

Delensing, Lensing, and Neural Networks – a perspective from the CMB W.L. Kimmy Wu KICP Fellow University of Chicago Kavli Institute for Cosmological Physics

Dec 14, 2018 LBL INPA Seminar

Outline

- Background
- * Delensing of BICEP/Keck B-mode maps, with Planck + SPTpol E-mode maps
- Lensing reconstruction from SPTpol
- Convolutional Neural Networks on CMB lensing
- Summary and outlook

Alessandro Manzotti IAP

Monica Mocanu UiO, Norway

Joao Caldeira Fermilab

BICEP/Keck Array

The CMB is sensitive to our standard parameters and more!

Background Figure: BICEP/Keck collaboration

CMB at recombination is sensitive to photon, matter, and baryon densities, initial * conditions (A_s, n_s)

And more! Primordial gravitational waves, dark radiation, ... * Kimmy Wu, UChicago 4

$T(\hat{n}) \ (\pm 350 \mu K)$

(no primordial B-modes)

unlensed

$T(\hat{n}) \ (\pm 350 \mu K)$

6

(no primordial B-modes)

lensed

Effect of lensing on the spectra

Planck's all sky CMB

temperature map

scale ±500 µK

Are the effect of lensing limiting our parameter constraints?

8

Delensing for *r* : a BICEP/Keck example

- We can fit lensing model + *r* simultaneously, but limited by sample variance of lensing
- **Delensing** B-modes: using the *realization-specific* lensing B-mode sky to reduce lensing sample variance
- Especially important if observing a small sky patch

Telescope and Mount Focal Plane Beams on Sky

Delensing: the idea

1. Use Phi tracer and lensed E map to get estimate of lensing B modes

2. Cross-correlate the lensing B template with observed B mode map to quantify how much lensing B modes are in the observed map

B template

CIB as a ϕ tracer

- \$\overline{\phi}: can reconstruct from CMB, but S/ N rather low currently (Future will be better!)
- Cosmic infrared background (CIB) from dusty star-forming dusty galaxies with redshift distribution peaked between z~1 and 2.
- CMB lensing potential's redshift kernel peaks between 1 < z < 3
- Cross-correlation can be as high as ~80%

Lensing template construction

2. Difference the pre- and post-deflected map

Feed the Q/U map through a B-estimator to get the power spectra as inputs to the multicomponent analysis.

Connecting delensing to $\sigma(r)$

BICEP/Keck analysis framework:

how is delensing incorporated

BK multicomponent analysis (no delensing)

• Input maps to multicomponent analysis that extracts constraints on *r*

Maps from BICEP/Keck (95/150GHz)

Maps from Planck

BK multicomponent analysis (no delensing)

- Take the auto- and cross-spectra of the BICEP/Keck and WMAP/Planck maps
- To calculate the likelihood, compare the data bandpowers against the model expectation values of lensing BB, *r*, and 7 parameter foreground model:

 $A_{\text{dust}}, \alpha_{\text{dust}}, \beta_{\text{dust}}, A_{\text{sync}}, \alpha_{\text{sync}}, \beta_{\text{sync}}$ dust/sync correlation

BK15 constraints

BK multicomponent analysis (+ delensing)

• Input maps to multicomponent analysis that extracts constraints on *r*

Maps from BICEP/Keck (95/150GHz)

Maps from Planck

Inputs to BK lensing template

- Phi tracer: Planck's CIB * map
- Q/U maps: combination of * BICEP/Keck, SPTpol, and Planck maps

Incorporating lensing template to likelihood

- Use same model: lensing BB, *r*, and 7 parameter foreground model: $A_{\text{dust}}, \alpha_{\text{dust}}, \beta_{\text{dust}}, A_{\text{sync}}, \alpha_{\text{sync}}, \beta_{\text{sync}}$, and dust/sync correlation
- Adding the lensing template increases the total auto/cross BB spectra from 66 to 78

$$\mathcal{C}(\theta|d) \propto \frac{1}{\sqrt{|\mathbf{C}(\theta)|}} \exp\left(-\frac{1}{2}(d-\mu(\theta))^{\dagger} [\mathbf{C}(\theta)]^{-1}(d-\mu(\theta))\right)$$

more data bandpowers

In the BK analysis, we use the HL likelihood. The gaussian likelihood is for illustration purposes.

Lensing template as input in multicomponent analysis

The covariance matrix that enters the likelihood has information of the covariance between the lensing BB spectrum and the observed BB spectrum -> reducing $\sigma(r)$.

How much do we improve $\sigma(r)$?

- With perfect φ map (no decorrelation, no noise), adding a lensing template to the BK14 data set improves σ(r) from 0.025 to 0.018
- Using CIB phi tracer to form the lensing template, σ(r) improves by ~10% from BK14

Current limitation to delensing

- B mode variance is dominated by galactic foregrounds; even with perfect delensing we do not improve σ(r) very significantly
- CIB map we use has cross-correlation with underlying φ at 60-80%; need better cross-correlation to improve towards perfect delensing
- * CMB-derived φ from next-generation CMB experiments can provide that!

Key take-aways:

Incorporated delensing into a likelihood analysis for *r*;
 Delensing reduces σ(r) by ~10% for the BK14 dataset.

