Encounters at the Edge of a Cluster

Environment's Effect on Galaxy Evolution

Dennis W. Just

(Steward Observatory)

Morphologies

Early-type Late-type

Galaxies and Environment

Galaxies and Environment

S0 Formation: Evidence

Fasano et al. 2000, Dressler et al. 1997

Insight on Galaxy Evolution

- Process of going from a spiral to an S0 involves:
 - Halting star formation
 - Removing gas supply
 - Creating a significant spheroidal component

- There are many different ways to form an S0:
 - Minor Mergers

e.g., Toomre & Toomre 1972, Icke 1985

- Ram pressure stripping
- Strangulation
- Tidal Interactions
- Harassment

- There are many different ways to form an S0:
 - Minor Mergers
 - Ram pressure stripping

e.g., Gunn & Gott 1972, Quilis et al. 2000

- Strangulation
- Tidal Interactions
- Harassment

- There are many different ways to form an S0:
 - Minor Mergers
 - Ram pressure stripping
 - Strangulation

e.g., Larson et al. 1980, Bekki et al. 2002

- Tidal Interactions
- Harassment

- There are many different ways to form an S0:
 - Minor Mergers
 - Ram pressure stripping
 - Strangulation
 - Tidal Interactions

e.g., Fujita 1998

Harassment

- There are many different ways to form an S0:
 - Minor Mergers
 - Ram pressure stripping
 - Strangulation
 - Tidal Interactions
 - Harassment

e.g., Richstone 1976, Moore et al. 1998

- There are many different ways to form an S0:
 - Minor Mergers
 - Ram pressure stripping
 - Strangulation
 - Tidal Interactions
 - Harassment

• What can we use to distinguish among them, and identify which process or processes are primarily responsible S0 formation?

S0 Formation Scenarios

Environment

- Cluster?
- Infalling region?
- Isolated groups?

- Rapid truncation?
- Gradual decline?

Evolution of the S0 Fraction vs. Environment

w/ D. Zaritsky, D.J. Sand, V. Desai, and G. Rudnick

Evolution in the S0 Fraction

- Desai et al. (2007)
 added 10 z~0.5-0.8
 clusters (EDisCS)
- Used Hectospec and IMACS to measure velocity dispersions (σ)

Desai et al. 2007

Driven by Lower-o Clusters

Driven by Lower-o Clusters

Super Group 1120

w/ D. Zaritsky, K.V. Tran, A. Gonzalez, S. Kautsch, and J. Moustakas

SG1120

- 4 gravitationally-bound groups at z~0.37
- X-ray detected

Gonzalez et al. 2005

- Velocity dispersions ~ 300-500 km s⁻¹
- Will form \sim Coma-sized cluster by z=0

• High S0 fraction (~30%)

Search for RSF

- GALEX: NUV imaging
- S0s not detected
- \bullet <0.01 M_{sol} yr⁻¹ (Kennicutt 1998)

• MIPS limits weaker, but also not detected

Evidently, not only are the S0s morphologically in place, but their stars are "in place" as well.

Modeling the SFH: Results

• PEGASE Stellar Pop. Code (Fioc & Rocca-Volmerange 1999)

 Burst strengths from 0 to 45% of final stellar mass

Modeling the SFH: Results

• PEGASE Stellar Pop. Code (Fioc & Rocca-Volmerange 1999)

- Burst strengths from 0 to 45% of final stellar mass
- Exponential time scales ranging from τ = 0 to 2 Gyr
- $\log(\mathbf{M}_{\star}) = 10 11$

Measure time for NUV to drop below our limit

Gradually Declining SFH's

Where the action is...

- It appears the cores of clusters are not the site of S0 formation:
 - Groups have high S0 fractions (e.g., Postman & Gellar 1984, Kautsch et al. 2008, Wilman et al. 2009)
 - Star formation truncation seen at intermediate densities (Lewis et al. 2002, Gomez et al. 2003)
 - Spirals transforming in infalling groups (Moran et al. 2007)
 - f_{S0}-z trend driven by less-massive systems (Just et al. 2010)
 - SG1120's S0s have stellar pop's in place (Just et al. 2011a)

... and what we have learned.

e.g., Just et al. 2010

Cluster-centric

Ram Pressure Stripping Harassment

Lower-density

Minor Mergers
Tidal Interactions

Strangulation/Starvation

... and what we have learned.

e.g., Just et al. 2010

Cluster-centric

Ram Pressure Stripping Harassment

Lower-density

Minor Mergers
Tidal Interactions

Strangulation/Starvation

LDP Observations of z~0.4-0.8 EDisCS Clusters

w/ D. Zaritsky, G. Rudnick, J. Moustakas, R. Cool, F. Bian, and the EDisCS Team

ESO Distant Cluster Survey

PI: Simon White

- 20 cluster fields
- 0.4 < z < 0.8
- Well-studied cores

imaging:

VLT/FORS2

HST

NTT/SOFI

MIPS

spectra:

VLT/FORS2

Low Dispersion Prism (LDP)

- Installed on IMACS (f/2)
- Low resolution (R~40) still better than ~5-band photometric redshifts
- ~2000 slits per mask
- Remove enough interlopers to isolate the infall region

Low Dispersion Prism (LDP)

Some Preliminary Results

Future Work

Complementary Data

- SFR's (GALEX, MIPS)
- Morphologies (HST)
- Spatially-resolve colors (HST)
- Kinematics+Emission lines (IMACS, DEIMOS)

Conclusion

- **Environment** influences galaxies, an example being the transformation of spirals into S0s
- Less-massive systems drive trend as opposed to moremassive clusters
- In SG1120, a "**protocluster**", the S0s do not appear to have had recent star-formation

Direct Interactions
Strangulation/Starvation

preferred over

Ram-pressure Stripping Harassment

- With the LDP, we can now investigate the **infall regions** around likely **progenitor clusters** of typical z=0 **clusters**
- Combining the LDP with multi-wavelength data can enhance our understand of spiral/S0 evolution