Quasars Probing Quasars: Circumgalactic Gas in Absorption and Emission

Joseph F. Hennawi MPIA

UC Berkeley April 17, 2012

Credits

J. Xavier Prochaska (UCSC/MPIA)

Data collected in collaboration with:Rob Simcoe (MIT)Sara Ellison (Victoria)Crystal Martin (UCSB)George Djorgovski (Caltech)Kate Rubin (MPIA)Kate Rubin (MPIA)

HST / JWST / ELT

20.5

SKA + Pathfinders

Images courtesy of Danail Obreschkow

ALMA / LMT

What are the initial conditions for galaxy formation?

The Initial Conditions for Galaxy Formation

Hydro sims predict that the circumgalactic medium (CGM) of $M\sim 10^{12} M_{\odot}$ halos have ~ 20% covering factor of cold gas with $N_{\rm HI} > 10^{17.2} \ {\rm cm}^{-2}$

Probing the Circumgalactic Medium (CGM)

Use absorption lines to probe diffuse gas r ~ 30 – 200 kpc

 $N_{\rm HI} \sim 10^{12-22} {\rm ~cm^{-2}}$ and T ~ 10²⁻⁶ K

Observational Challenge: find bright b/g QSO at small impact parameter to distant galaxies

Probing the CGM of Quasars

Use absorption lines to probe diffuse gas r ~ 30 – 200 kpc

 $N_{\rm HI} \sim 10^{12-22} {\rm ~cm^{-2}}$ and T ~ 10²⁻⁶ K

- QSOs trace massive $M_{halo} \sim 10^{12.5}\,M_{\odot}$ galaxies at high-z
- Why use QSOs? Because we can find ~ 10⁶ in SDSS
- Directly probe gas $\rho/\!\left<\rho\right>\sim 10^{2\text{--}3}$ resolved by hydro grids
- Complications: ionizing radiation, are QSOs atypical?

to large > 1 kpc scales in <u>typical</u> QSOs

The CGM of Mergers: Tidal DebrisArp 220VV 114Arp 299

Contours: HI 21cm emission; lowest level $N_{HI} = 5 \times 10^{19} \text{ cm}^{-2}$

The circumgalactic media of LIRGs/ULIRGs show dramatic evidence for tidally stripped ISM out to large radii ~ 50-100 kpc

Outline

- Quasars absorption lines
- What is the supply of cold gas?
- What is the physical state of the gas?
- Can we detect cold gas in emission?

No strong Lya absorption at QSO redshift?

Outline

- Quasars absorption lines
- What is the supply of cold gas?
- What is the physical state of the gas?
- Can we detect cold gas in emission?

Measure covering factor of cold T $\sim 10^4$ K gas. Large column density (LLSs and DLAs) absorbers will dominate total mass.

Hennawi et al. (2007)

Hennawi et al. (2007)

Hennawi et al. (2007)

High Transverse Covering Factor

- High ~ 60% covering factor for R < 150 kpc
- This cold gas is not seen along the line-of-sight!

Anisotropic Covering Factor

- Clustering of absorbers around quasars is highly anisotropic.
- Anisotropic (or intermittent) emission:
 - line-of-sight material photoevaporated
 - transverse material shadowed
- Background sightlines probe ISM/halo gas *unaltered* by effects of QSO radiation

For individual systems, we can directly test for transverse illumination (stay tuned).

The Halo Mass Dependence of the CGM

$$t_{\rm cool} = \frac{\frac{3}{2}k_{\rm B}T}{n^2\Lambda(T)} \qquad t_{\rm dyn} = \pi\sqrt{\frac{R^3}{GM}} \quad \mathbf{I}$$

Rees & Ostriker 1977

- <u>Low masses</u>: $t_{cool} < t_{dyn}$, Cools too fast that galaxy formation is limited only by free-fall.
- <u>High masses</u>: $t_{cool} > t_{dyn}$, Cools too slow, hot pressure supported halo forms in quasi-static equilibrium.

Is Large Cold Gas Mass around QSOs at Odds with Cold Accretion?

- QSOs are active SMBHs are they special? Mergers?
- Are we seeing outflows from QSO feedback?

