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• Modern cosmology is the story of 
mapping the sky in multiple 
wavebands                                 

• Maps cover measurements of objects 
(stars, galaxies) and fields 
(temperature)                                

• Maps can be large (Sloan Digital Sky 
Survey has~200 million galaxies, 
many billions for planned surveys) 

• Statistical analysis of sky maps

• All precision cosmological analyses 
constitute a statistical inverse 
problem: from sky maps to scientific 
inference

• Therefore: No cosmology without 
(large-scale) computing                          

Modern Cosmology and Sky Maps

ROSAT (X-ray) WMAP (microwave)

Fermi (gamma ray) SDSS (optical)
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The Dark Universe

5% visible matter, 0.5% in stars

95% dark matter and dark energy

• Dark Energy: Multiple observations show 
that the expansion of the Universe is 
accelerating (first in 1998, Nobel prize 
2011)

• Imagine you throw a ball in the air and 
instead of coming down it flies upwards 
faster and faster!

• Questions: What is it? Why is it important 
now? Being totally ignorant, currently our 
main task is to characterize it better and 
exclude some of the possible explanations

• Dark Matter: Observations show that 
~27% of the matter in the Universe is 
“dark”, i.e. does not emit or absorb light

• So far: indirect detection, aims: 
characterize nature of dark matter and 
detect the actual dark matter particle

~95% of the Universe is “dark” 
-- we do not understand

the nature and origin of dark 
energy and dark matter.
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Structure Formation: The Basic Paradigm
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• Solid understanding of structure 
formation; success underpins most 
cosmic discovery

‣ Initial conditions determined by 
primordial fluctuations

‣ Initial perturbations amplified by 
gravitational instability in a dark 
matter-dominated Universe

‣ Relevant theory is gravity, field theory, 
and atomic physics (‘first principles’)

• Early Universe: Linear perturbation 
theory very successful (CMB)

• Latter half of the history of the 
Universe: Nonlinear domain of structure 
formation, impossible to treat without 
large-scale computing           
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cosmic discovery

‣ Initial conditions determined by 
primordial fluctuations

‣ Initial perturbations amplified by 
gravitational instability in a dark 
matter-dominated Universe

‣ Relevant theory is gravity, field theory, 
and atomic physics (‘first principles’)

• Early Universe: Linear perturbation 
theory very successful (CMB)

• Latter half of the history of the 
Universe: Nonlinear domain of structure 
formation, impossible to treat without 
large-scale computing           

Simulation start50 million
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• Gravity dominates at large scales, 
key task: solve the Vlasov-Poison 
equation (VPE)

• VPE is 6-D and cannot be solved 
as PDE, therefore N-body methods

• Cosmological VPE: a “wrong-sign” 
electrostatic plasma with a time-
dependent particle “charge”

• Particles are tracers of the dark 
matter in the Universe, mass 
typically at least ~10⁹ M☀ 

• At smaller scales, add gas physics, 
feedback etc., sub-grid modeling 
inevitable

Computing the Universe 

Time

Today

at 0.05 Gyr

“The Universe is far too complicated a 
structure to be studied deductively, 
starting from initial conditions and 
solving the equations of motion.”  
Robert Dicke (Jayne Lectures, 1969)
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Supercomputer Sloan Digital Sky SurveyDark matter Galaxies SDSS galaxies

SDSS
Galaxies
Density

Correlation 
function

Salman (theorist) at 
the observatory

Connecting Theory and Observations

Structure formation simulation

• Simulate the formation of the large scale structure of the Universe via dark 
matter tracer particles

• Take dark energy into account in the expansion history

• Measure the high-density peaks (dark matter halos) in the mass distribution

• “Light traces mass” to first approximation, therefore populate the halos 
with galaxies, number of galaxies depends on mass of halo (constraints 
from observations)

• Galaxy population prescription (hopefully) independent of cosmological 
model

Padmanabhan et al. 2009
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• Data Challenge: Next generation cosmological observatories 
aim to understand the nature of the dark universe by going 
“deeper, faster, wider” (Large Synoptic Survey Telescope, 
LSST) -- pushing current boundaries by orders of magnitude

‣ 30 terabytes of data per night; billions of galaxies

• Modeling Challenge: Scales that are resolved by future surveys 
become smaller and smaller, demanding (i) ever larger 
simulations with increased mass and force resolution; (ii) 
more details in the physics

‣ Simulations are very costly, we need a large number

• Analysis Challenge: We have only one sky and cannot do 
controlled experiments, “inverting” the 3-D sky

Digitized Sky Survey

Sloan Digital 
Sky Survey

Deep Lense Survey

LSST

Challenges Ahead
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• 2-point correlation function: excess 
probability of finding an object pair 
separated by a distance r₁₂ 
compared to that of a random 
distribution

• P(k): power spectrum, Fourier 
transform of correlation function

• Power spectrum very sensitive to 
physics of interest: amount and 
properties of dark matter, dark 
energy, neutrino mass, ... 

