Cosmic Magnification - A New Window to Cosmology

Hendrik Hildebrandt, Leiden Observatory

August 24, 2009

Outline

Weak Gravitational Lensing

Cosmic Magnification

Results from the CFHTLS

Weak Gravitational Lensing

from Mellier (1999)

Weak Gravitational Lensing

Characteristics

- Weak distortions and magnifications
- Only used in a statistical way
- Sensitive to both, dark and visible matter
- Can be used to study the dark matter halos of galaxies and clusters
- WL of LSS (cosmic shear) potentially the most promising probe of dark energy

Lensing of a circular source

from P. Schneider, Saas Fee lecture on "Weak Gravitational Lensing"

Shear based methods

Advantages

- Expectation value of intrinsic ellipticities is known: $\langle \epsilon^{(s)} \rangle = 0$
- $\langle \epsilon \rangle = \langle \epsilon^{(s)} \rangle + \gamma = \gamma$
- Higher S/N than magnification based methods

Disadvantages

- PSF (atmosphere + instrument)
- Pixelisation
- Noise
 - ⇒ Measuring accurate, unbiased shapes is extremely difficult
- Intrinsic alignments

Magnification based methods

Advantages

- Magnitudes easier to measure than shapes
- More galaxies with magnitudes available
- Higher redshift sources usable

Disadvantages

- Intrinsic distribution of magnitudes not a priori known
 - ⇒ Need to measure the LF first
- Strong requirements on photometric homogeneity
- Precise correction for galactic dust needed

Effects of magnification

Observables

- $<\delta_{g1}\delta_{g2}>$: Angular cross-correlation function between high-z sources and low-z lenses
- $<\delta_{\rm g1}\delta m_2>$: Magnitude shift of sources as a function of distance from the lenses
- $<\delta m_1\delta m_2>$: Cross-correlation of the magnitude shifts of sources

Angular cross-correlation $<\delta_{\rm g1}\delta_{\rm g2}>$

Magnification

- lens magnifies objects in background
- objects that are too faint without a lens become visible
- positive cross-correlation

Angular cross-correlation $<\delta_{\sigma 1}\delta_{\sigma 2}>$

Magnification

- lens magnifies objects in background
- objects that are too faint without a lens become visible
- positive cross-correlation

Dilution

- lens enlarges the solid angle behind it
- source density is diluted
- negative cross-correlation

Cosmological Constraints

Cosmic shear Cosmic magnification

The CFHTLS

CFHTLS-Deep: 4 sq. deg. in *ugriz* to $i_{\text{lim.}} \sim$ 27.5 (5- σ AB) CFHTLS-Wide: 170 sq. deg. in *ugriz* to $i_{\text{lim.}} \sim$ 25.5 (5- σ AB)

LBG selection

LBG redshift distributions

34 218 *u*-dropouts ($z \sim 3$) 36 226 *g*-dropouts ($z \sim 4$) 10 482 *r*-dropouts ($z \sim 5$)

LBG numbercounts

LF slopes

Photo-z accuracy

for i < 24:

$$\sigma_{\Delta z/(1+z)} = 0.033$$

1.6% outliers

Results for *u*-dropouts $<\delta_{\rm g1}\delta_{\rm g2}>$

Results for *g*-dropouts $<\delta_{\rm g1}\delta_{\rm g2}>$

Results for *r*-dropouts $<\delta_{ m g1}\delta_{ m g2}>$

Results for *u*-dropouts from the WIDE $<\delta_{\rm g1}\delta_{\rm g2}>$

156 sq. deg. 1.7×10^5 sources 5.7×10^6 lenses

Results for g-dropouts from the WIDE $<\delta_{\rm g1}\delta_{\rm g2}>$

156 sq. deg. 1.8×10^5 sources 4.0×10^6 lenses

Mag shift $<\delta_{\rm g1}\delta m_2>$, *u*-dropouts, CFHTLS-WIDE

lenses: 0.4 < z < 0.8

g-band *r*-band *i*-band

Mag shift $<\delta_{\rm g1}\delta m_2>$, *g*-dropouts, CFHTLS-WIDE

lenses: 0.4 < z < 0.8

r-band *i*-band

Outlook

- Transition from "proof-of-concept" to cosmological constraints
- Estimate the LFs from the data themselves
- Remove/constrain the galaxy bias from the analysis
- Include dust corrections
- Explore the potential to constrain the DE-EOS
- Measure masses of high-z clusters

mag-mag corr. $<\delta m_1\delta m_2>$ (Wide u&g-dr. comb.)