Outline

- Quasars absorption lines
- What is the supply of cold gas?
- What is the physical state of the gas?
- Can we detect cold gas in emission?

What is the Physical State of the Gas?

Use high resolution spectra to conduct detailed studies of the physical state of gas near the foreground quasar.

The Poster Child: SDSS1204+0221

Typical foreground QSO

- i = 20.5 (mag)
- $L_{bol} = 10^{46} \text{ erg/s}$
- $M_{BH} = 10^9 M_{\odot} (f_{edd} = 0.1)$

• $\Delta \theta = 13.3$ " or R₁ = 108 kpc

• Lyman limit sys: $N_{HI} = 10^{19.7} \text{ cm}^{-2}$

Keck HIRES Echelle Spectrum FWHM = 8 km/s

b/g QSO bright enough (r = 19.0) for Echelle Spectroscopy!

SDSSJ1204+0221: Metal Lines

Prochaska & Hennawi (2009)

Use metal lines to construct a detailed model for the physical state of gas (ionization, density, metallicity, etc.)

What is the Physical State of the Gas?

kinematics:mass: ~ $10^{11.5} M_{\odot}$ Multiphase:Metallicity: $\Delta v = 700 \text{ km/s}$ density: $n_{\rm H} \sim 1 \text{ cm}^{-3}$ No warm gas $Z = (0.25-1.6) Z_{\odot}$ Extreme!size: ~ 10-100 pc 10^{5-6} K Extreme!

Prochaska & Hennawi (2009)

Outflow or Cold Accretion?

- Cold gas ~ 10% of total gas mass with right pressure to be confined by T ~ 10⁷ K virialized plasma
- Strongest evidence for outflow is high $Z \sim Z_{\odot}$ at 108 kpc
- Outflow power $\dot{E} \sim \frac{1}{2}\Omega m_{\rm p} N_{\rm H} R_{\perp} \Delta v^3$

$$\begin{split} \dot{E}_{\text{outflow}} &\sim 9 \times 10^{44} \left(\frac{\Omega}{2\pi}\right) \left(\frac{N_{\text{H}}}{10^{20.6} \text{ cm}^{-2}}\right) \left(\frac{R_{\perp}}{108 \text{ kpc}}\right) \left(\frac{\Delta v}{1000 \text{ km s}^{-1}}\right)^3 \text{ erg s}^{-1} \\ \textbf{\textit{kinetic}} \\ \textbf{minosity} \quad \eta = \frac{\dot{E}_{\text{feedback}}}{L_{\text{bol}}} \gtrsim \frac{\dot{E}_{\text{outflow}}}{L_{\text{bol}}} = 0.06 \quad \textbf{Is this power plausible?} \end{split}$$

What is the Bottom Line?

Problems with an outflow:

- <u>Extreme energetics:</u> outflow power > 6% accretion power, and more energy expected in a hot wind
- Lack of significant warm phase $T \sim 10^{5-6}$ K unphysical?
- <u>Clouds disrupted</u> by hydro instabilities in ~ 1 kpc, can't travel to 100 kpc?

Problems with cosmological cold accretion:

- <u>Why is the gas so metal enriched</u> $Z \sim Z_{\odot}$?
- <u>Density too high:</u> $n \sim 1 \text{ cm}^{-3} >> \text{hydro sims } n \sim 10^{-2} \text{ cm}^{-3}$
- <u>Clouds too small</u>: $r_{cloud} \sim 10-100$ pc, sims predict $\sim 1-3$ kpc
- <u>Simulations predict less cold gas</u> in such massive halos
 <u>Must study statistical samples!</u>

Extreme kinematics $\Delta v \approx 800$ km/s and high enrichment level Z > 0.14 Z_{\odot}

(10⁻¹⁷ erg/s/cm²/A)

$\Delta \theta = 23.5$ " or R₁ = 181 kpc

Extreme kinematics $\Delta v \approx 1600$ km/s and a high enrichment level $Z = (0.1-1)Z_{\odot}$

Newly discovered close projected pair of QSOs at z ~ 4

Extreme kinematics $\Delta v \approx 800$ km/s and high enrichment level Z ≈ 0.4 Z_{\odot}

Outline

- Quasars pairs and absorption lines
- What is the supply of cold gas?
- What is the physical state of the gas?
- Can we detect cold gas in emission?