• Many different probes for 
measuring P(k)
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2-point correlation function:
}

power spectrum

The Matter Power Spectrum 

�2(k) =
k3P (k)

2�2©  Max Tegmark

Regime of simulation

Length scale of interest:
1 parsec (pc)=3.26 light years~3·10¹³km, 

separation of stars in a galaxies
Mpc=10⁶pc: ~ separation of bright galaxies
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The Advent of Precision Cosmology 

• Cosmology has entered the era of precision science, from order of 
magnitude estimates to 10% accuracy measurements of mass content, 
geometry of the Universe, spectral index of primordial fluctuations and 
their normalization, dark energy EOS, -- 

• Next step: observations at the 1% accuracy limit; theory and predictions 
have to keep up!

• Why do we need higher accuracy?
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The Advent of Precision Cosmology 

• Cosmology has entered the era of precision science, from order of 
magnitude estimates to 10% accuracy measurements of mass content, 
geometry of the Universe, spectral index of primordial fluctuations and 
their normalization, dark energy EOS, -- 

• Next step: observations at the 1% accuracy limit; theory and predictions 
have to keep up!

• Why do we need higher accuracy?

It’s the f...... Universe, guys!
It deserves at least two 

decimal places!

Douglas Scott, UBC
at the Santa Fe Cosmology 

Workshop in 2005
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D2(k) =
k3P(k)

2p2 ; P(~k) = hd2(~k)i

The One Percent Challenge and its Importance 

5 cosmological parameters, w = -1

Region of Interest

• Why do we need higher accuracy 
in our theoretical predictions?

• Example here: matter power 
spectrum

• Question: how badly will our 
constraints on dark energy be 
biased if we do not reach the 
same accuracy in our modeling 
as we might have in our data?

• Generate mock data set with the 
expected 1% error

• Analyze data with current 
method using HaloFit to model 
the matter power spectrum

‣ HaloFit (Smith et al. 2003): semi-
analytic fit for the power 
spectrum, based on modeling 
approach and tuned to 
simulations, accurate at the 5-10% 
level 

Δ
²(k

)

Monday, March 19, 12



Katrin Heitmann, Los Alamos National Laboratory Benasque Cosmology Workshop, August 2010

D2(k) =
k3P(k)

2p2 ; P(~k) = hd2(~k)i

The One Percent Challenge and its Importance 

5 cosmological parameters, w = -1

Region of Interest5-10% error in 
non-linear regime!

• Why do we need higher accuracy 
in our theoretical predictions?

• Example here: matter power 
spectrum

• Question: how badly will our 
constraints on dark energy be 
biased if we do not reach the 
same accuracy in our modeling 
as we might have in our data?

• Generate mock data set with the 
expected 1% error

• Analyze data with current 
method using HaloFit to model 
the matter power spectrum

‣ HaloFit (Smith et al. 2003): semi-
analytic fit for the power 
spectrum, based on modeling 
approach and tuned to 
simulations, accurate at the 5-10% 
level 

Δ
²(k

)
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Analysis of the “True data” 

• Generate mock data from 
high-resolution simulation

• Use Halofit for analysis; 
remember, halofit ~5-10% 
inaccurate on scales of 
interest

• Parameters are up to 20% 
wrong! (We checked that with 
more accurate predictions 
the answer is correct)

• Only solution: precision 
simulations

• Analysis takes at least 10,000 
input power spectra for 
MCMC, each simulation takes 
~20,000 CPU hours

• With a 2000 node cluster 
running 24/7, our analysis 
will take ~30 years, hmmm...

input values
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Dark matter
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primordial 
P(k)

Normali-
zation
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• Aim: predict P(k) out to scales of k~1 h/Mpc at 1% accuracy between z=0 and z=1

‣ Regime of interest for current weak lensing surveys

‣ Baryonic physics at these scales is sub-dominant, so physics is “easy”

‣ Dynamic range for simulations manageable

• Step 1: Show that simulations can be run at the required accuracy (Heitmann et al. ApJ 2005; 
Heitmann et al.,  ApJ 2010)

‣ Code comparison

‣ Initial conditions, force and mass resolution, ...

