Cosmology with high (z>1) redshift galaxy surveys

Donghui Jeong

(Texas Cosmology Center and Dept of. Astronomy, UT Austin) Cosmology Seminar, University of California, Berkeley October, 13, 2009

Papers to talk about

- Jeong & Komatsu (2006) ApJ 651, 619
- Jeong & Komatsu (2009a) ApJ 691, 569
- Shoji, **Jeong** & Komatsu (2009) ApJ 693, 1404
- Jeong & Komatsu (2009b) ApJ 703, 1230
- Jeong, Komatsu & Jain (2009) [arXiv:0910.1361]
- Jeong & Komatsu, in preparation
- Jeong, in preparation

I. Introduction

The golden age of cosmology and concordance model: What's next?

Inflation: past acceleration

- Accelerating expansion at a very early stage of the universe.
- Accelerated the expansion by a factor of at least 10²⁷ times, yielding a flat, homogeneous, and isotropic universe.
 - The radius of curvature increases by the same factor
 - Physical scales grow faster than the size of horizon
- Stretched the quantum vacuum fluctuations outside of the Hubble horizon which seed the large scale structure.

Dark energy: present acceleration

- It is responsible for the current accelerating expansion of the universe.
- Two numbers ("WMAP5+BAO+SN")

 $\Omega_{de} = 0.726 \pm 0.015$ $1 + w_{de} = -0.006 \pm 0.068$

• Too many ideas, too few observational clues!

Q: What drove acceleration?

- Gravity is an attractive force for ordinary matter & radiation. Therefore, we need something different.
 - Exotic matter satisfying $w_{de} \equiv P_{de} / \rho_{de} < -1/3$
 - Vacuum energy $w_{de} = -1$
 - Slowly-rolling scalar field (one? two? many?)

$$w_{de} = \frac{(1/2)\dot{\varphi}^2 - V(\varphi)}{(1/2)\dot{\varphi}^2 + V(\varphi)} \approx -1$$

- Modifying Einstein Equation
 - f(R) gravity (e.g. Brans-Dicke theory)
 - Higher dimensional gravity (e.g. DGP)

How do we test the theory of acceleration? We use the large scale structure!

I. Power spectrum

 Probability of finding two galaxies at separation r is given by the two-point correlation function

 $P_2(\mathbf{r}) = \bar{n}^2 (1 + \xi(\mathbf{r})) dV_1 dV_2$

• P(k) is the Fourier transform of $\xi(r)$

$$P(\mathbf{k}) = \int d^3 r \xi(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}}$$

• Or, in terms of density contrast, $\delta(k)$,

 $\langle \delta(\mathbf{k}) \delta(\mathbf{k}') \rangle = (2\pi)^3 P(\mathbf{k}) \delta^D(\mathbf{k} + \mathbf{k}')$

II. Bispectrum

 Probability of finding three galaxies at separation (r, s, t) is given by the two, and three-point correlation function

 $P_3(r,s,t)$

- $= \bar{n}^3 (1 + \xi(r) + \xi(s) + \xi(t) + \zeta(r, s, t)) dV_1 dV_2 dV_3$
- B(**k**,**k**') is the Fourier transform of ζ (**r**,**s**). $B(\mathbf{k},\mathbf{k}') = \int d^3r \int d^3s \zeta(\mathbf{r},\mathbf{s}) e^{-i\mathbf{r}\cdot\mathbf{k}} e^{-i\mathbf{s}\cdot\mathbf{k}'}$
- Or, in terms of density contrast,

 $\langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3)\rangle = (2\pi)^3 B(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)\delta^D(\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3)$

From P(k) & B(k) to acceleration: Simple rules I keep in mind

Inflation sets the initial condition, and dark energy sets the growth and the distances.

Initial condition from inflation

 Seed fluctuations predicted by most inflation models are *nearly* scale invariant and obey *nearly* Gaussian statistics, which are often parametrized as

- Initial power spectrum

$$k^{3}P_{\Phi}(k) = A\left(\frac{k}{k_{0}}\right)^{n_{s}-1+\frac{1}{2}\alpha_{s}\ln\left(\frac{k}{k_{0}}\right)}$$

- Initial bispectrum

 $B_{\Phi}(k_1, k_2, k_3) = 2f_{\rm NL} \left[P_{\Phi}(k_1) P_{\Phi}(k_2) + P_{\Phi}(k_2) P_{\Phi}(k_3) + P_{\Phi}(k_3) P_{\Phi}(k_3) \right]$

