbations alone these are small, so
the area of one observer’s sky will be close to the ensemble
mean, and the mean fractional change to flux densities will
be close to �h�Ai/A

0

. But for horizon scale perturbations
there is a first order change to the area that is typically on
the order of the metric perturbation for these modes and is
actually larger in mean modulus than the ensemble mean
from sub-horizon scale structure. In §4.3 we discuss how dif-
ferent ways of analysing CMB data could, in principle, result
in biased results, but argue that the conventional analysis
method (Hu 2000; Challinor & Lewis 2005) avoids this.

Appendix A contains the detailed calculation of the
mean perturbation to the photosphere area at second or-
der in the metric perturbations, arising from gravitational
time delays and the associated light path deflection (though
the result is obtained entirely as the average of the prod-
ucts of first order quantities). There, in §A1, we describe
why the weak-field model for metric fluctuations provides
an adequate description and we recall the analogy between
light propagation in a weakly perturbed FRW cosmology
and light propagating in a medium with spatially varying,
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2 effects:  
1) wiggly lines don't get as far as straight lines 
2) wrinkly surface has more area than a smooth one 

but both effects are ~(bending angle)2 ~ 10-6



What is the area of a wavy surface?



Key features of KP15 calculation of area of photosphere
• Calculations are rather technical, some key features are:

• Weak field assumption:
• we model the metric as weak field limit of GR

• but we allow for non-rel motion of sources
• these have negligible effects

• similarly for gravitational waves
• "photons can't surf a gravitational wave"

• going beyond 1st order can be estimated and is tiny effect
• the problem is isomorphic to light propagation in "lumpy glass"

• Boundary conditions:
• Perturbation theory calculations assume photosphere is constant z
• Not true.  It is more realistically a surface of constant cosmic time
• Pert. theo. results may be qualitatively OK, but fail quantitatively

• Final result for perturbation to the area of the photosphere is

12 Kaiser & Peacock

But there are two more factors we have not considered.
One is the possibility of a significant 2nd order (i.e. post-
Born approximation) contribution from �� itself, as this
multiplies the zeroth order expansion rate. But in fact this
turns out to be sub-dominant and can be ignored. Finally, we
need to consider the fact that  in d⌦0/d⌦ is correlated with
the path length perturbation ��. This gives a 2nd order
term �4h��i/�. With  ⇠ �(�/L)3/2 and �� ⇠ �

p
�L

this is yet another contribution to �A/A ⇠ �2�/L so this
is also of order h⇥2i so this does not change the conclusion
regarding the order of magnitude strength of the e↵ect (but
it does mean that the net e↵ect is not zero for non-evolving
metric fluctuations).

The final result for the fractional change in area, com-
bining the reduced distance travelled and the area enhance-
ment from wrinkling, is obtained in appendix A:

h�Ai/A
0

=
1
�2

0

�0Z

0

d� (2�(�
0

� �) + �2)J(�). (31)

This result is of second order in the metric fluctuations and
is valid at leading order in the assumed small parameter
L/�. For constant J this is h�Ai/A

0

= +(2/3)�
0

J , which is
positive – so the competing e↵ects of paths wiggling and sur-
face crinkling do not cancel. However, as anticipated in the
order-of-magnitude argument presented in the Introduction,
the change is extremely small: roughly a part-in-a-million ef-
fect. Appendix A shows that J may also be interpreted as
the rate of change of the squared transverse deflection with
path length, so quite generally the perturbation to the area
is on the order of of the cumulative deflection angle squared.

If one is concerned with discrete sources, rather than the
CMB, then the observationally relevant area is not a surface
of constant cosmic time, but a surface of constant redshift.
For linear density perturbations – and we will shortly see
that the e↵ect is dominated by such perturbations – the
surface of constant cosmic time is not at constant observed
redshift because of the ISW e↵ect. One result of this, as we
show in §A2, is to change the first order perturbation to the
path�� – to sources at distance �

0

as caused by structure at
distance � – introducing a factor 1 + (�0/�)

�

(a0/a)
�0 in the

integral in (29). Here �0 ⌘ @�/@⌘ and a0 ⌘ da/d⌘. Another
is that, unlike the photosphere, this surface is not normal to
the beam direction, so there is an extra factor 1 + ⇥02/2 –
where ⇥02 is the squared angle between the normals of the
constant-z and constant cosmic time surfaces – to convert
from cross-section to area at constant z. These e↵ects, how-
ever, are only significant for sources at low redshift and do
not qualitatively change our conclusions regarding the size
of the e↵ects.

3.3 What size of structures are important?

Unlike h2i, one can argue that h⇥2i is dominated by large-
scale structure, so that uncertainty from highly non-linear
small-scale structure is negligible, and the overall e↵ect is
definitely extremely small. The evidence from galaxy clus-
tering – in the quasi-linear and linear regime – is that
⇠ / 1/r2 or thereabouts. This measures the density vari-
ance, so the density contrast of structures of some scale L
is � ⇠ p

⇠ / 1/L. As we have seen, the mean squared de-
flection is h⇥2i ⇠ N⇥2

1

⇠ (HL/c)3�2. With � / 1/L this

Figure 3. Contribution to J for the the concordance model as a
function of wave-number. This quantity, when multiplied by the
path length gives the fractional perturbation to the area, which
we see here is dominated by modes of scale k�1

' 50h�1Mpc.
See §A4.1 for details.

is an increasing function of scale. This increase does not
continue to indefinitely large scales in conventional mod-
els. As the spectral index increases the total variance con-
verges, with most of the variance coming from the logarith-
mic interval where n ' 0 or scales of tens of Mpc. This
is quantified in Figure 3 which shows the contribution to
J per logarithmic interval of wave-number from equation
(A34): dJ/d ln k = 2⇡ k�2

�

. As can be seen, the modes
that contribute most strongly have inverse wave-numbers
k�1 ⇠ 50h�1Mpc, while non-linear structures have very lit-
tle e↵ect.

The shear � and the convergence  from sub-horizon
scale structures are much larger, being on the order of  ⇠
�⇥/L ⇠ (HL/c)1/2�. In contrast to the deflection angle
this is a decreasing function of scale. For ⇠ 100Mpc scale
structures with � ⇠ 15% the convergence is a few percent
(e.g. Seljak 1996) while the deflection is ⇠ 30 times smaller
(about a few arc-minutes or ⇠ 10�3 in radians), and h2i ⇠
103h⇥2i. More quantitatively, equation (31) indicates that
the ensemble average of the fractional change in area caused
by lensing by large-scale structure along the line of sight is
very small, being slightly less than a part-in-a-million e↵ect.

