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Outline

❖ Background 

❖ Delensing of BICEP/Keck B-mode maps, with Planck + SPTpol E-mode maps

❖ Lensing reconstruction from SPTpol 

❖ Convolutional Neural Networks on CMB lensing

❖ Summary and outlook
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The CMB is sensitive to our standard parameters and more!

❖ CMB at recombination is sensitive to photon, matter, and baryon densities, initial 
conditions (A_s, n_s)

❖ And more! Primordial gravitational waves, dark radiation, … 

Background Figure: BICEP/Keck collaboration

Gravitational 

lensin
g
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Are the effect of lensing limiting our parameter constraints?

❖ For primordial gravitational 
wave  (in ~2-3 years)

❖ For Neff (in ~5+? years)

102 103

`

10�4

10�3

10�2

10�1

100

101

102

103

104

`(
`

+
1)

C
`/

2⇡
[µ

K
2 ]

Temperature	

E-mode	

lensing	B-mode	

r = 0.1

r = 0.01

GW B-mode r < 0.07 from BK15

8

(Green et al: 1508.06342)



Kimmy Wu, UChicago

Delensing for r : a BICEP/Keck example

• We can fit lensing model + r simultaneously, but limited by sample variance of lensing 
• Delensing B-modes: using the realization-specific lensing B-mode sky to reduce 

lensing sample variance
• Especially important if observing a small sky patch
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Foregrounds	at	150GHz	
fsky=0.01



BICEP telescope slide

multi-frequency for
component separation

r < 0.07 from BK15

small aperture;
1/4 deg resolution

(2020-)
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Delensing: the idea
1. Use Phi tracer and lensed E map to get estimate of lensing B modes

lensed E map Phi map B template

Image credit: Hu & Okamoto (2002)

weighted integral of 
gravitational potential 
between us and CMB 
along line of sight

B template Common structure
in both maps!

Observed B map

2. Cross-correlate the lensing B template with observed B mode map to 
quantify how much lensing B modes are in the observed map 

( )
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CIB as a ɸ tracer

❖ ɸ: can reconstruct from CMB, but S/
N rather low currently (Future will 
be better!)

❖ Cosmic infrared background (CIB) 
from dusty star-forming dusty 
galaxies with redshift distribution 
peaked between z~1 and 2.

❖ CMB lensing potential’s redshift 
kernel peaks between 1 < z < 3

❖ Cross-correlation can be as high as 
~80%

CIB redshift kernel

Phi redshift kernel

Planck 2013 XVIII
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Lensing template construction

Feed the Q/U map through a B-estimator to get the power spectra as inputs to the multicomponent 
analysis.

Lensed Q/U map ɸ map

�r(�)1. Undeflect by 

Q/U maps that 
has no lensing 

B-modes
(in ideal, noiseless case)

2. Difference the pre- and post-deflected map 

Q/U maps that 
has no lensing 

B-modes
(in ideal, noiseless case)

Lensed Q/U map

lensing template:
Q/U maps that contain 

lensing E/B modes

( )
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Connecting delensing to σ(r) 
BICEP/Keck analysis framework:

how is delensing incorporated
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BK multicomponent analysis (no delensing)

• Input maps to multicomponent analysis 
that extracts constraints on r

Maps from Planck

Maps from BICEP/Keck (95/150GHz)

+ WMAP
15
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BK multicomponent analysis (no delensing)

all cross-spec

• Take the auto- and cross-spectra of the 
BICEP/Keck and WMAP/Planck maps

• To calculate the likelihood, compare the 
data bandpowers against the model 
expectation values of lensing BB, r, and 7 
parameter foreground model: 

dust/sync correlation
Adust,↵dust,�dust, Async,↵sync,�sync
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BK15 constraints

Prior on frequency spectral 
indices of dust & sync

Allow Dust/
Sync correlation

Allow generous 
variation in spatial 
spectral indices of 

dust & sync

r Adust Async

L/
L p

ea
k

A
du

st
A

sy
nc

r < 0.07 (95% CL)
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BK multicomponent analysis (+ delensing)

• Input maps to multicomponent analysis 
that extracts constraints on r

Maps from Planck

Maps from BICEP/Keck (95/150GHz)

+ lensing template
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Inputs to BK lensing template

❖ Phi tracer: Planck’s CIB 
map

❖ Q/U maps: combination of 
BICEP/Keck, SPTpol, and 
Planck maps

BK patch; ~500 deg^2

SPTpol Planck BICEP/Keck
(note different ell-range)

Combined

E-modes in Fourier plane (plot by Clem Pryke)
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Incorporating lensing template to likelihood

• Use same model: lensing BB, r, and 7 parameter foreground model: 
                                                                     , and dust/sync correlation

L(✓|d) / 1p
|C(✓)|

exp

✓
�1

2

(d � µ(✓))† [C(✓)]�1 (d � µ(✓))

◆

In the BK analysis, we use the HL likelihood. 
The gaussian likelihood is for illustration purposes. 