Preliminary

Can We Detect the Cold Gas in Emission? Photoionization Cooling Radiation b/g QSO b/g QSO heating rate H H per H atom H \mathbf{H} H H f/g QSO 🔍 H $H \left[\text{erg/s/H} \right]$ H H Η H **QSO** ionizing radiation

 Recombinations from optically thick gas

• Directly test if gas is illuminated by QSO

cooling surface brightness

MUSE: The Multi-Unit Spectroscopic Explorer

3-D Image Slicing IFU

<u>MUSE</u>: FOV = 1'×1', λ = 500-930nm, 2013 <u>Keck Cosmic Web Imager</u>: FOV = 20"×34", λ = 350nm-1µ, 2014

Unprecedented combination: Multiplexing + Sensitivity SB ~ 5×10^{-19} erg/s/cm²/ \Box " in 50 hour integrations

Cooling Radiation

- For low metallicity T $\sim 10^4$ K gas, 60% of cooling through collisional excitation of Lya
- Exponentially sensitivity to T $q_{1
 m s
 ightarrow 2p} \propto e^{-h
 u_{
 m Lylpha}/k_{
 m B}T}$

$$SB_{\rm Ly\alpha} = 5 \times 10^{-17} \left(\frac{f_{\rm cov}}{0.3}\right) \left(\frac{n_{\rm e}}{1\,{\rm cm}^{-3}}\right) \left(\frac{N_{\rm HI}}{10^{19}\,{\rm cm}^{-2}}\right) q_{\rm 1s\to 2p}(T = 10^{4.3}\,{\rm K})$$

Thermal Conduction

 If (cloud size) ≤ (electron mean free path) then conduction is 'saturated' and heat flux ~ energy flux of hot electrons

Cooling Radiation: Conduction

$$\lambda_{\rm e} = 40 \left(\frac{T}{10^7 \,\rm K}\right)^2 \left(\frac{n_{\rm hot}}{10^{-2} \,\rm cm^{-3}}\right)^{-1} \rm pc$$

measured cloud $\rightarrow r_{\rm cloud} \simeq 10 \, {\rm pc} < \lambda_{\rm e}$ size for SDSS1204

(cloud size) \leq (mean free path) \Rightarrow conduction saturated $\Rightarrow q_{sat} \propto n_{hot} T^{3/2}$

Hennawi & Prochaska (2012a)

$$SB_{Ly\alpha} = 8 \times 10^{-17} \left(\frac{f_{cov}}{1.0}\right) \left(\frac{n_{hot}}{10^{-2} \, cm^{-3}}\right) \left(\frac{T}{10^7 \, K}\right)^{3/2} erg/s/cm^2/\Box''$$

Cooling Radiation: Ram Pressure

Hennawi & Prochaska (2012a)

$$SB_{Ly\alpha} = 2 \times 10^{-17} \left(\frac{f_{cold}}{0.50}\right) \left(\frac{f_{cov}}{1.0}\right) \left(\frac{n_{hot}}{10^{-2} \,\mathrm{cm}^{-3}}\right) \left(\frac{v}{700 \,\mathrm{km} \,\mathrm{s}^{-1}}\right)^3 \\ \mathrm{erg/s/cm}^2/\Box''$$

Other processes (e.g. turbulent mixing) can similarly heat the cold gas resulting in comparable emission

Heating Mechanisms

Gravitational

Hennawi & Prochaska (2012a)

/3

$$SB_{Ly\alpha} = 10^{-17} \left(\frac{f_{cold}}{0.50}\right) \left(\frac{f_{cov}}{1.0}\right) \left(\frac{N_{\rm H}}{10^{21}\,{\rm cm}^{-2}}\right) \left(\frac{M}{10^{13}\,M_{\odot}}\right)^2$$