3.4 Fluctuations in the area

We have calculated the ensemble average of the area of a
surface of some redshift z, but it is also relevant to ask if
there could be large fluctuations around this figure. Regard-
ing the second order e↵ects, we have already shown that
there is very little variation in the distance reached for con-
stant distance travelled. As for the increase in area from the
wrinkling of the surface, this depends on the square of the
angular tilt of the surface. This will certainly vary between
di↵erent directions, but for the scale of perturbations that
are significant for the mean bias there are a large number of
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but locally isotropic, refractive index (‘lumpy glass’). In §A2
we discuss the appropriate boundary conditions for the end
of the rays, and the distinction between surfaces of constant
z and the cosmic photosphere (the latter being a surface of
constant optical path in the lumpy glass analogy).

The resulting ensemble mean for the fractional area per-
turbation h�Ai/A

0

emerges as a weighted integral along the
line of sight of

J ⌘ �8

0Z

�1

dy ⇠0
�

(y)/y = 2⇡

Z
k�2

�

(k) d ln k, (7)

where ⇠0
�

is the derivative with respect to conformal (or ‘co-
moving’) background coordinates of the two-point spatial
auto-correlation function of the dimensionless Newtonian
gravitational potential fluctuations (divided by c2); �2

�

is
the dimensionless power spectrum of � (variance per ln k).
Physically, J is the rate of change with respect to path length
of the ensemble mean square angular deflection of a ray. It is
similar to the ‘J

3

’ integral (Peebles 1981) and is dominated
by large scale density fluctuations around the peak of the
matter power spectrum. This demonstrates rigorously that
the e↵ect is on the order of the mean squared cumulative
deflection angle, and is therefore many orders of magnitude
smaller than the statistical biases such as in (3), (4), (5) and
(6).

If the potential fluctuations are non-evolving then
h�Ai/A

0

= (2/3)�
0

J where �
0

is the conformal distance to
redshift z (in units where conformal distance has dimensions
of length). The value of J in the ‘concordance’ cosmologi-
cal model is J ' 9.9 ⇥ 10�11h/Mpc (this is the asymptotic
value at high redshift when the potential is non-evolving;
at low z the potential decreases with time and J falls to
about 60% of this value at z = 0). The overall path length
is �

0

' 9800h�1Mpc so the net perturbation to the area of
the photosphere is h�Ai/A

0

' 6⇥ 10�7.
We argue in §4 that, while the calculation is performed

using perturbation theory, this is valid even if non-linear
lensing by very small scale structure causes the shear and
amplification of most lines of sight to high redshift to be
significant.

Several other technical calculations are consigned to ap-
pendices. In appendix B we calculate the first-order beam
expansion rate that is used in appendix A. In appendix C
we show how the result of Metcalf & Silk’s calculation of
the mean magnification, while qualitatively very similar to
ours, di↵ers at a detailed level, particularly in regard to the
e↵ect from nearby lenses. In appendix D we show how our
results can be obtained from the optical scalar formalism. In
appendix E we show how the non-vanishing inverse magni-
fication averaged over sources can be understood as arising
because light paths to sources tend to avoid over-dense re-
gions.

Although some of the detail in the appendices is admit-
tedly excessive in the face of what turns out to be a very
small correction, there is value in collecting this material
together. Flux conservation will probably continue to be of
great importance in gravitational lensing, and it is impor-
tant to understand the issue in depth. We hope the present
paper is a useful contribution to this process.

2 STATISTICAL BIASES

In this section we show how quantities such as distance
can be statistically biased. We consider both averages over
sources and over directions, presenting the conservation ar-
guments of Weinberg (1976) and Kibble & Lieu (2005) and
showing how powers of the distance may or may not be bi-
ased. We illustrate these general points with the specific case
of a thin deflecting screen.

2.1 Source averaged properties

2.1.1 Photon conservation

Weinberg (1976) argued that transparent lenses cannot
change the mean flux density of sources on the grounds of
conservation of the flux of photons. The idea is that if a
monochromatic source emits N photons per period of the
emitted radiation then there must also be N photons per
(redshifted) period passing through any surface of constant
redshift. Additionally, static lenses do not a↵ect the redshift
of sources. So, while individual sources may be magnified or
de-magnified, and some may be multiply imaged, the aver-
age fraction of photons from a source at redshift z that we
detect is the ratio of our telescope aperture to the proper
area of the sphere around each source on which the redshift
has value z. Averaged over the observers that uniformly pop-
ulate the sphere around a particular source, the flux density
is thus unbiased.

To obtain the quantity of more interest, which is the
mean flux density of sources seen by one observer, one can
argue that the average over the entire ensemble of pairs of
sources and the observers who see them to have redshift z
the flux density is also unbiased, and if we are not a spe-
cial observer the average over the sources that we see with
redshift z should also have unbiased flux density. Weinberg
thus concluded that sources are, on average, unmagnified
and that the conventional formula for D(z) remains valid.
In fact, as we show below, Weinberg’s result holds for every
observer, not merely in an ensemble-average sense.

This is a very powerful and general argument, which is
not restricted to the weak-lensing regime – though it does re-
quire that multiple images of sources from strong lensing are
either unresolved or that the flux densities of the multiple
images have been aggregated. If we define the magnification
of a source µ as the ratio of its flux density to that which
an identical source would have at the same redshift in an
unperturbed FRW model, or viewed along a path with no
inhomogeneity, and imagine the source sphere at redshift z
to be tessellated into a very large number of equal area ele-
ments, each containing one standard source, then averaging
over these sources is equivalent to averaging over area and
Weinberg’s argument is that hµi

A

= 1 where the subscript
indicates averaging µ weighted by area on the constant-z
surface.

The flux density is also inversely proportional to dA/d⌦,
the Jacobian of the transformation between position on
the source plane and angle on the observer’s sky (con-
servation of surface brightness means the flux density in-
creases with d⌦ for given dA). The average of the inverse
of the Jacobian, weighted by area on the source sphere, is
hd⌦/dAi

A

=
R
dA(d⌦/dA)/

R
dA = 4⇡/A. We emphasise
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where

but J = d<θ2>/dλ and Jλ is on the 
order of 10-6



NK + Peacock 2015 - 2nd point
• Perturbation to the area is on the order of the mean squared cumulative 

deflection angle
• This is a one-part-in-a-million effect

• and dominated by large-scale structure
• Relativistic perturbation theory, focussing theorem etc. give perturbation 

to the distance that is on the order of the mean squared shear (or 
convergence)
• this is much larger
• and dominated by small-scale structure (possibly divergent)

• All claims for large effects are purely statistical effects:
• The mean flux magnification μ of a source is unity

• so <Δμ>source = 0
• but μ is a fluctuating quantity
• so any non-linear function of μ (e.g. D/D0 = 1 / √μ) will not average to 

unity



KP15: Statistical biases...