Adust,↵dust,�dust, Async,↵sync,�sync

• Adding the lensing template increases the total auto/cross BB spectra from 66 to 78
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Lensing template as input in multicomponent analysis

The covariance matrix 
that enters the likelihood 
has information of the 
covariance between the 
lensing BB spectrum and 
the observed BB spectrum 
—> reducing σ(r). 
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How much do we improve σ(r)?

❖ With perfect ɸ map (no 
decorrelation, no noise), adding 
a lensing template to the BK14 
data set improves σ(r) from 
0.025 to 0.018

❖ Using CIB phi tracer to form the 
lensing template, σ(r) improves 
by ~10% from BK14

r

BK
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Pe
rf
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Current limitation to delensing

❖ B mode variance is dominated by galactic foregrounds; even with perfect 
delensing we do not improve σ(r) very significantly

❖ CIB map we use has cross-correlation with underlying ɸ at 60-80%; need better 
cross-correlation to improve towards perfect delensing

❖ CMB-derived ɸ from next-generation CMB experiments can provide that!

Key take-aways:
1) Incorporated delensing into a likelihood analysis for r;
2) Delensing reduces σ(r) by ~10% for the BK14 dataset.
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Getting a better ɸ tracer: CMB lensing reconstruction

(Q± iU)len(n̂) = (Q± iU)unl(n̂+r�)

Tlen(n̂) = Tunl(n̂+r�)

Background image credit: ESA

Lensing correlates CMB modes across 
angular scales 
These off-diagonal correlations ∝ ɸ(L); can use the correlations to measure ɸ!
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Lensing reconstruction: quadratic estimator

The estimated ɸ(L) is a weighted sum of the 
products of Fourier modes from X and Y for 
all the pairs of ℓ and ℓ’ where L = ℓ + ℓ’ ;

It picks out the correlations in the lensed 
CMB maps introduced by ɸ(L).

In equations, ɸ(L) can be estimated as follows: 

�̄XY
L =

1

RXY
L

Z
d2`WXY

`,`�L X̄`Ȳ
⇤
`�L

Lensing 
potential Normalization Weight function Filtered 

CMB maps

X, Y = [T, E, B]

`

`0
L
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SPT telescope slide
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SPT surveysSPTpol: 100 d and 500 d surveys

IRAS dust-map	
Schlegel et al 1998

2012-2013:  
100 sq degree 
“Deep Field’ 
!Polarization Depth:!
9 μK arcmin (150 GHz)!
17 μK arcmin (95 GHz)!
!
!
2013-now:  
500 sq degree 
full survey 

Background: 
IRAS dust map
Schlegel  et al 1998

SPT-SZ 
2500 deg2 survey

SPTpol 
500 deg2 survey

receiver sky area noise @
150GHz

SPT-SZ 2500 deg2 17 uK’

SPTpol 500 deg2 7 uK’

SPT-3G 1500 deg2 2.2 uK’
(projected)

overlap with BICEP/
Keck

SPT-3G
1500 deg2 survey
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SPTpol lensing map

TT EB

MV

σ(Alens) = +/- 0.08 σ(Alens) = +/- 0.13

σ(Alens) = +/- 0.06

�̄XY
L =

1

RXY
L

Z
d2`WXY

`,`�L X̄`Ȳ
⇤
`�L

Work led by M. Mocanu

Preliminary
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Cosmology from the Clɸɸ spectrum

❖ neutrino mass

❖ σ8/Alens/ΩM (cross-correlate with/compare against optical surveys)

Preliminary
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Lensing map noise

MV
SPTpol 500d Planck 2018

Planck 2018 results. VIII. Gravitational lensing

High S/N per lensing mode measurement in the SPTpol patch
important for delensing

30



Kimmy Wu, UChicago

Delensing efficiency

❖ In the limit that the E-mode noise is small, the correlation between the ɸ tracer and the underlying 
phi field determines how well the lensing B-modes are estimated —> delensing efficiency