Here, primordial curvature perturbation, Φ,is (local type)

$$\Phi(\mathbf{x}) = \phi(\mathbf{x}) + f_{\rm NL} \left(\phi^2(\mathbf{x}) - \left\langle \phi^2 \right\rangle \right)$$

Distances from dark energy

- In galaxy surveys, we chart galaxies by (θ, ϕ, z) .
- In order to convert them to physical coordinate, we have to *assume* the **Hubble expansion rate**, $H_{ref}(z)$, and the **angular diameter distance**, $D_{A,ref}(z)$.
- Observed power spectrum using reference cosmology is rescaled and shifted (in log scale) relative to the true power spectrum :

$$P_{\rm obs}(k_{\rm ref\perp}, k_{\rm ref\parallel}) = \left(\frac{D_{A,\rm ref}}{D_A}\right)^2 \left(\frac{H}{H_{\rm ref}}\right) P_s^g(k_\perp, k_\parallel)$$
$$k_{\rm ref\perp} \equiv \frac{D_A}{D_{A,\rm ref}} k_\perp \qquad \qquad k_{\rm ref\parallel} \equiv \frac{H_{\rm ref}}{H} k_\parallel$$

Basic idea

- Use the galaxy data to learn:
 - Initial power spectrum [Inflation]

$$k^{3}P_{\Phi}(k) = A\left(\frac{k}{k_{0}}\right)^{n_{s}-1+\frac{1}{2}\alpha_{s}\ln\left(\frac{k}{k_{0}}\right)}$$

Initial bispectrum [Inflation]

 $B_{\Phi}(k_1, k_2, k_3) = 2f_{\rm NL} \left[P_{\Phi}(k_1) P_{\Phi}(k_2) + P_{\Phi}(k_2) P_{\Phi}(k_3) + P_{\Phi}(k_3) P_{\Phi}(k_3) \right]$

- Expansion rates, H(z) [dark energy]
- Distances, d_A(z) [dark energy]

However, this method works only IF

We can model the galaxy power spectrum & bispectrum.

- •Fact : what we measure from galaxy survey is far from the linear theory!
- Three nonlinearities :
- Nonlinear matter clustering
 Nonlinear galaxy bias
 Nonlinear redshift space distortion

To exploit the galaxy power spectrum,

- We have to model the non-linear galaxy power spectrum.
- How?
 - Solid theoretical framework : **Perturbation Theory (PT)**
 - It is necessary to avoid any empirical, calibration factors.
 - Validity of the cosmological *linear* perturbation theory has been verified *observationally*. (Remember the success of WMAP!)
 - So, we just go one step beyond the linear theory, and include higher order terms in perturbations.
 - 3rd-order perturbation theory (3PT)

Is 3PT new?

- Not at all! It is more than 25 years old!
- However, it <u>has never been applied to the real data</u> so far, because nonlinearity is too strong to model power spectrum at $z\sim0$.
- High-z galaxy surveys are now possible. (e.g.)
 - HETDEX (Hobby-Eberly Telescope Dark Energy Experiment)
 - SUMIRE/LAS (formerly known as WFMOS)
 - JDEM (ADEPT, CIP, ...)
- What's new!
 - Detailed analysis of high-z power spectrum
 - Unprecedented accuracy (1%) required by data

II. Modeling the nonlinear galaxy power spectrum

Nonlinear clustering Nonlinear redshift space distortion Nonlinear galaxy bias

Solving Just Three Equations

• Setting up

- Consider large scales, where the baryonic pressure is negligible, but smaller than the Hubble horizon. (i.e. $a_0H < < k < < k_J$, where k_J is the Jeans scale.) - Ignore the shell-crossing, so that the rotational velocity is zero : curl(v)=0

• Matter field is described by Newtonian fluid equations.

$$\begin{cases} \dot{\delta} + \nabla \cdot \left[(1+\delta) \boldsymbol{v} \right] = 0 \\ \dot{\boldsymbol{v}} + (\boldsymbol{v} \cdot \nabla) \, \boldsymbol{v} = -\frac{\dot{a}}{a} \boldsymbol{v} - \nabla \phi \\ \nabla^2 \phi = 4\pi G a^2 \bar{\rho} \delta \end{cases}$$

Solution in Fourier space

• In Fourier space, equations become, for $\theta \equiv \nabla \cdot v$.