Getting a better ϕ tracer: CMB lensing reconstruction

Lensing correlates CMB modes across angular scales These off-diagonal correlations $\propto \phi(L)$; can use the correlations to measure ϕ !

 $T_{\text{len}}(\hat{n}) = T_{\text{unl}}(\hat{n} + \nabla \phi)$

 $(Q \pm iU)_{\text{len}}(\hat{n}) = (Q \pm iU)_{\text{unl}}(\hat{n} + \nabla\phi)$

Lensing reconstruction: quadratic estimator

In equations, $\phi(L)$ can be estimated as follows:

The estimated $\phi(L)$ is a weighted sum of the products of Fourier modes from X and Y for all the pairs of ℓ and ℓ' where $L = \ell + \ell'$;

It picks out the correlations in the lensed CMB maps introduced by $\phi(L)$.

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope 95, 150, 220 GHz and 1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 95,150,220 GHz

2016: SPT-3G ~16,000 detectors 95,150,220 GHz +Polarization

SPT surveys

SPTpol lensing map

Work led by M. Mocanu

Cosmology from the $Cl^{\phi\phi}$ spectrum

neutrino mass

* $\sigma_8/A_{lens}/\Omega_M$ (cross-correlate with/compare against optical surveys)

Lensing map noise

High S/N per lensing mode measurement in the SPTpol patch important for delensing 30

Delensing efficiency

Cross-correlation of tracer and ϕ -field $\rho_{\ell} = \frac{C_l^{\text{tracer-}\phi}}{\sqrt{C_l^{\text{tracer-tracer}}C_l^{\phi\phi}}}$ For CMB reconstructed ϕ $\rho_{\ell} = \sqrt{\frac{C_{\ell}^{\phi\phi}}{C_{\ell}^{\phi\phi} + N_{\ell}^{\phi\phi}}}$

~scales of lenses that source most lensing B-modes

 In the limit that the E-mode noise is small, the correlation between the φ tracer and the underlying phi field determines how well the lensing B-modes are estimated —> delensing efficiency

Forecasts (SPT-3G / CMB-S4)

CMB reconstructed ϕ will soon be the best lensing potential tracer for B-mode delensing

BICEP Array + SPT-3G

Assuming BK15 foreground model: A_{dust} , α_{dust} , β_{dust} , A_{sync} , α_{sync} , β_{sync} $\sigma(r)$ saturates without delensing even with the addition of 30/40 GHz and 220/280 GHz receivers in BICEP Array

Key takeaways:

- CMB lensing map from SPTpol survey has S/N > 1 measurements for L < 250 modes;
- 2) Precise measurement of CMB lensing amplitude (~6%) and will provide relevant constraints for cosmological parameters
- 3) CMB reconstructed phi will soon be competitive for delensing.
- 4) BICEP Array + SPT-3G delensing is projected to give σ(r) ~ 0.003.

Neural networks for CMB lensing reconstruction

(arXiv: 1810.01483)

Why neural network?

- network needs to perform transformation from one set of images to another; seem to be a good fit for neural networks
- Real need of beyond quadratic estimators to get optimal lensing reconstruction

It works!

solid lines: neural net dashed lines: maximum likelihood approx. 1uK-arcmin: ~CMB-S4 level noise

Network architecture

• 11200 sets of Q/U, E/K sim maps; 80:10:10 training:validation:test sets

Convolution layer

 A_i^j is what training determines.

There are 2x128² of these 5x5 grids from one pair of Q/U maps. It outputs a 1x128² image.

> For this first step, we create 64 versions of the 1x128² image

 2×128^2

 64×128^2

 (\tilde{Q}, \tilde{U})

The first 12 of the 64 outputs at the first step

Network architecture

- The loss function is MSE (mean square error) between the output E/K and the true E/K; choose A_i^j to minimize MSE.
- Residual UNet; "residual connections" at before each dimension changing step; "skip connections" across the layers with same dimensions

Lensing field recovery

Unlensed E-mode recovery

Compare to "physics-ful" methods

solid lines: neural net dashed lines: maximum likelihood approx. 1uK-arcmin: ~CMB-S4 level noise

- The NN approach doesn't completely recover the input
- We quantify that decorrelation as noise in our reconstruction
- Standard reconstruction
 has noise terms due to
 spurious correlations of
 random gaussian fields,
 etc.
- Reaching similar levels of noise as maximum likelihood methods!

Tests

2)

Is the network really sensitive to lensing??

- Null test
- Sensitive to differences in input Ω_M

How sensitive are the outputs to the initialization randomness?

 Randomness due to initialization

Toy fit for cosmology

Fit Ω_M

Key takeaways:

- The network κ recovery's S/N is similar to maximumlikelihood methods;
- 2) Network is sensitive to changes in cosmology;
- 3) Lots to explore in understanding how the network extracts information.

Summary

- Lensing variance will dominate σ(r) in the next few years; σ(r) is currently dominated by foreground and instrumental noise uncertainties.
 - * First demonstration of $\sigma(r)$ reduction underway.
- Lensing potential reconstructed from CMB maps will be competitive φ tracers for delensing B-modes by SPT-3G era.
 - SPTpol lensing potential is amongst the highest S/N per mode measurement to date.
- * Future low-noise experiments will benefit from beyond quadratic estimator lensing/delensing. Neural network is a viable technique.

Thank you for listening!