⇢` =
Ctracer-�

lq
Ctracer-tracer

l C��
l

⇢` =

vuut C��
`

C��
` +N��

`

For CMB reconstructed ɸ

Cross-correlation of tracer 
and ɸ-field
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~scales of lenses that source most lensing B-modes
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Forecasts (SPT-3G / CMB-S4)

CMB reconstructed ɸ will soon be the best lensing potential tracer for B-
mode delensing
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L

stage 2, EB
stage 2, TT
stage 3, EB
stage 3, TT
stage 4, EB
stage 4, TT

CMB-S4 Science Book

S4-deep
survey

SPT-3G

SPTpol
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~scales of lenses that source most lensing B-modes

SPT-3G
S4-deep
survey
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BICEP Array + SPT-3G

Assuming BK15 foreground model: 
σ(r) saturates without delensing even with the addition of 30/40 GHz and 
220/280 GHz receivers in BICEP Array

Current σ(r) = 0.02
(BK15)

Adust,↵dust,�dust, Async,↵sync,�sync

σ(r) ~ 0.003
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Key takeaways:
1) CMB lensing map from SPTpol survey has S/N > 1 

measurements for L < 250 modes;
2) Precise measurement of CMB lensing amplitude (~6%) and will 

provide relevant constraints for cosmological parameters
3) CMB reconstructed phi will soon be competitive for delensing.
4) BICEP Array + SPT-3G delensing is projected to give σ(r) ~ 

0.003.
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Neural networks 
for CMB lensing reconstruction

(arXiv: 1810.01483)
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Why neural network?
observables:

lensed CMB maps

• network needs to perform transformation from one set of images to another; 
seem to be a good fit for neural networks

• Real need of beyond quadratic estimators to get optimal lensing reconstruction
36

underlying fields:
primordial CMB, 
lensing potential
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It works!
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Network architecture

• 11200 sets of Q/U, E/K sim maps; 80:10:10 training:validation:test sets
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For each 2x5x5 grid’s 50 inputs, 
it outputs one value: 

q =
2X

j=1

25X

i=1

Aj
ip

j
i

For this first step, 
we create 64 versions
of the 1x1282 image

There are 2x1282 of these 5x5 grids
from one pair of Q/U maps. 

It outputs a 1x1282 image.

Convolution layer

is what training determines.Aj
i

5x5 grids (not to scale), stride 1

39



Kimmy Wu, UChicago

The first 12 of the 64 outputs at the first step

40



Kimmy Wu, UChicago

Network architecture

❖ network architecture

• The loss function is MSE (mean square error) between the output E/K and the 
true E/K; choose      to minimize MSE.

• Residual UNet; “residual connections” at before each dimension changing step; 
“skip connections” across the layers with same dimensions

Aj
i
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Lensing field recovery

42
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Unlensed E-mode recovery
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Compare to “physics-ful” methods

❖ The NN approach doesn’t 
completely recover the 
input

❖ We quantify that 
decorrelation as noise in 
our reconstruction

❖ Standard reconstruction 
has noise terms due to 
spurious correlations of 
random gaussian fields, 
etc.

❖ Reaching similar levels of 
noise as maximum 
likelihood methods!
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Tests

Is the network really sensitive to 
lensing??
• Null test
• Sensitive to differences in 

input ΩM

How sensitive are the outputs to 
the initialization randomness?
• Randomness due to 

initialization

Toy fit for cosmology
• Fit ΩM 

1) maps that are not 
lensed

2) maps generated with 
more/less ΩM ?
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Key takeaways:
1) The network 𝜅 recovery’s S/N is similar to maximum-

likelihood methods;
2) Network is sensitive to changes in cosmology; 
3) Lots to explore in understanding how the network 

extracts information. 
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Summary

❖ Lensing variance will dominate σ(r) in the next few years; σ(r) is currently 
dominated by foreground and instrumental noise uncertainties.

❖ First demonstration of σ(r) reduction underway. 

❖ Lensing potential reconstructed from CMB maps will be competitive ɸ tracers 
for delensing B-modes by SPT-3G era.

❖ SPTpol lensing potential is amongst the highest S/N per mode measurement 
to date. 

❖ Future low-noise experiments will benefit from beyond quadratic estimator 
lensing/delensing. Neural network is a viable technique. 
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Thank you for listening!