• Example: Source averaged distance bias:
• D/D0 = μ-1/2 = (1 + Δμ)-1/2 = 1 - Δμ / 2 + 3(Δμ)2/8 + ...
• so <D/D0>source = 1 + 3<(Δμ)2>/8 + ... = 1 + 3<κ2>/2 + ...

• Similarly for source averaged mean inverse magnification
• <D2/D02>source = 1 + 4 <κ2> + ...

• These are precisely the results for the mean perturbation to the distance 
and distance squared found by Clarkson et al. 2014

• But e.g. the latter is not the perturbation to the constant z surface area
• that would be the average over directions rather than over sources

• Similarly, Clarkson et al. 2012 claim mean source averaged flux 
magnification is <μ> = 1 + <3κ2 + γ2> + ... = 1 + <4κ2> + ....
• but this is the direction averaged magnification

• These come from non-commutativity of averaging and non-linearity
• <f(x)> != f(<x>) if x is a fluctuating quantity
• and have nothing to do with the non-linearity of Einstein's equations



What about the "focusing theorem"?

• 2 lessons from foregoing:
• 1) The theorem applies to a bundle of rays fired 

along a given direction
• i.e. a direction - not source-averaged quantity
• and paths to sources avoid over-densities
• so care is needed in interpreting this

• 2) D is a non-linear function of A
• so, because A is a fluctuation quantity, we 

automatically expect a statistical bias in D
• and the size of the effect is ~ <κ2>

• So is there a "normal tendency of matter to focus 
light rays"? 
• as inferred from the averaged focusing theorem

• or is this simply a statistical effect?

2 Kaiser & Peacock

magnification µ ⌘ S/S
0

, where S is the actual flux density
and S

0

is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµi

A

= 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD2

0

/D2i
A

= 1,
where D

0

is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R

↵�

k↵k�/2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D

0

, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D

0

in the denominator, to obtain the linearised averaged focus-
ing theorem

hD̈i/D
0

= �h⌃2i < 0. (2)

This implies that hDi < D
0

so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D

0

⇠ h2i, where  is the usual
first order lensing convergence and �D ⌘ D�D

0

. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h2i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.
Furthermore, h2i is a strongly decreasing function of aver-
aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0

/D2i
A

= 1. First, the focusing theorem is concerned
with hD/D

0

i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i

⌦

it is the
inverse magnification that is conserved: hµ�1i

⌦

= 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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KP15 on the "focusing theorem"?
• We have developed the optical scalar transport equations in a form 

appropriate when one wishes to specify the metric fluctuations as a 
stochastic random field (with zero mean for k=0 component)
• interesting subtlety: one should not assume <δR> = 0
• in inflationary context, small scale space-time curvature fluctuations have 

to accommodate themselves within the (flat-space) boundary conditions 
imposed when the larger regions accelerate outside of horizon

• We have solved these to obtain the ensemble average of the perturbation to 
the area of a beam of specified solid angle fired off from the observer and 
propagating back to the source surface.

• We perform a double expansion, working to second order in δ(metric) and 
to lowest order in the inverse of "coherence scale"/Hubble scale

• Cancellation:  Not just "Born level", but 1st "beyond Born" also
• We were only able to solve for the case where metric fluctuations are non-

evolving (like in Einstein - de Sitter) but were able to obtain the "un-
focusing theorem": <ΔA/A> = - 2Jλ/3 + ....
• this is consistent with the more general result (variable J) found by more 

straightforward approach.
• An exactly analogous calculation for <ΔD/D> does not show cancellation 

and results in much larger (O(κ2)) result.  But just the statistical bias. QED
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magnification µ ⌘ S/S
0

, where S is the actual flux density
and S

0

is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµi

A

= 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD2

0

/D2i
A

= 1,
where D

0

is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R

↵�

k↵k�/2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D

0

, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D

0

in the denominator, to obtain the linearised averaged focus-
ing theorem

hD̈i/D
0

= �h⌃2i < 0. (2)

This implies that hDi < D
0

so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D

0

⇠ h2i, where  is the usual
first order lensing convergence and �D ⌘ D�D

0

. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h2i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.
Furthermore, h2i is a strongly decreasing function of aver-
aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0

/D2i
A

= 1. First, the focusing theorem is concerned
with hD/D

0

i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i

⌦

it is the
inverse magnification that is conserved: hµ�1i

⌦

= 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
ṙ = dr/d� (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the
wave-fronts, the transverse components of the direction of rays are
the 2D gradient of the wave-front displacement from the tangent
plane. It follows that the optical tensor is also the Hessian (2nd
spatial derivative) matrix for this displacement.

�� = ��/n(x). The advanced position and direction will
be

r0 = x+ ṙ�� = x+ (ẑ+ ẋ)�� (D6)

ṙ0 = ẑ+ ẋ+ (r
x

� ẋ@
z

� ẑ(ẋ ·r
x

))ñ�� (D7)

One path forward at this point would be to apply ro-
tations into the local coordinate system defined by the new
tangent plane to obtain the di↵erence in direction between
this ray and the guiding ray ẋ00 = R(ṙ0)�R(ṙ0

0

) = R(ṙ0�ṙ0
0

).
This will be a linear function of the rotated displacement
x00 = R(r0 � r0

0

) with tensorial coe�cient K00 such that
ẋ00 = K00 · x00. The rate of change with path length of K
then being K̇ = (K00 �K)/��

0

.
But this rotation is an unnecessary complication since

both of the vectors r0 � r0
0

and ṙ0 � ṙ0
0

are almost perpendic-
ular to the original (unrotated) z-axis, so they only change
quadratically with the angle. And the angle is first order in
��

0

. So the vectors ẋ00 and x00 can be obtained at first or-
der in ��

0

simply by projecting r0 and ṙ0 and ṙ0
0

onto the
original z = 0 surface to obtain x0 = r0 � ẑ(ẑ · r0) and so on.