$$\begin{split} \dot{\delta}(\boldsymbol{k},\tau) &+ \theta(\boldsymbol{k},\tau) \\ = & -\int \frac{d^3k_1}{(2\pi)^3} \int d^3k_2 \delta_D(\boldsymbol{k}_1 + \boldsymbol{k}_2 - \boldsymbol{k}) \frac{\boldsymbol{k} \cdot \boldsymbol{k}_1}{k_1^2} \delta(\boldsymbol{k}_2,\tau) \theta(\boldsymbol{k}_1,\tau), \\ \dot{\theta}(\boldsymbol{k},\tau) &+ \frac{\dot{a}}{a} \theta(\boldsymbol{k},\tau) + \frac{3\dot{a}^2}{2a^2} \Omega_{\mathrm{m}}(\tau) \delta(\boldsymbol{k},\tau) \\ = & -\int \frac{d^3k_1}{(2\pi)^3} \int d^3k_2 \delta_D(\boldsymbol{k}_1 + \boldsymbol{k}_2 - \boldsymbol{k}) \frac{k^2(\boldsymbol{k}_1 \cdot \boldsymbol{k}_2)}{2k_1^2 k_2^2} \theta(\boldsymbol{k}_1,\tau) \theta(\boldsymbol{k}_2,\tau) \end{split}$$

• We solve it perturbatively

$$\delta(\mathbf{k},\tau) = \sum_{n=1}^{\infty} a^n(\tau) \int \frac{d^3 q_1}{(2\pi)^3} \cdots \frac{d^3 q_{n-1}}{(2\pi)^3} \int d^3 q_n \delta_D(\sum_{i=1}^n \mathbf{q}_i - \mathbf{k}) F_n(\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n) \underbrace{\delta_1(\mathbf{q}_1) \cdots \delta_1(\mathbf{q}_n)}_{(2\pi)},$$

$$\theta(\mathbf{k},\tau) = -\sum_{n=1}^{\infty} \dot{a}(\tau) a^{n-1}(\tau) \int \frac{d^3 q_1}{(2\pi)^3} \cdots \frac{d^3 q_{n-1}}{(2\pi)^3} \int d^3 q_n \delta_D(\sum_{i=1}^n \mathbf{q}_i - \mathbf{k}) G_n(\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \cdots \delta_1(\mathbf{q}_n)$$

Why 3rd order?

- $\delta = \delta_1 + \delta_2 + \delta_3$ where, $\delta_2 \propto [\delta_1]^2$, $\delta_3 \propto [\delta_1]^3$
- The power spectrum from the higher order density field :

$$\begin{aligned} &(2\pi)^{3} P(k) \delta_{D}(\mathbf{k} + \mathbf{k}') \\ &\equiv \langle \delta(\mathbf{k}, \tau) \delta(\mathbf{k}', \tau) \rangle \qquad \text{Odd products of Gaussian variables vanish.} \\ &= \langle \delta_{1}(\mathbf{k}, \tau) \delta_{1}(\mathbf{k}', \tau) \rangle + \langle \delta_{2}(\mathbf{k}, \tau) \delta_{1}(\mathbf{k}', \tau) + \delta_{1}(\mathbf{k}, \tau) \delta_{2}(\mathbf{k}', \tau) \rangle \\ &+ \langle \delta_{1}(\mathbf{k}, \tau) \delta_{3}(\mathbf{k}', \tau) + \delta_{2}(\mathbf{k}, \tau) \delta_{2}(\mathbf{k}', \tau) + \delta_{3}(\mathbf{k}, \tau) \delta_{1}(\mathbf{k}', \tau) \rangle \\ &+ \mathcal{O}(\delta_{1}^{6}) \end{aligned}$$

• Therefore, $P(k) = P_{11}(k) + P_{22}(k) + 2P_{13}(k)$

3PT Matter power spectrum

Vishiniac (1983); Fry (1984); Goroff et al. (1986); Suto & Sasaki (1991); Makino et al. (1992); Jain & Bertschinger (1994); Scoccimarro & Frieman (1996)

,

$$P_{\delta\delta}(k,\tau) = D^{2}(\tau)P_{L}(k) + D^{4}(\tau) \left[2P_{13}(k) + P_{22}(k)\right]$$

$$P_{22}(k) = 2 \int \frac{d^{3}q}{(2\pi)^{3}}P_{L}(q)P_{L}(|\mathbf{k} - \mathbf{q}|) \left[F_{2}^{(s)}(\mathbf{q}, \mathbf{k} - \mathbf{q})\right]^{2}$$

$$2P_{13}(k) = \frac{2\pi k^{2}}{252}P_{L}(k) \int_{0}^{\infty} \frac{dq}{(2\pi)^{3}}P_{L}(q)$$

$$\times \left[100\frac{q^{2}}{k^{2}} - 158 + 12\frac{k^{2}}{q^{2}} - 42\frac{q^{4}}{k^{4}} + \frac{3}{k^{5}q^{3}}(q^{2} - k^{2})^{3}(2k^{2} + 7q^{2})\ln\left(\frac{k+q}{|k-q|}\right)\right]$$

$$F_{2}^{(s)}(\mathbf{q}_{1}, \mathbf{q}_{2}) = \frac{17}{21} + \frac{1}{2}\hat{q}_{1} \cdot \hat{q}_{2}\left(\frac{q_{1}}{q_{2}} + \frac{q_{2}}{q_{1}}\right) + \frac{2}{7}\left[(\hat{q}_{1} \cdot \hat{q}_{2})^{2} - \frac{1}{3}\right]$$
This result is completely analytic!

