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Cosmic microwave background 
The CMB has revolutionized 
cosmology: 

- Tight parameter constraints 
(in combination with other 
data sets) 
- Stringent test of standard 
assumptions: Gaussianity, 
adiabatic initial conditions 
- Physically robust: 
understood from first 
principles.  (Linear 
perturbation theory.) WMAP Science Team (2008) 
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CMB and inflation 
•  Primordial scalar power spectrum: ns, αs 

  measured by broad-band shape of CMB power 
     spectrum 
  the damping tail will play a key role in the future (Planck, 
     ACT, SPT, …) 
  probe of inflationary slow-roll parameters: 

     (for single field inflation; but measurements key for all 
     models) 
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ne = electron density 
(depends on 

recombination) 

1. Motivation, CMB 



The Current Situation 

•  Different recombination histories disagree, 
sometimes at several percent level (e.g. 
Dubrovich & Grachev 2005). 

•  Not yet a problem for WMAP.  But discrepancies 
are many sigmas for Planck. 
 e.g. 7σ from 2-photon decay corrections. 
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Recombination history 

z 

… as computed by RECFAST1.3 (Seager, Sasselov, Scott 2000) 
The “standard” recombination code until Feb. 2008. 

H+ + e- → H 
z: acoustic peak positions 
degenerate with DA 
Δz: polarization amplitude 

He+ + e- → He 
z: damping tail 
degenerate with ns 

He2+ + e- → He+ 

no effect 

2. Standard picture 



Standard theory of H recombination 
(Peebles 1968, Zel’dovich et al 1968) 

•  Effective “three level atom”: 
H ground state, H excited 
states, and continuum 

•  Direct recombination to 
ground state ineffective. 

•  Excited states originally 
assumed in equilibrium.  
(Seager et al followed each 
level individually and found 
a slightly faster 
recombination.) 
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Standard theory of H recombination 
(Peebles 1968, Zel’dovich et al 1968) 

For H atom in excited level, 3 
possible fates: 

•  2γ decay to ground state 
(∝2Λ) 
•  Lyman-α resonance escape* 
(∝6ALyαPesc) 
•  photoionization 
(∝                      ) 

* Pesc~1/τ~8πH/3nHIALyαλLyα
3. 1s 
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Standard theory of H recombination 
(Peebles 1968, Zel’dovich et al 1968) 

•  Effective recombination rate 
is recombination coefficient to 
excited states times 
branching fraction to ground 
state: 
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2γ Lyman-α 
resonance 
escape 

radiative recombination 
+ photoionization 
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Standard theory of H recombination 
(Peebles 1968, Zel’dovich et al 1968) 

Λ = 2-photon decay rate from 2s 
Pesc = escape probability from Lyman-
α line 

ALyα = Lyman-α decay rate 
αe = recombination rate to excited 

states 
gi = degeneracy of level i 
βi = photoionization rate from level i 
R = Rydberg 
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Standard theory of H recombination 
(Peebles 1968, Zel’dovich et al 1968) 

Λ = 2-photon decay rate from 2s 
Pesc = escape probability from Lyman-
α line = probability that Lyman-α 
photon will not re-excite another H 
atom. 

Higher Λ or Pesc → faster 
recombination.  If Λ or Pesc is large we 
have approximate Saha recombination. 
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resonance 
escape 

radiative recombination 
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Recent updates 
•  Subject largely ignored for ~5 years, revived by new 

developments: 
1.  Paper by Dubrovich & Grachev (2005) claimed that 

recombination was significantly faster than Seager et al. 
 2γ decays from highly excited levels: 

 H(3d)→H(1s) + γ + γ 
 He(31D2)→He(11S0) + γ + γ 

 semiforbidden decays: 
 He(23P1)→He(11S0) + γ. 

2.  Success of WMAP made percent-level CMB physics 
“real”; Planck coming soon! 

•  At least 3 groups working on comprehensive solution to 
the recombination problem (Wong & Scott @ UBC, 
Chluba & Sunyaev @ MPA, us). 
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Helium level diagram 
3. He recombination 
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Issues in He recombination 
•   Mostly similar to H recombination except: 
•   Two line escape processes 

He(21P1) → He(11S0) + γ584Å 
He(23P1) → He(11S0) + γ591Å 

•  These are of comparable importance 
(Dubrovich & Grachev 2005). 