The transported transverse position and velocity are

x0 = x+ ẋ�� = (I+K��) · x (D8)

ẋ0 � ẋ0
0

= ẋ+ (r
x

� ẋ@
z

)ñ(x)���r
x

ñ(0)��
0

. (D9)

Making a first first order Taylor expansion r
x

ñ(x) =
r

x

ñ(0)+(x ·r
x

)r
x

ñ(0), and realising that, at first order in
displacement, ẋ@

z

ñ(x) = ẋ@
z

ñ(0) since ẋ is of first order,
this is

ẋ0 � ẋ0
0

= x · [K+ (r
x

r
x

ñ�r
x

ñr
x

ñ�K@
z

ñ)��] (D10)

where the penultimate term, which like the last, is non-linear
in the metric fluctuations, comes from the first order (in x
and ñ) di↵erence between �� and ��

0

.
Writing the LHS as ẋ0 � ẋ0

0

= K0 · x0 and substituting
x = (I+K��)�1 ·x0 from (D8) on the RHS and linearising
in ��, gives

K0 = K+ [(r
x

r
x

�K@
z

)ñ�r
x

ñr
x

ñ�K ·K]�� (D11)

or equivalently, with K0 = K + K̇��, we have the optical
tensor transport equation

K̇ = (r
x

r
x

�K@
z

)ñ�r
x

ñr
x

ñ�K ·K . (D12)

The linear spatial derivative operator in the first term
has a simple physical interpretation; it gives the second
derivative of ñ on the curved wavefront with respect to the
tangent plane coordinates. The transport equation (D12)
says that changes in K are driven by any transverse gradi-
ents of the refractive index on the wavefront surface that the
beam encounters, which makes sense, but there is also the
non-linear term �K · K which ‘drives’ changes in K even
in the absence of refractive index variations. This also has
a simple explanation; downstream of a refractive index fluc-
tuation the ray directions are unchanging, but their trans-
verse positions evolve according to (D8), so the gradient of
the fixed transverse velocity with respect to the evolving x0

coordinates must change.

D1.2 Optical scalar transport equations

The ‘optical scalar’ transport equations (Sachs 1961) are ob-
tained by decomposing the optical tensor into the expansion
rate ✓ = Tr(K)/2 and the trace-free rate of shear ⌃ = {K}
where the curly braces around a matrix indicates the trace
free projection: {M} ⌘ M � ITr(M)/2 (so ⌃ = K � ✓I).
Now for any trace-free 2 ⇥ 2 matrix N = {{a, b}, {c,�a}}
it is easy to see that N ·N = �|N|I, from which it follows
that K ·K = (✓I+⌃) · (✓I+⌃) = (✓2 +⌃2)I+ 2✓⌃ where
we have defined ⌃2 ⌘ Tr(⌃ ·⌃)/2 = �|⌃|.

Taking the trace and trace-free projections of (D12)
yields the coupled transport equations

✓̇ =

✓r?
2

2
� ✓@

�

◆
ñ� |r?ñ|2/2� ✓2 � ⌃2 (D13)

⌃̇ = ({r?r?}�⌃@
�

)ñ� {r?ñr?ñ}� 2✓⌃ (D14)

where we are now using r?
2 to denote the transverse Lapla-

cian r2

x

on the guiding ray (this is not the same as the dot
product the operator in (D2) with itself which, containing
ẋ, is position dependent) and @

�

to denote derivative with
respect to position along the guiding ray. The rate of shear
tensor ⌃ being trace-free has three independent components
which can be further decomposed to a 2-component shear
that is sometimes represented as a complex number and a
vorticity. We shall not use that decomposition and will just
work with ⌃ as a tensor. But separating the expansion rate
✓ is useful, since unlike ⌃ it is non-vanishing in the unper-
turbed universe.
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component of the displacement of the end of the ray parallel
to the z-axis:

�r
2

= �4ẑ

�0Z

0

d� (�
0

� �)r
x

� ·
�Z

0

d�0 r
x

�0 (C17)

which has a non-vanishing dot product with the unperturbed
direction, so the squared distance reached is

|r|2 = �2

0

� 8�
0

�0Z

0

d� (�
0

� �)r
x

� ·
�Z

0

d�0 r
x

�0

+ 4

�0Z

0

d� (�
0

� �)r
x

� ·
�0Z

0

d�0 (�
0

� �0)r
x

�0

(C18)

with expectation value

h|r|2i = �2

0

� 2

�0Z

0

d� �(�
0

� �)J (C19)

which agrees with (A28). Note that this contains the lensing
kernel, so nearby lenses do not contribute.

Resolving the di↵erence between the inverse amplifica-
tion of MS97 and that obtained here is much more compli-
cated. What one has to do is develop the 2nd order expres-
sion for the end-point of a ray with direction at the observer
ẑ+⇥ and then di↵erentiate with respect to ⇥. We shall not
pursue that analysis here.

APPENDIX D: OPTICAL SCALARS AND THE
FOCUSING THEOREM

Here we consider the mean inverse magnification from the
perspective of optical scalars – the rates of expansion, shear
and possibly rotation of a bundle of light rays that appear
in Raychaudhuri’s equation. This formalism was originally
developed by Sachs (1961) in the context of propagation of
gravitational radiation, but it applies for any massless field
in the geometric optics limit. The optical scalar transport
equations (see Schneider, Ehlers & Falco 1992, Narlikar 2010
for derivations) are particularly important in the present
context since, as we have discussed, they are the basis for the
‘focusing theorem’ (Seitz, Schneider & Ehlers 1994), which
appears to show that inhomogeneities cause systematic fo-
cusing of beams of light, and which underlies the claims of
Clarkson et al. 2012 and CUMD14. Our goals here are to
provide a check on the analysis in the main text; to show
that there is no subtle relativistic e↵ect hidden in these equa-
tions; and to elucidate the meaning of the focusing equation.

We first develop the optical scalar transport equations
in the form appropriate for calculating distances and beam
areas given some statistical prescription for the metric fluc-
tuations as a function of background coordinates. We then
solve these perturbatively, up to second order in the ampli-
tude of the metric fluctuations and compare with the results
obtained in the main text.

D1 The optical scalar equations in the weak field
limit

As discussed in §A1, light rays propagating through a per-
turbed FRW background with statistically isotropic metric

fluctuations are exactly equivalent to optics in a medium
with refractive index n(r) and obey

r̈ = r?ñ (D1)

where ñ ⌘ lnn and r? ⌘ r � ṙ(ṙ · r) is the derivative
in the direction perpendicular to ṙ. In terms of the metric
(A1) n = [(1 � 2�(r)/c2)/(1 + 2�(r)/c2)]1/2 with r being
conformal background coordinates, and dot being derivative
with respect to path length in these coordinates so |ṙ| = 1.

The optical scalar equations are a set of coupled non-
linear di↵erential equations that describe the evolution of
the rate of expansion, the vorticity and the rate of shear of
a bundle of rays (here we are interested here in a bundle of
rays that left the observer, propagating backward in time,
within a circular cone of infinitesimal solid angle d⌦). These
equations are of interest here because the rate of expansion
can be integrated to give the area of the beam.