Models Nonlinear matter P(k)

BAO : Matter Non-linearity (z=6)

BAO : Matter Non-linearity (z=2)

BAO : Matter Non-linearity (z=1)

Standard ruler in CMB

• The standard ruler in CMB angular power spectrum d_{CMB} = Physical distance traveled by the sound waves from the Big-Bang to photon decoupling at z~1091.51

 $d_{CMB} = 146.8 \pm 1.8$ Mpc (comoving)

Also imprinted in galaxy P(k)

• The standard ruler in galaxy two point functions d_{BAO} = Physical distance traveled by the sound waves from the Big-Bang to baryon decoupling at z~1020.5, MEASURED FROM CMB!!!

BAO will save us, because

- Its location is **NOT very sensitive to the nonlinear** evolution, according to Dan. Eisenstein.
- Nonlinear shift of BAO phase (lines are growth_factor²)

Therefore, we would probably have to rely only on BAO when nonlinearities are too strong. (e.g. $z \sim 0$)

What if we model the nonlinearities?

• It will improve upon the determination of both D_A and H by **a factor of two**, and of the area of ellipse by **more than a factor of four**!

- Plus, we can extract many other information from power spectrum.
 - Growth of structure
 - Shape of the primordial power spectrum
 - Neutrino mass

Redshift space distortion

• What is the issue?

 Peculiar velocities, which further shift the spectrum on top of the Hubble flow, systematically shift the inferred radial distance to the object.

Two limits

- (Left) Coherent velocity field => Clustering <u>enhanced</u> along the line of sight
 - "Kaiser" effect
- (Right) Virial-like random motion => Clustering <u>diminished</u> along the line of sight
 - "Finger-of-God" effect

Power spectrum in redshift space

- Nonlinear Kaiser effect (up to 3rd order) can be calculated analytically by PT. (You don't want to see the formula.) • We fit **Finger-of-God effect** by Lorenzian damping. $\frac{P_{red}(k_{\parallel},k_{\perp},z)}{1+k_{\parallel}^2\sigma_v^2}$
- We fit **Finger-of-God effect** by Lorenzian damping. 10000 Note!! Power spectrum, $P(k) \left[h^{-3} Mpc^{3}\right]$ 1000 z=6 $\overline{1+k_{\parallel}^2\sigma_v^2}$ is the Fourier transform of 100 exponential velocity ------ : Perturbation Theory distribution within - : Perturbation Theory+FoG 10 E halos. ---- : N-body Data ----- : Linear Spectrum (Kaiser) 0.10 0.01 1.00

wavenumber, k [h/Mpc]

BAO: in redshift space (z=6)

BAO: in redshift space (z=3)

— : Perturbation Theory 🚦 : N—body data (512 Mpc/h)

- : Linear Spectrum 🚦 🛛 : N—body data (256 Mpc/h)

BAO: in redshift space (z=1)

3PT Galaxy power spectrum

• Facts

– The distribution of galaxies is not the same as that of matter fluctuations.

Assumption

- Galaxy formation is a local process, at least on the scales that we care about. $\delta_g(\mathbf{x}) = \epsilon + b_1 \delta(\mathbf{x}) + \frac{1}{2} b_2 \delta^2(\mathbf{x}) + \frac{1}{6} b_3 \delta^3(\mathbf{x}) + \dots$

• Result (McDonald, 2006) $P_{g}(k) = P_{0} + \tilde{b}_{1}^{2} \left[P(k) + \frac{\tilde{b}_{2}^{2}}{2} \int \frac{d^{3}\boldsymbol{q}}{(2\pi)^{3}} P(q) \left[P(|\boldsymbol{k} - \boldsymbol{q}|) - P(q) \right] + 2\tilde{b}_{2} \int \frac{d^{3}\boldsymbol{q}}{(2\pi)^{3}} P(q) P(|\boldsymbol{k} - \boldsymbol{q}|) F_{2}^{(s)}(\boldsymbol{q}, \boldsymbol{k} - \boldsymbol{q}) \right]$

 $-b_1, b_2, P_0$ are free parameters that capture detailed information about galaxy formation!
MPA Galaxy power spectrum

• Galaxy power spectrum from the "Millennium Simulation".