‣ Minimal requirement: 1 billion particles, 1.3 Gpc volume, 50 kpc force resolution, ~ 20,000 CPU hours, 
few days on 250 processors + wait time in queue ~ 1 week per simulation on “Coyote”, LANL cluster

• Step 2: Cosmic Calibration Framework (Heitmann et al. ApJL 2006, Heitmann et al., ApJ 2009)

‣ With a small number of high-precision simulations, build a prediction scheme (“emulator”) that provides 
the power spectrum for any cosmology within a given parameter space prior

‣ ~ 40 cosmological models sufficient 

• Step 3: Cosmic Emulator (Lawrence et al., ApJ 2010)

‣ Carry out large number of simulations (~1,000) at varying resolution for 38 cosmologies, one high-
resolution run per cosmology, emulator is effectively a “look-up” table

‣ Emulator available at: www.lanl.gov/projects/cosmology/CosmicEmu

LSSFast: Sub-Percent Precision Prediction for P(k) in sub-seconds

Monday, March 19, 12
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Cosmic Calibration Framework

Run suite of simulations 
(40,100,...) with chosen 

parameter values

Design optimal simulation 
campaign over (~20) 

parameter range

Statistics Package 
(Gaussian Process 
Modeling, MCMC) 

Response 
surface; 
emulator 

Calibration
Distribution 

Observation 
input 

Predictive 
Distribution

Model 
inadequacy, 

self calibration 
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• Step 1: Design simulation 
campaign, rule of thumb: O(10) 
models for each parameter

• Step 2: Carry out simulation 
campaign and extract quantity of 
interest, in our case, power 
spectrum

• Step 3: Choose suitable 
interpolation scheme to 
interpolate between models, 
here Gaussian Processes

• Step 4: Build emulator

• Step 5: Use emulator to analyze 
data, determine model 
inadequacy, refine simulation 
and modeling strategy...
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• “Simulation design”: for a given set of 
parameters to be varied and a fixed 
number of runs, at what settings should 
the simulations be performed?

• In our case: five cosmological 
parameters, tens of high-resolution runs 
are affordable

• First idea: grid 

‣ Assume 5 parameters and each parameter 
should be sampled 3 times: 3⁵=243 runs, 
not a small number, coverage of parameter 
space poor, only allows for estimating 
quadratic models ☹

• Second idea: random sampling

‣ Good if we can perform many runs -- if 
not, most likely insufficient sampling of 
some of the parameter space due to 
clustering 

• Our approach: orthogonal-array Latin 
hypercubes (OA-LH) design

‣ Good coverage of parameter space

‣ Good coverage in projected dimensions

The Simulation Design

Priors are informed by current cosmological
constraints, the tighter the priors, the easier to 
build a prediction tool. Restriction in number of 

parameters also helps!

0.020 ≤ ω  ≤ 0.025
0.11 ≤ ω   ≤ 0.15 
0.85 ≤ n ≤ 1.05
-1.3 ≤ w ≤ -0.7
0.6 ≤σ  ≤ 0.9

b
m

Priors:

8

Design Parameters

Derived Parameters

s
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The Coyote Universe

• 37 model runs + ΛCDM 

‣ 16 low resolution realizations (green)

‣ 4 medium resolution realizations (red)

‣ 1 high resolution realization (blue)

‣ 11 outputs per run between z = 0 - 3

• Restricted priors to minimize 
necessary number of runs

• 1.3 Gpc boxes, mp ~10¹¹M

• ~1000 simulations, 60TB 
°.