At some point � along the central (or ‘guiding’) ray
(which we denote by subscript 0), and as illustrated in Fig-
ure D1, we can erect background spatial coordinates such
that the z-axis points along the direction of the central
ray, i.e. ṙ

0

= ẑ, and define the 2-D orthogonal coordinates
x = {x

1

, x
2

} on the plane orthogonal to be x ⌘ r� ẑ(ẑ · r).
We set the origin of coordinates at the location of the central
ray: x

0

= 0.
Now consider a collection of neighbouring rays whose

directions ṙ vary smoothly on the surface perpendicular to
the central ray, so for infinitesimal displacements x they have
orthogonal ‘velocity’ ẋ = ṙ � ẑ(ẑ · ṙ) = K · x where K is a
2⇥2 matrix that we shall refer to as the ‘optical tensor’, and
which is the derivative of the orthogonal ray velocity with
respect to the orthogonal coordinates. Our first goal is to
obtain a first order di↵erential equation for how K changes
with path length along the beam.

D1.1 The optical tensor transport equation

At linear order in x the ray directions are ṙ = ẑ+ ẋ and the
perpendicular gradient operator is

r? = r
x

� ẋ@
z

� ẑ(ẋ ·r
x

). (D2)

Let us now use this in the geodesic equation to propagate
the guiding ray forward by a path length corresponding to a
given interval of optical path (or phase �� for a monochro-
matic source): ��

0

= ��/n(0). To first order in ��
0

the
new position, which we denote by a prime, is

r0
0

= 0+ ṙ
0

��
0

= ẑ��
0

(D3)

while the ray direction will be

ṙ0
0

= ẑ+ r̈
0

��
0

= ẑ+r
x

ñ(0)��
0

. (D4)

As the direction has changed we have a new plane perpen-
dicular to the guiding ray, or equivalently tangent to the new
wavefront, that is tilted with respect to the plane z = ��

0

.
The equation of this plane is

z0 ���
0

= h(x) = ���
0

r
x

ñ(0) · x. (D5)

Now consider a neighbouring ray that pierces the sur-
face z = 0 at x and propagate this to the new tangent
plane. To first order in ��

0

and x this requires a path length
�� = ��

0

(1� x ·r
x

ñ(x)) – this can also be obtained from
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component of the displacement of the end of the ray parallel
to the z-axis:
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which has a non-vanishing dot product with the unperturbed
direction, so the squared distance reached is

|r|2 = �2
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with expectation value

h|r|2i = �2

0

� 2

�0Z

0

d� �(�
0

� �)J (C19)

which agrees with (A28). Note that this contains the lensing
kernel, so nearby lenses do not contribute.

Resolving the di↵erence between the inverse amplifica-
tion of MS97 and that obtained here is much more compli-
cated. What one has to do is develop the 2nd order expres-
sion for the end-point of a ray with direction at the observer
ẑ+⇥ and then di↵erentiate with respect to ⇥. We shall not
pursue that analysis here.

APPENDIX D: OPTICAL SCALARS AND THE
FOCUSING THEOREM

Here we consider the mean inverse magnification from the
perspective of optical scalars – the rates of expansion, shear
and possibly rotation of a bundle of light rays that appear
in Raychaudhuri’s equation. This formalism was originally
developed by Sachs (1961) in the context of propagation of
gravitational radiation, but it applies for any massless field
in the geometric optics limit. The optical scalar transport
equations (see Schneider, Ehlers & Falco 1992, Narlikar 2010
for derivations) are particularly important in the present
context since, as we have discussed, they are the basis for the
‘focusing theorem’ (Seitz, Schneider & Ehlers 1994), which
appears to show that inhomogeneities cause systematic fo-
cusing of beams of light, and which underlies the claims of
Clarkson et al. 2012 and CUMD14. Our goals here are to
provide a check on the analysis in the main text; to show
that there is no subtle relativistic e↵ect hidden in these equa-
tions; and to elucidate the meaning of the focusing equation.

We first develop the optical scalar transport equations
in the form appropriate for calculating distances and beam
areas given some statistical prescription for the metric fluc-
tuations as a function of background coordinates. We then
solve these perturbatively, up to second order in the ampli-
tude of the metric fluctuations and compare with the results
obtained in the main text.

D1 The optical scalar equations in the weak field
limit

As discussed in §A1, light rays propagating through a per-
turbed FRW background with statistically isotropic metric

fluctuations are exactly equivalent to optics in a medium
with refractive index n(r) and obey

r̈ = r?ñ (D1)

where ñ ⌘ lnn and r? ⌘ r � ṙ(ṙ · r) is the derivative
in the direction perpendicular to ṙ. In terms of the metric
(A1) n = [(1 � 2�(r)/c2)/(1 + 2�(r)/c2)]1/2 with r being
conformal background coordinates, and dot being derivative
with respect to path length in these coordinates so |ṙ| = 1.

The optical scalar equations are a set of coupled non-
linear di↵erential equations that describe the evolution of
the rate of expansion, the vorticity and the rate of shear of
a bundle of rays (here we are interested here in a bundle of
rays that left the observer, propagating backward in time,
within a circular cone of infinitesimal solid angle d⌦). These
equations are of interest here because the rate of expansion
can be integrated to give the area of the beam.

At some point � along the central (or ‘guiding’) ray
(which we denote by subscript 0), and as illustrated in Fig-
ure D1, we can erect background spatial coordinates such
that the z-axis points along the direction of the central
ray, i.e. ṙ

0

= ẑ, and define the 2-D orthogonal coordinates
x = {x

1

, x
2

} on the plane orthogonal to be x ⌘ r� ẑ(ẑ · r).
We set the origin of coordinates at the location of the central
ray: x

0

= 0.
Now consider a collection of neighbouring rays whose

directions ṙ vary smoothly on the surface perpendicular to
the central ray, so for infinitesimal displacements x they have
orthogonal ‘velocity’ ẋ = ṙ � ẑ(ẑ · ṙ) = K · x where K is a
2⇥2 matrix that we shall refer to as the ‘optical tensor’, and
which is the derivative of the orthogonal ray velocity with
respect to the orthogonal coordinates. Our first goal is to
obtain a first order di↵erential equation for how K changes
with path length along the beam.