• k_{max} is where 3PT deviates from matter P(k) more than 2%.

• Shot noise (1/n) subtracted

MPA Galaxy power spectrum

MPA Galaxy power spectrum

BAO : Non-linear bias (z=6)

BAO : Non-linear bias (z=3)

BAO : Non-linear bias (z=1)

BAO from different halo mass

Distance from galaxy P(k) (z=6)

• With 3PT, we succeeded in measuring $D_A(z)$ from the "observed" power spectra in the Millennium Simulation at z>2.

So Much Degeneracies

Distance from galaxy P(k) (z=3)

Distance from galaxy P(k) (z=1)

• Still seems challenging at z=1. Better PT is needed! e.g. Renormalized PT

Summary so far

- We have modeled the non-linear galaxy power spectrum in redshift space one by one.
- 4 parameters : σ_v , b_1 , b_2 , P_0
- BAO is also distorted by non-linearities. But, we can model the distortion.
- Redline (New) includes all three effects! (Jeong, in prep.)

Cross check I: Bias from Galaxy Bispectrum

- We can measure the non-linear bias parameters from the galaxy bispectrum.
- The galaxy bispectrum depends on b_1 and b_2 as

$$B_t(k_1, k_2, k_3) = \tilde{b}_1^3 \left[B_m(k_1, k_2, k_3) + \tilde{b}_2 \left\{ P(k_1) P(k_2) + (\text{cyclic}) \right\} \right]$$

where B_m is the matter bispectrum.

Cross check from data themselves!

	V	n_g	z	k _{max}	b_1	b_2	Δb_1	Δb_2	
SDSS	0.3	30		0.09	1.19	-0.10	0.270	0.151	T
LRG	0.72	1	0.35	0.11	2.14	0.96	0.209	0.348	
APO-LSS	3.8	4	0.35	0.11	1.69	0.21	0.069	0.068	
WFMOS1	1.6	5	0.7	0.14	1.87	0.45	0.076	0.096	
	2.4	5	1.1	0.18	2.16	1.00	0.047	0.081	
		comb	ined					• • •	
ADEPT	45	1	1.25	0.20	2.97	3.44	0.020	0.063	
	55	1	1.75	0.26	3.44	5.43	0.017	0.066	
		comb	ined			• • •			
WFMOS2	0.5	5	2.55	0.38	3.27	4.64	0.058	0.220	
	0.5	5	3.05	0.48	3.64	6.39	0.056	0.253	
		comb	ined			• • •			
HETDEX	0.68	5	2.25	0.34	3.05	3.70	0.051	0.172	
	0.69	5	2.75	0.42	3.42	5.32	0.049	0.199	
	0.67	5	3.25	0.53	3.79	7.16	0.050	0.237	
	0.64	5	3.75	0.65	4.14	9.20	0.053	0.291	
		comb	ined		• • •	•••		• • •	
CIP	1.26	50	4	0.71	3.16	4.12	0.010	0.036	
	1.13	50	5	1.03	3.72	6.76	0.010	0.047	
()	1.02	50	6	1.46	4.26	9.90	0.011	0.066	
/		ined						I	

Sefusatti & Komatsu(2007)

Cross check II: Bias from CMB lensing

- We can also measure the non-linear bias parameters from the galaxy-CMB lensing cross correlation.
- The galaxy-CMB lensing cross correlation depends on bias as

$$C_{\ell}^{\kappa-\Sigma} = \frac{3}{2}b\Omega_m H_0^2 \int d\eta \frac{W(\eta)}{a(\eta)} P\left(\frac{\ell}{d_A}, \eta\right) \frac{d_A(\eta_0 - \eta)}{d_A(\eta_0)}$$

Acquaviva et al. (2008)

where P is the matter power spectrum.

Cross check from data themselves!