Thermal Conduction

$$SB_{Ly\alpha} = 8 \times 10^{-17} \left(\frac{f_{cov}}{1.0}\right) \left(\frac{n_{hot}}{10^{-2} \,\mathrm{cm}^{-3}}\right) \left(\frac{T}{10^7 \,\mathrm{K}}\right)^{3/2}$$

Ram Pressure

$$SB_{Ly\alpha} = 2 \times 10^{-17} \left(\frac{f_{cold}}{0.50}\right) \left(\frac{f_{cov}}{1.0}\right) \left(\frac{n_{hot}}{10^{-2} \,\mathrm{cm}^{-3}}\right) \left(\frac{v}{700 \,\mathrm{km \, s}^{-1}}\right)^3$$

Thermalized Superwind

$$\mathrm{SB}_{\mathrm{Ly}\alpha} = 10^{-17} \left(\frac{f_{\mathrm{cold}}}{0.50}\right) \left(\frac{\dot{E}_{\mathrm{outflow}}}{10^{45} \,\mathrm{erg} \,\mathrm{s}^{-1}}\right) \left(\frac{R}{100 \,\mathrm{kpc}}\right)^{-2}$$

Hennawi & Prochaska (2012b)

smoothed PSF subtracted spectrum

PSF subtracted 2-d spectrum (data-model)/noise

b/g QSO z = 2.53→ **2-d spectrum** f/g QSO z = 2.44→

 $\frac{\text{SDSSJ1204+0221}}{\text{R}_{\perp} = 108 \text{ kpc}} \\ \log N_{\text{HI}} = 19.7$

Fake source $SB = 5 \times 10^{-17}$

 5σ surface brightness limit ${
m SB}_{5\sigma}=10^{-17}$ ${
m erg/s/cm^2/\Box''}$

Hennawi & Prochaska (2012b)

smoothed PSF subtracted spectrum

PSF subtracted 2-d spectrum (data-model)/noise

b/g QSO
$$z = 2.35 \rightarrow$$

f/g QSO $z = 2.28 \rightarrow$

2-d spectrum

 $\frac{\text{SDSSJ1427-0121}}{\text{R}_{\perp} = 53 \text{ kpc}}$ $\log N_{\text{HI}} = 18.9$

- fake source $SB = 5 \times 10^{-17}$

 5σ surface brightness limit $SB_{5\sigma} = 10^{-17}$ $erg/s/cm^2/\Box''$

Hennawi & Prochaska (2012b)

smoothed PSF subtracted spectrum

PSF subtracted 2-d spectrum (data-model)/noise

b/g QSO z = 2.21→ **2-d spectrum** f/g QSO z = 2.18→

 $\frac{\text{SDSSJ0814+3250}}{\text{R}_{\perp} = 87 \text{ kpc}}$ $\log N_{\text{HI}} = 18.5$

Fake source $SB = 5 \times 10^{-17}$

5 σ surface brightness limit SB_{5 σ} = 2×10⁻¹⁷ erg/s/cm²/ \Box "

Why No Lya Emission?

- Dust can only reduce Ly α emission by a factor ~ 2
- No recombination emission (fluorescence) ⇒
 confirms gas is not illuminated by QSO radiation
- Large cold gas mass & high heating rates imply large cooling SB ~ 10⁻¹⁷ erg/s/cm²/□", none detected
- Did we overestimate heating rates? Hot phase has different properties than we assumed?
- Cooling radiation (emission) + physical properties of gas (absorption) can place interesting constraints on heating rates

Summary

- <u>High covering factor</u> of optically thick gas ($N_{HI} > 10^{17.2}$) around QSOs, which trace massive halos $M_{halo} \approx 10^{12.5} M_{\odot}$
- Detailed analysis of single system: extreme kinematics (700 km s⁻¹), high enrichment (solar), high $n_{\rm H}$ (~ 1 cm⁻³), large gas mass (~ $10^{11.5} \, {\rm M_{\odot}}$)
- Interpretation unclear
 - Outflow: energetics too extreme
 - Cold Accretion: gas properties disagree with sims
- Large cold gas mass & high heating rates imply <u>cooling</u> radiation should be extremely bright, none detected.
- Combining absorption line with cooling emission constraints is a powerful new technique for studying the CGM.