D1.1 The optical tensor transport equation

At linear order in x the ray directions are ṙ = ẑ+ ẋ and the
perpendicular gradient operator is

r? = r
x

� ẋ@
z

� ẑ(ẋ ·r
x

). (D2)

Let us now use this in the geodesic equation to propagate
the guiding ray forward by a path length corresponding to a
given interval of optical path (or phase �� for a monochro-
matic source): ��

0

= ��/n(0). To first order in ��
0

the
new position, which we denote by a prime, is

r0
0

= 0+ ṙ
0

��
0

= ẑ��
0

(D3)

while the ray direction will be

ṙ0
0

= ẑ+ r̈
0
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0

= ẑ+r
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ñ(0)��
0

. (D4)

As the direction has changed we have a new plane perpen-
dicular to the guiding ray, or equivalently tangent to the new
wavefront, that is tilted with respect to the plane z = ��

0

.
The equation of this plane is

z0 ���
0

= h(x) = ���
0

r
x

ñ(0) · x. (D5)

Now consider a neighbouring ray that pierces the sur-
face z = 0 at x and propagate this to the new tangent
plane. To first order in ��

0

and x this requires a path length
�� = ��

0

(1� x ·r
x

ñ(x)) – this can also be obtained from
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ṙ = ẑ

+K · x

ṙ
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Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
ṙ = dr/d� (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the
wave-fronts, the transverse components of the direction of rays are
the 2D gradient of the wave-front displacement from the tangent
plane. It follows that the optical tensor is also the Hessian (2nd
spatial derivative) matrix for this displacement.

�� = ��/n(x). The advanced position and direction will
be

r0 = x+ ṙ�� = x+ (ẑ+ ẋ)�� (D6)

ṙ0 = ẑ+ ẋ+ (r
x

� ẋ@
z

� ẑ(ẋ ·r
x

))ñ�� (D7)

One path forward at this point would be to apply ro-
tations into the local coordinate system defined by the new
tangent plane to obtain the di↵erence in direction between
this ray and the guiding ray ẋ00 = R(ṙ0)�R(ṙ0

0

) = R(ṙ0�ṙ0
0

).
This will be a linear function of the rotated displacement
x00 = R(r0 � r0

0

) with tensorial coe�cient K00 such that
ẋ00 = K00 · x00. The rate of change with path length of K
then being K̇ = (K00 �K)/��

0

.
But this rotation is an unnecessary complication since

both of the vectors r0 � r0
0

and ṙ0 � ṙ0
0

are almost perpendic-
ular to the original (unrotated) z-axis, so they only change
quadratically with the angle. And the angle is first order in
��

0

. So the vectors ẋ00 and x00 can be obtained at first or-
der in ��

0

simply by projecting r0 and ṙ0 and ṙ0
0

onto the
original z = 0 surface to obtain x0 = r0 � ẑ(ẑ · r0) and so on.

The transported transverse position and velocity are

x0 = x+ ẋ�� = (I+K��) · x (D8)
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Making a first first order Taylor expansion r
x

ñ(x) =
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ñ(0), and realising that, at first order in
displacement, ẋ@
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ñ(0) since ẋ is of first order,
this is
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ñ)��] (D10)

where the penultimate term, which like the last, is non-linear
in the metric fluctuations, comes from the first order (in x
and ñ) di↵erence between �� and ��

0

.
Writing the LHS as ẋ0 � ẋ0

0

= K0 · x0 and substituting
x = (I+K��)�1 ·x0 from (D8) on the RHS and linearising
in ��, gives

K0 = K+ [(r
x
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ñ�K ·K]�� (D11)

or equivalently, with K0 = K + K̇��, we have the optical
tensor transport equation

K̇ = (r
x
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�K@
z

)ñ�r
x

ñr
x

ñ�K ·K . (D12)

The linear spatial derivative operator in the first term
has a simple physical interpretation; it gives the second
derivative of ñ on the curved wavefront with respect to the
tangent plane coordinates. The transport equation (D12)
says that changes in K are driven by any transverse gradi-
ents of the refractive index on the wavefront surface that the
beam encounters, which makes sense, but there is also the
non-linear term �K · K which ‘drives’ changes in K even
in the absence of refractive index variations. This also has
a simple explanation; downstream of a refractive index fluc-
tuation the ray directions are unchanging, but their trans-
verse positions evolve according to (D8), so the gradient of
the fixed transverse velocity with respect to the evolving x0

coordinates must change.

D1.2 Optical scalar transport equations

The ‘optical scalar’ transport equations (Sachs 1961) are ob-
tained by decomposing the optical tensor into the expansion
rate ✓ = Tr(K)/2 and the trace-free rate of shear ⌃ = {K}
where the curly braces around a matrix indicates the trace
free projection: {M} ⌘ M � ITr(M)/2 (so ⌃ = K � ✓I).
Now for any trace-free 2 ⇥ 2 matrix N = {{a, b}, {c,�a}}
it is easy to see that N ·N = �|N|I, from which it follows
that K ·K = (✓I+⌃) · (✓I+⌃) = (✓2 +⌃2)I+ 2✓⌃ where
we have defined ⌃2 ⌘ Tr(⌃ ·⌃)/2 = �|⌃|.

Taking the trace and trace-free projections of (D12)
yields the coupled transport equations

✓̇ =

✓r?
2

2
� ✓@

�

◆
ñ� |r?ñ|2/2� ✓2 � ⌃2 (D13)

⌃̇ = ({r?r?}�⌃@
�

)ñ� {r?ñr?ñ}� 2✓⌃ (D14)

where we are now using r?
2 to denote the transverse Lapla-

cian r2

x

on the guiding ray (this is not the same as the dot
product the operator in (D2) with itself which, containing
ẋ, is position dependent) and @

�

to denote derivative with
respect to position along the guiding ray. The rate of shear
tensor ⌃ being trace-free has three independent components
which can be further decomposed to a 2-component shear
that is sometimes represented as a complex number and a
vorticity. We shall not use that decomposition and will just
work with ⌃ as a tensor. But separating the expansion rate
✓ is useful, since unlike ⌃ it is non-vanishing in the unper-
turbed universe.
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Optical scalar transport equations:
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Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
ṙ = dr/d� (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the
wave-fronts, the transverse components of the direction of rays are
the 2D gradient of the wave-front displacement from the tangent
plane. It follows that the optical tensor is also the Hessian (2nd
spatial derivative) matrix for this displacement.