Galaxy Survey	ĥ	$A/10^{3}$	z_c	b	CMB Expt.	(S/N)	$\Delta b/b$ (%)
SDSSLRG	12.4	3.8	0.31	2	PLANCK PACT IDEAL	5.8 11.4 20.4	17.3 8.8 4.9
BOSS1	40.	10	0.3	2	PLANCK PACT IDEAL	10.8 25.5 52.5	9.3 3.9 1.9
BOSS2	110.	10	0.6	2	PLANCK PACT IDEAL	17.0 39.4 78.2	5.9 2.5 1.3
ADEPT	3500	27	1.35	1	PLANCK PACT IDEAL	52.8 107.5 228.3	1.9 0.9 0.4

III. Non-Gaussianity

Galaxy bispectrum and primordial non-Gaussianity Weak lensing and primordial non-Gaussianity

Primordial non-Gaussianity, revisited

• Well-studied parameterization is "local" non-Gaussianity :

Primordial curvature perturbation
$$\Phi(\mathbf{x}) = \phi(\mathbf{x}) + (f_{NL})(\phi^2(\mathbf{x}) - \langle \phi^2 \rangle)$$
Gaussian random field

- Current best measurement of $\rm f_{\rm NL}$

- From CMB (Smith et al, 2009)

 $f_{\rm NL} = 38 \pm 21 \ (68\% \text{ C. L.})$

- From SDSS power spectra (Slosar et al, 2009)

 $f_{\rm NL} = 31^{+16}_{-27} \ (68\% \ {\rm C. \ L.})$

 Therefore, initial condition is Gaussian to ~0.04% level! Thus, I am talking about a very tiny non-Gaussianity!

Single-field Theorem (Consistency relation)

• For **ANY** single-field inflation models, where there is only one degree of freedom during inflation, Maldacena (2003);Seery&Lidsey(2005);Creminelli&Zaldarriaga(2004)

 With the current limit of n_s=0.96, f_{NL} has to be ∽0.017 for single field inflation.

Implication of non-Gaussianity

- Therefore, any detection of f_{NL} would rule out all the single field models regardless of
 - The form of potential
 - The form of kinetic term (or sound speed)
 - The initlal vacuum state
- We can detect non-Gaussianity from
 - CMB bispectrum
 - High-mass cluster abundance
 - Scale dependent bias
 - Galaxy power spectrum
 - Galaxy bispectrum (Jeong & Komatsu, 2009b)
 - Weak gravitational lensing (Jeong, Komatsu, Jain, 2009)

From initial curvature to density Dalal et al. (2008)

 $\Phi(\boldsymbol{x}) = \phi(\boldsymbol{x}) + f_{NL}(\phi^2(\boldsymbol{x}) - \langle \phi^2 \rangle)$ **Taking Laplacian** $\nabla^{2} \Phi = \nabla^{2} \phi + 2f_{NL} \left[\phi \nabla^{2} \phi + |\nabla \phi|^{2} \right]$ **grad(\phi)=0 at the potential peak** $\nabla^{2} \Phi = \nabla^{2} \phi + 2f_{NL} \phi \nabla^{2} \phi$ **Poisson equation Laplacian(φ)** \propto δρ=δ<ρ> $\delta_{NG} \simeq \delta (1 + 2f_{NL}\phi_p)$

Dalal et al.(2008); Matarrese&Verde(2008); Carmelita et al.(2008); Afshordi&Tolly(2008); Slosar et al.(2008);

N-body result I (Dalal et al. 2008)

Galaxy bias with nG

• The primordial non-Gaussianity changes the galaxy power spectrum by

$$P_g(k) = b_1^2 P_m(k) \to [b_1 + \Delta b(k)]^2 P_m(k)$$

where change of linear bias is given by

$$\Delta b(k) = \frac{3(b_1 - 1)f_{NL}\Omega_m H_0^2 \delta_c}{D(z)k^2 T(k)} \sim 1/k^2$$

Linear bias depends on the scale!!
$$\delta_{NG} \simeq \delta(1 + 2f_{NL}\phi_p) \quad P_{\phi}(k) \propto \frac{1}{k^{4-n_s}}$$

What about galaxy bispectrum?

- For the galaxy, there were previously three known sources for galaxy bispectrum (Sefusatti & Komatsu 2007, SK07)
 - I. matter bispectrum due to primordial non-Gaussianity
 - II. Non-linear gravitational coupling
 - III. Non-linear galaxy bias

 $B_{g}(k_{1}, k_{2}, k_{3}, z) = 3b_{1}^{3}f_{\mathrm{NL}}\Omega_{m}H_{0}^{2} \left[\frac{P_{m}(k_{1}, z)}{k_{1}^{2}T(k_{1})} \frac{P_{m}(k_{2}, z)}{k_{2}^{2}T(k_{2})} \frac{k_{3}^{2}T(k_{3})}{D(z)} + (2 \text{ cyclic}) \right]$ $= 2b_{1}^{3} \left[F_{2}^{(s)}(\mathbf{k}_{1}, \mathbf{k}_{2})P_{m}(k_{1}, z)P_{m}(k_{2}, z) + (2 \text{ cyclic}) \right]$ $= b_{1}^{2}b_{2} \left[P_{m}(k_{1}, z)P_{m}(k_{2}, z) + (2 \text{ cyclic}) \right]$