•   Feedback: redshifted radiation from blue line 
absorbed in redder line. 

•   Enhancement of escape probability by H 
opacity: 
He(21P1) → He(11S0) + γ584Å 
H(1s) + γ584Å → H+ + e- 
(Hu et al 1995) 

3. He recombination 



The answer! 
3. He recombination 

thermal equilibrium 

Seager et al 
2000 

Switzer & Hirata 
2007 

Accel. from 
23P1 decay 

Accel. from 
H opacity 



3. He recombination 

Current He recombination histories 



Two-photon decays 
•  H(2s) → H(1s) + γ + γ (8.2 s-1) included in all codes. 
•  But what about 2γ decays from other states? 
•  Selection rules: ns,nd only. 
•  Negligible under ordinary circumstances: 

H(3s,3d) → H(2p) + γ6563Å, depopulates n≥3 levels. 
•  In cosmology: 

so 3s,3d 2γ decays might compete with 2s 
(Dubrovich & Grachev 2005). 

•  Obvious solution: compute 2γ decay coefficients Λ3s,3d, 
add to multilevel atom code. 

4. Two-photon decays in H 



Calculation p. 1 
•  Easy!  This is tree-level QED. 
•  Feynman rules (in atomic basis set): 

  electron propagator 

  photon propagator 

  vertex 
  (electric dipole) 

•  Ignore positrons and electron spin – okay in 
nonrelativistic limit. 

€ 

1
E − Enlm + iε

4. Two-photon decays in H 



Calculation p. 2 
•  Two diagrams for 2γ decay: 

M=         + 

•  Total decay rate: (ω=k for on-shell photon) 

•  Problem: infinite because M contains a pole if 
n1=2 … n-1 (n1p intermediate state is on-shell).  

4. Two-photon decays in H 
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∞ 
•  The resolution to this problem in the cosmological context 

has provided some controversy.  (See Dubrovich & Grachev 
2005; Wong & Scott 2007; Hirata & Switzer 2007; Chluba & 
Sunyaev 2007; Hirata 2008). 

•   Pole displacement: rate still large, e.g. Λ3d = 6.5×107 s-1. 
Pole includes sequential 1γ decays, 3d→2p→1s. 

•   Re-absorption of 2γ radiation. 

No large rates or double-counting in optically thick limit. 

4. Two-photon decays in H 

€ 

H(3d)↔H(1s) + γ>Lyα + γ<Hα

H(2p)↔H(1s) + γLyα
H(3d)↔H(1s) + γ<Lyα + γ>Hα



Radiative transfer calculation 
•  A radiative transfer calculation is the only way to solve the 

problem. 
•  Must consistently include: 

 Stimulated 2γ emission (Chluba & Sunyaev 2006) 
 Absorption of spectral distortion (Kholupenko & Ivanchik 
2006) 
 Decays from n≥3 levels. 
 Raman scattering – similar physics to 2γ decay, except 
one photon in initial state: 
H(2s) + γ → H(1s) + γ 
 Two-photon recombination/photoionization. 

•  2008 code did not have Lyman-α diffusion 
(now included – thanks to J. Forbes). 

4. Two-photon decays in H 



Radiative transfer calculation 
•  The Boltzmann equation: 

•  fν = photon phase space density 
•  Δ = number of decays / H nucleus / Hz / second 

•  Ill-conditioned at Lyman lines: coefficients → ∞ (or large). 
 But solution is convergent: 

4. Two-photon decays in H 



Physical effects 1 
•  Definitions: 

 a 2γ decay is “sub-Lyα” if both photons have E<E(Lyα). 
 a 2γ decay is “super-Lyα” if one photon has E>E(Lyα). 

•  Sub-Lyα decays: 
 Accelerate recombination by providing additional path to the 
ground state. 
 Delay recombination by absorbing thermal + redshifted Lyα 
photons. 
 The acceleration always wins, i.e. reaction: 

 H(nl) ↔ H(1s) + γ + γ 

   proceeds forward. 