�� = ��/n(x). The advanced position and direction will
be

r0 = x+ ṙ�� = x+ (ẑ+ ẋ)�� (D6)
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One path forward at this point would be to apply ro-
tations into the local coordinate system defined by the new
tangent plane to obtain the di↵erence in direction between
this ray and the guiding ray ẋ00 = R(ṙ0)�R(ṙ0

0

) = R(ṙ0�ṙ0
0

).
This will be a linear function of the rotated displacement
x00 = R(r0 � r0

0

) with tensorial coe�cient K00 such that
ẋ00 = K00 · x00. The rate of change with path length of K
then being K̇ = (K00 �K)/��

0

.
But this rotation is an unnecessary complication since

both of the vectors r0 � r0
0

and ṙ0 � ṙ0
0

are almost perpendic-
ular to the original (unrotated) z-axis, so they only change
quadratically with the angle. And the angle is first order in
��

0

. So the vectors ẋ00 and x00 can be obtained at first or-
der in ��

0

simply by projecting r0 and ṙ0 and ṙ0
0

onto the
original z = 0 surface to obtain x0 = r0 � ẑ(ẑ · r0) and so on.

The transported transverse position and velocity are

x0 = x+ ẋ�� = (I+K��) · x (D8)
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Making a first first order Taylor expansion r
x
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ñ(0), and realising that, at first order in
displacement, ẋ@
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ñ(0) since ẋ is of first order,
this is
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where the penultimate term, which like the last, is non-linear
in the metric fluctuations, comes from the first order (in x
and ñ) di↵erence between �� and ��

0

.
Writing the LHS as ẋ0 � ẋ0

0

= K0 · x0 and substituting
x = (I+K��)�1 ·x0 from (D8) on the RHS and linearising
in ��, gives

K0 = K+ [(r
x

r
x

�K@
z

)ñ�r
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or equivalently, with K0 = K + K̇��, we have the optical
tensor transport equation
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The linear spatial derivative operator in the first term
has a simple physical interpretation; it gives the second
derivative of ñ on the curved wavefront with respect to the
tangent plane coordinates. The transport equation (D12)
says that changes in K are driven by any transverse gradi-
ents of the refractive index on the wavefront surface that the
beam encounters, which makes sense, but there is also the
non-linear term �K · K which ‘drives’ changes in K even
in the absence of refractive index variations. This also has
a simple explanation; downstream of a refractive index fluc-
tuation the ray directions are unchanging, but their trans-
verse positions evolve according to (D8), so the gradient of
the fixed transverse velocity with respect to the evolving x0

coordinates must change.

D1.2 Optical scalar transport equations

The ‘optical scalar’ transport equations (Sachs 1961) are ob-
tained by decomposing the optical tensor into the expansion
rate ✓ = Tr(K)/2 and the trace-free rate of shear ⌃ = {K}
where the curly braces around a matrix indicates the trace
free projection: {M} ⌘ M � ITr(M)/2 (so ⌃ = K � ✓I).
Now for any trace-free 2 ⇥ 2 matrix N = {{a, b}, {c,�a}}
it is easy to see that N ·N = �|N|I, from which it follows
that K ·K = (✓I+⌃) · (✓I+⌃) = (✓2 +⌃2)I+ 2✓⌃ where
we have defined ⌃2 ⌘ Tr(⌃ ·⌃)/2 = �|⌃|.

Taking the trace and trace-free projections of (D12)
yields the coupled transport equations

✓̇ =
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where we are now using r?
2 to denote the transverse Lapla-

cian r2

x

on the guiding ray (this is not the same as the dot
product the operator in (D2) with itself which, containing
ẋ, is position dependent) and @

�

to denote derivative with
respect to position along the guiding ray. The rate of shear
tensor ⌃ being trace-free has three independent components
which can be further decomposed to a 2-component shear
that is sometimes represented as a complex number and a
vorticity. We shall not use that decomposition and will just
work with ⌃ as a tensor. But separating the expansion rate
✓ is useful, since unlike ⌃ it is non-vanishing in the unper-
turbed universe.
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The form of (D13) & (D14) is a little di↵erent to e.g.
equations (6.6) of Blandford & Narayan (1986) which have
the linear 2nd derivative terms and the terms involving ✓2,
⌃2 and ✓⌃, but are missing the other non-linear deriva-
tive terms. As we discuss shortly, these di↵erences arise in
part because the spatial derivatives here are with respect to
conformal background coordinates rather than local proper
coordinates; using the latter eliminates the derivative along
the line of sight @

�

, but we are still left with the terms in-
volving the square of the transverse gradient. It is certainly
the case that, for lensing by random structures, these terms
are smaller than both the linear 2nd derivative terms and
the terms involving products of the cumulative rate of shear
and expansion, but they still need to be kept here. If we ig-
nore these terms we find that there is a contribution to the
mean fractional area perturbation on the order �2(�/L)2.
This is smaller than the claims by e.g. CUMD14, which are
h�Ai/A

0

⇠ �2(�/L)3, but larger than the correct result
which is ⇠ �2�/L.

Starting at some initial point on the central ray, and
with some choice of orientation of the initial orthogonal coor-
dinate system, then for a given log refractive index field ñ(r)
one could integrate these equations, along with the geodesic
equation to track the motion of the guiding centre, to trans-
port ✓ and ⌃ along the ray.1

If the refractive index has no spatial gradients, equa-
tions (D13) & (D14) admit a solution ✓ = 1/� and ⌃ = 0.
This is the appropriate initial condition for a narrow bun-
dle of rays that leave the observer, and is the zeroth order
solution about which we will develop our perturbative anal-
ysis. Note that in the case of an observer at the centre of
a spherically symmetric ‘lens’ with ñ(r) = ñ(r) this will
still be a solution. This is required by symmetry, and can be
confirmed by calculation since for any spherically symmetric
function f(r =

p
z2 + |x|2) it is easily shown that r2

x

f eval-
uated at x = 0 is just 2(df/dr)/r so the transverse Laplacian
of ñ in (D13) is cancelled by the longitudinal gradient term
�2✓@

�

ñ = �2��1@
�

ñ.
The reason that these equations are of interest to us is

that, according to (D8), the area of the bundle evolves as
A0 = A|I+K��| = A(1+Tr(K)��+ . . .) = A(1+ 2✓��+
. . .), where . . . indicates terms of higher than 1st order in
��. Thus ✓ = Ȧ/2A = Ḋ/D where D ⌘ p

A, which is why
✓ is called the expansion rate. Note that we are justified
in calculating the first order change in the area using the
projected, rather than rotated, coordinates here since the
di↵erence in the areas is second order.

The solution of Ȧ/2A = ✓(�) = ��1 +�✓(�) is

A = ⌦�2 exp

0

@2

�Z

0

d�0 �✓(�0)

1

A (D15)

where ⌦ is a constant of integration (which has an obvious

1 There is a slight subtlety here in that one needs to keep track
of the rotation of the perpendicular coordinate system as the
central ray direction changes. The coordinate system we have
used here is not tied to any neighbouring rays. Instead, the new
coordinate axes {x̂0

1

, x̂0
2

}, viewed as 3-vectors in r-space, are, after
propagating a distance ��, obtained from the unprimed ones
by applying a rotation about the axis that is the cross product
ṙ⇥ (��r?ñ). This will not concern us here, however.

interpretation as the solid angle of the beam at the source or
observer) and where �✓ must be obtained by solving (D13)
& (D14). We will presently do this by means of expansion up
to second order in the assumed small refractive index fluc-
tuations. But first we make connection with the, arguably
more elegant, relativistic treatment and discuss the inter-
pretation of the ‘focusing theorem’.