Triangular configurations

(a) squeezed triangle (k₁≃k₂>>k₃)

(b) elongated triangle $(k_1 = k_2 + k_3)$

(c) folded triangle (k₁=2k₂=2k₃)

(d) isosceles triangle (k₁>k₂=k₃)

.2

 \cap

Known term 1. non-linear gravity

$$F_2^{(s)}(\mathbf{k}_1, \mathbf{k}_2) = \frac{5}{7} + \frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{2k_1 k_2} \left(\frac{k_1}{k_2} + \frac{k_2}{k_1}\right) + \frac{2}{7} \left(\frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{k_1 k_2}\right)^2$$

.8

.6

.4

.2

0

Known term 2. non-linear bias

$$b_1^2 b_2 \left[P_m(k_1, z) P_m(k_2, z) + (2 \text{ cyclic}) \right]$$

- Non-linear bias term peaks at equilateral (k<0.02 [h/Mpc] and folded (k>0.02 [h/Mpc]) triangles.
- No F₂ kernel. Less suppression at the squeezed, less enhancement along the elongated triangles.

 10^{-3}

10-4

 10^{-5}

Known term 3. non-Gaussianity

- Notice the factor of k² in the denominator.
- Sharply peaks at the **squeezed** configuration!

New terms (Jeong & Komatsu, 2009b)

- It turns out that Sefusatti & Komatsu (2007) misses the dominant terms which comes from the statistics of "peaks".
- Jeong & Komatsu (2009b)
 "Primordial non-Gaussianity, scale dependent bias, and the bispectrum of galaxies" We present all dominant non-Gaussian bispectrum terms on large scales and on squeezed configurations!!

Bispectrum of galaxies

$$= b_1^3 \left[B_R(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) + \frac{b_2}{b_1} \left\{ P_R(k_1) P_R(k_2) + (2 \text{ cyclic}) \right\} + \frac{\delta_c}{2\sigma_R^2} \int \frac{d^3q}{(2\pi)^3} T_R(\mathbf{q}, \mathbf{k}_1 - \mathbf{q}, \mathbf{k}_2, \mathbf{k}_3) + (2 \text{ cyclic}) \right].$$

 In addition to SK07, galaxy bispectrum also depends on trispectrum (four point function) of underlying mass distribution!!

Matter trispectrum I. T_{ϕ}

• For local type non-Gaussianity,

$$\Phi(\boldsymbol{x}) = \phi(\boldsymbol{x}) + f_{\rm NL} \left[\phi^2(\boldsymbol{x}) - \langle \phi^2 \rangle \right] + g_{\rm NL} \phi^3(\boldsymbol{x})$$

• Primordial trispectrum is given by

 $T_{\Phi}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3,\mathbf{k}_4)$

- $= 6g_{\rm NL} P_{\phi}(k_1) P_{\phi}(k_2) P_{\phi}(k_3) + (3 \text{ cyclic})] + 2f_{\rm NL}^2$ $\times [P_{\phi}(k_1) P_{\phi}(k_2) \{ P_{\phi}(k_{13}) + P_{\phi}(k_{14}) \} + (11 \text{ cyclic})]$
- For more general multi-field inflation, trispectrum is

 $T_{\Phi}({m k}_1,{m k}_2,{m k}_3,{m k}_4)$

 $= 6g_{\text{NL}} P_{\phi}(k_1) P_{\phi}(k_2) P_{\phi}(k_3) + (3 \text{ cyclic})] + 25 \frac{25}{18} \tau_{\text{NL}} \times [P_{\phi}(k_1) P_{\phi}(k_2) \{ P_{\phi}(k_{13}) + P_{\phi}(k_{14}) \} + (11 \text{ cyclic})]$

Shape of T_{ϕ} terms

• Both of T_{Φ} terms peak at **squeezed** configurations.

• f_{NL}^2 term peaks more sharply than g_{NL} term!!

Matter trispectrum II. T¹¹¹²

• Trispectrum generated by non-linearly evolved primordial non-Gaussianity.