4. Two-photon decays in H 
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Physical effects 2 
•  Super-Lyα decays are trickier! 

 Also provide additional path to ground state. 
 But for every super-Lyα decay there will later be a Lyα 
excitation, e.g.: 

  H(3d) → H(1s) + γ<1216Å + γ>6563Å  

  H(1s) + γ1216Å → H(2p) 

•  The net number of decays to the ground state is zero. 
•  But there is an effect: 

 Early, z>1260: accelerated recombination. 
 Later, z<1260: delayed recombination. 

•  Same situation for Raman scattering. 

4. Two-photon decays in H 
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4. Two-photon decays in H 

Phase space density 

Full result 
Without 2γ decays 
Blackbody 

Lyα 

Lyβ 

Lyγ 
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4. Two-photon decays in H 

L 

Correction: 
0.19σ  ACBAR 
0.27σ  WMAP5 
7σ  Planck 



Doppler shifts & Lyman-α diffusion 
•  So far we’ve neglected thermal motions of atoms. 
•  Main effect is in Lyman-α where resonant scattering 

leads to diffusion in frequency space due to Doppler shift of H 
atoms.  Diffusion coefficient is 

•  Rapid diffusion near line center, very slow in wings. 

5. Lyman-α diffusion 

€ 

H(1s)+ γLyα →H(2p)virtual →H(1s)+ γLyα

€ 

D(ν) = HνLyα ⋅ τLyα f scatφ(ν ) ⋅
TνLyα

2

mH



Doppler shifts & Lyman-α diffusion 
•  Can construct Fokker-Planck equation from two physical 

conditions (e.g. Rybicki 2006): 
 Exactly conserve photons in scattering 
 Respect the second law of thermodynamics: must 
preserve blackbody with µ-distortion, fν~e-hν/T. 

•  hfν/T term can be physically interpreted as due to recoil (e.g. 
Krolik 1990; Grachev & Dubrovich 2008).  Effect is to push 
photons to red side of Lyman-α, speeding up recombination. 

•  With J. Forbes, diffusion now patched on to 2γ radiative 
transfer code. 

5. Lyman-α diffusion 

€ 

˙ f ν diff
=

1
ν 2

∂
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ν 2D(ν) ∂fν
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5. Lyman-α diffusion 



Recombination theory 
•  Many known corrections to H recombination. 

 All current codes are missing some important effects. 
 Some processes (e.g. 2γ decays, Lyα diffusion) interact.  
Δxe not additive. 

•  Lots of physics not yet investigated (forbidden lines, 
molecular opacity, fine structure) – most probably 
unimportant but not excluded. 

•  Existing codes far too slow for use in Markov chain 
parameter estimation (~1 day). 

•  Needs: 
 Comprehensive calculation of H by multiple groups. 
 Fast approximate code. 

6. What remains to be done? 



Ongoing efforts 
•  Feedback of He recombination photons on H (E. Switzer). 
•  Incorporation of high-n levels (D. Grin) – sparse matrix 

techniques should allow us to follow up to n~1000 with full l 
resolution.  (Current: nmax=200.) 

•  The following are being worked but the preliminary result is 
that they appear to be insignificant: 
 Molecular opacity 
 Fine structure, e.g. 11 GHz line, 2p3/2 → 2p1/2.  
(Population inverted but optically thin.) 
 Quadrupole lines 
 Thomson scattering 
 Modification of Sobolev depth in Doppler-broadened 
high-n Lyman lines (Y. Ali-Haïmoud). 

6. What remains to be done? 



Implications for experiments 
•   Recfast v1.4 (Wong, Moss, Scott 2008; in CAMB) good 

enough for WMAP/ACBAR – but don’t push it any farther. 
•   No show-stoppers yet in the theory 

 Given the resources, predictions to cosmic variance 
accuracy are achievable (but not achieved). 
 But this will take time (~1 year?) 

•   Testing the results: 
 We need to get the polarization.  EE:TT ratio is a 
signature of modified H recombination history.  Cannot be 
mimicked by modifying ns,w,etc. 
 Spectral distortion – in principle most direct and 
informative test. 
 More laboratory tests of atomic data. 

6. What remains to be done? 