D2 The focusing theorem

The rate of change with distance of Ḋ/D is ✓̇ = D̈/D �
(Ḋ/D)2 = D̈/D � ✓2 so, according to (D13),

D̈/D =

✓r?
2

2
� ✓@

�

◆
ñ� |r?ñ|2/2� ⌃2. (D16)

This appears to di↵er from the usual expression (e.g. Schnei-
der, Ehlers & Falco 1992)

D̈/D = �R
↵�

k↵k�/2� ⌃2 (D17)

where R
↵�

is the Ricci tensor and k↵ is the guiding ray 4-
vector. In particular, the rate of expansion ✓ does not appear
in (D17). The di↵erence is partly because we are working
in terms of the metric fluctuations – assumed to take the
weak-field form – and in part because our D is a distance
in conformal background coordinate units whereas in (D17)
the distance is in proper distance units. In the weak-field
approximation g

rr

= 1 � 2�, but n2 = (1 � 2�)/(1 + 2�)
so at lowest order in the metric fluctuations g

rr

= n and
physical distances are related to background distances by
d�⇤ = n1/2d�, so partial derivatives with respect to physi-
cal coordinates are r

x

⇤ = n�1/2r
x

and @
�

⇤ = n�1/2@
�

. In
terms of D⇤ = n1/2D (D16) becomes

D̈⇤

D⇤ =
1
2
r2

⇤n� 3
4n

|r
x

⇤n|2 � ⌃2 (D18)

where r2

⇤n is the 3D Laplacian operator in physical coor-
dinates r2

⇤ = r
x

⇤2 + @2

�

⇤ and where, as in (D17), the rate
of expansion no longer appears. Here dot denotes derivative
with respect to background distance along the ray.

Equation (D17) is the basis for the focusing theorem
(Seitz, Schneider & Ehlers 1994): since both terms on the
RHS are negative for any sensible equation of state for mat-
ter, then, rather generally, D̈/D < 0. The first term in (D17)
describes the local e↵ect of matter within the beam while
the second term is the integrated e↵ect of tidal fields from
matter outside the beam, or Weyl curvature, along the path
of the beam. The focusing equation says that the latter can
only act to enhance the local focusing by positive density
matter and that, as compared to rays in Minkowski space-
time where D̈ = 0 beams are always focused (at least up
until caustic formation). This result seems also to be in ac-
cord with calculations based on the lens equation (Schneider
1984; Ehlers & Schneider 1986; Seitz & Schneider 1992) that
any lens will give rise to at least one image that is magnified.
See Schneider, Ehlers & Falco (1992) and Narlikar (2010) for
further discussion.

In the cosmological context, the width of an unper-
turbed beam in conformal (or co-moving) coordinate is
D =

p
⌦�, so D̈ = 0. The local tidal focusing, in this

context, is caused by the density fluctuations around the
mean value, which averages to zero. More interesting is the
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KP15 on the "focusing theorem"?
• We have developed the optical scalar transport equations in a form 

appropriate when one wishes to specify the metric fluctuations as a 
stochastic random field (with zero mean for k=0 component)
• interesting subtlety: one should not assume <δR> = 0
• in inflationary context, small scale space-time curvature fluctuations have 

to accommodate themselves within the (flat-space) boundary conditions 
imposed when the larger regions accelerate outside of horizon

• We have solved these to obtain the ensemble average of the perturbation to 
the area of a beam of specified solid angle fired off from the observer and 
propagating back to the source surface.

• We perform a double expansion, working to second order in δ(metric) and 
to lowest order in the inverse of "coherence scale"/Hubble scale

• Cancellation:  Not just "Born level", but 1st "beyond Born" also
• We were only able to solve for the case where metric fluctuations are non-

evolving (like in Einstein - de Sitter) but were able to obtain the "un-
focusing theorem": <ΔA/A> = - 2Jλ/3 + ....
• this is consistent with the more general result (variable J) found by more 

straightforward approach.
• An exactly analogous calculation for <ΔD/D> does not show cancellation 

and results in much larger (O(κ2)) result.  But just the statistical bias. QED

2 Kaiser & Peacock

magnification µ ⌘ S/S
0

, where S is the actual flux density
and S

0

is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµi

A

= 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD2

0

/D2i
A

= 1,
where D

0

is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R

↵�

k↵k�/2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D

0

, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D

0

in the denominator, to obtain the linearised averaged focus-
ing theorem

hD̈i/D
0

= �h⌃2i < 0. (2)

This implies that hDi < D
0

so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D

0

⇠ h2i, where  is the usual
first order lensing convergence and �D ⌘ D�D

0

. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h2i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.
Furthermore, h2i is a strongly decreasing function of aver-
aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0

/D2i
A

= 1. First, the focusing theorem is concerned
with hD/D

0

i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i

⌦

it is the
inverse magnification that is conserved: hµ�1i

⌦

= 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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Concluding comments....

• The problem of how lensing by cosmic structure affects the mean 
distance-redshift relation (or the mean area of a surface of constant 
redshift) goes back for at least 50 years

• This is an intellectually compelling problem, and is also potentially 
important for interpretation of SN1a and CMB observations in the age of 
"precision cosmology"

• A major conflict arose in the '80s between Weinberg's flux conservation 
argument and the contrary indications from the focussing theorem

• This has remained unresolved and resurfaced recently in results of 
relativistic 2nd order perturbation theory.



Concluding comments continued...

• NK+Peacock (2015): we have reconciled the conflicts 
• We support Weinberg:

• lensing affects individual source flux densities in a random way
• but in the mean the flux density of sources is almost exactly unperturbed

• and Kibble and Lieu
• who emphasised the distinction between source and direction averaging

• Our main results:
• Relativistic effects have confused physical effects and statistical biases.
• there is a bias in the area of constant z or photosphere surfaces - but it is 

very, very small ~ 10-6

• we have shown that the celebrated "focusing theorem", despite its name, 
does not imply any intrinsic tendency for bundles of rays to be focused 
as they wend their wiggly way through the lumpy cosmos

• Implication: conventional methods for analysing the CMB & SN1a 
(mostly) are valid.