 $\langle \delta^{(1)}(\mathbf{k}_1) \delta^{(1)}(\mathbf{k}_2) \delta^{(1)}(\mathbf{k}_3) \delta^{(2)}(\mathbf{k}_4) \rangle$

$$= \int \frac{d^3q}{(2\pi)^3} F_2^{(s)}(\boldsymbol{q}, \boldsymbol{k}_4 - \boldsymbol{q}) \langle \delta^{(1)}(\boldsymbol{k}_1) \delta^{(1)}(\boldsymbol{k}_2) \delta^{(1)}(\boldsymbol{k}_3) \delta^{(1)}(\boldsymbol{k}_4 - \boldsymbol{q}) \delta^{(1)}(\boldsymbol{q}) \rangle$$

$$= (2\pi)^3 \left[2f_{\rm NL} P_m(k_1) \mathcal{M}(k_3) \int d^3q \mathcal{M}(q) \mathcal{M}(|\boldsymbol{k}_4 - \boldsymbol{q}|) P_{\phi}(q) \left\{ P_{\phi}(|\boldsymbol{k}_4 - \boldsymbol{q}|) + 2P_{\phi}(k_3) \right\} \right]$$

$$\times F_2^{(s)}(\boldsymbol{q}, \boldsymbol{k}_4 - \boldsymbol{q}) \delta^D(\boldsymbol{k}_{12}) + 4f_{\rm NL} \mathcal{M}(k_2) \mathcal{M}(k_3) \mathcal{M}(k_{14}) P_m(k_1) F_2^{(s)}(-\boldsymbol{k}_1, \boldsymbol{k}_{14})$$

$$\times \left\{ P_{\phi}(k_2) P_{\phi}(k_3) + P_{\phi}(k_2) P_{\phi}(k_{14}) + P_{\phi}(k_3) P_{\phi}(k_{14}) \right\} + (\text{cyclic 123}) \right] \delta^D(\boldsymbol{k}_{1234}).$$

Shape of T¹¹¹² terms

- T¹¹¹² terms also peak at **squeezed** configurations.
- T^{1112} terms peak almost as sharp as g_{NL} term.

f_{NL} terms : SK07 vs. JK09

Are new terms important? (z=0)

more important at high-z!! (z=3)

Jeong & Komatsu, in preparation

Prediction for galaxy surveys

 Predicted 1-sigma marginalized error of non-linearity parameter (f_{NL}) <u>from the galaxy bispectrum alone</u>

	z	V [Gpc/h]³	n _g 10 ⁻⁵ [h/Mpc] ³	b1	Δf _{NL} (SK07)	Δf _{NL} (JK09)
SDSS-LRG	0.315	1.48	136	2.17	60.38	5.43
BOSS	0.35	5.66	26.6	1.97	31.96	3.13
HETDEX	2.7	2.96	27	4.10	20.39	2.35
CIP	2.25	6.54	500	2.44	8.96	0.99
ADEPT	1.5	107.3	93.7	2.48	5.65	0.92
EUCLID	1.0	102.9	156	1.93	5.56	0.77

New!! Jeong, Komatsu, Jain (2009), arXiv:0910.1361 f_{NL} from Weak gravitational lensing

Mean tangential shear

• Mean tangential shear is given by

$$\langle \overline{\gamma}_t^h \rangle(R, z_L) = \frac{\rho_0}{\Sigma_c(z_L)} \int \frac{kdk}{2\pi} P_{hm}(k, z_L) J_2(kR)$$

It is often written as

$$\langle \overline{\gamma}_t^h \rangle(R, z_L) = \frac{\Delta \Sigma(R, z_L)}{\Sigma_c(z_L)}$$

where, Σ_c is the "critical surface density"

$$\Sigma_c^{-1}(z_L) = \frac{4\pi G}{c^2} (1+z_L) d_A(0;z_L) \int_{z_L}^{\infty} dz_S \, p(z_S) \frac{d_A(z_L;z_S)}{d_A(0;z_S)}$$

Mean tangential shear, status

Mean tangential shear from SDSS Sheldon et al. (2009)

BAO in mean tangential shear

BAO in mean tangential shear

Result from the thin (delta function) lens plane

f_{NL} in mean tangential shear (LRG)

100 200 300 400 500 R [Mpc/h]

f_{NL} in mean tangential shear (LSST)

Galaxy-CMB lensing, z=0.3

Galaxy-CMB lensing, z=0.8

Cluster-CMB lensing, z=5

High-z population provide a better chance of finding f_{NL}.

Conclusion

- In order to exploit the observed galaxy power spectrum, we have to understand the nonlinearities with target accuracy = 1% in P(k).
- We can model the nonlinear galaxy power spectrum at high-z by using the 3rd order perturbation theory.
- Bispectrum provides the nonlinear bias information, as well as information about non-Gaussianity. It is very clean and competitive: $\Delta f_{NL} \sim 1$ is possible!
- Weak gravitational lensing on large scales can provides independent cross-checks of bias and non-Gaussianity.