Background Visualization with ParaView by J. Woodring

Priors:
0.020 ≤ ω  ≤ 0.025
0.11 ≤ ω   ≤ 0.15 
0.85 ≤  n   ≤ 1.05
-1.3 ≤  w  ≤ -0.7
0.6 ≤  σ  ≤ 0.98

s

m

b
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Next step: Smooth Power Spectrum

Baryon wiggles

D2(k) =
k3P(k)

2p2 ; P(~k) = hd2(~k)i

Gadget
PM, 2048³
PM, 1024³

• Each simulation represents one 
possible realization of the 
Universe in a finite volume

• Need smooth prediction for 
building the emulator for each 
model

• Major challenge: Make sure that 
baryon features are not washed 
out or enhanced due to 
realization scatter 

• Construct smooth power spectra 
using a process convolution 
model (Higdon 2002)

• Basic idea: calculate moving 
average using a kernel whose 
width is allowed to change to 
account for nonstationarity
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Next step: Smooth Power Spectrum

Baryon wiggles

D2(k) =
k3P(k)

2p2 ; P(~k) = hd2(~k)i

Gadget
PM, 2048³
PM, 1024³

Coyote III, Process convolution

• Each simulation represents one 
possible realization of the 
Universe in a finite volume

• Need smooth prediction for 
building the emulator for each 
model

• Major challenge: Make sure that 
baryon features are not washed 
out or enhanced due to 
realization scatter 

• Construct smooth power spectra 
using a process convolution 
model (Higdon 2002)

• Basic idea: calculate moving 
average using a kernel whose 
width is allowed to change to 
account for nonstationarity
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• After simulation design 
specification: Build 
interpolation scheme that 
yields predictions for any 
cosmology within the priors

• Model simulation outputs using 
a       - dimensional basis 
representation 

‣ Find suitable set of orthogonal 
basis vectors              , here: 
Principal Component Analysis

‣ 5 PC bases needed, fifth PC 
basis pretty flat

‣ Next step: modeling the 
weights

‣ Here: Gaussian Process 
modeling (non-parametric 
regression approach, local 
interpolator; specified by mean 
function and covariance 
function)

ph

q [0,1]pq∈ln
⇢

D2(k,z)
2pk3/2

�
=

ph

Â
i=1

fi(k,z)wi(q)+ e

Number of basis 
functions, here: 5

Basis functions, 
here:  PC basis

Weights, here:  
GP model

Cosmological
parameters

Number of
parameters, 5

fi(k,z)

The Interpolation Scheme: Gaussian Processing

Basis functions
tim

e
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The Cosmic Emu(lator)

• Prediction tool for matter power 
spectrum has been constructed

• Accuracy within specified priors 
between z=0 and z=1 out to k=1 h/Mpc 
at the 1% level achieved

• Emulator has been publicly released, C 
code, Fortran wrapper available

• Next steps 

‣ Extend k-range ✓

‣ Include more physics, e.g. neutrinos

‣ Other statistics, e.g. shear spectrum ✓

http://www.lanl.gov/projects/cosmology/CosmicEmu

Emulator performance:
Comparison of prediction 
and simulation output for
 a model not used to build 

emulator at 6 redshifts.

1%

1%
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Cosmic Emulator in Action: LSSFast

• Instantaneous ‘oracle’ for nonlinear power spectrum, reduces compute time 
from weeks to negligible, accurate at 1% out to k~1/Mpc for wCDM cosmologies 

• Enables direct MCMC with results from full simulations for the first time

Heitmann et al. 2009, 2010
 Lawrence et al. 2010
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• Problem: total ignorance about the 
origin and nature of dark energy

• So far in this talk: Assume the dark 
energy equation of state w=const.   

• Key: we (the theorists) predict that 
for a “physically well motivated 
model”, EOS should be time varying

• More or less endless possibilities to 
invent models, theorists can 
calculate...

• Observers have something to look 
for... but we cannot test each and 
every model separately

• Aim: develop non-parametric 
reconstruction scheme

Weller & Albrecht, PRD  (2001)

Equation of state parameter w as a 
function of redshift for various models

brane world inspired

supergravity 
inspired

Analysis Challenge: The Nature of Dark Energy
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• Measurements of supernova magnitudes 
and w(z) connected via double-integral 

• Some reconstruction approaches:

‣ Naive: fit µ and take two derivatives, bad 
approach for noisy data

‣ Assume parametrized form for w, estimate 
associated parameters (e.g. Linder 2003)

‣ Pick local basis representation for w(z) (bins, 
wavelets) and estimate associated 
coefficients (effectively piecewise constant 
description of w(z)) (e.g. Huterer & Cooray 
2005)

• Here: new, nonparametric reconstruction 
approach based on Gaussian Process 
models (Holsclaw et al. Phys. Rev. Lett 
2010, Phys. Rev. D. 2010)

µB(z) = mB �MB = 5 log10

�
dL(z)
1Mpc

⇥
+ 25

Redshift

Kessler et al. ApJS (2009)

μ  B

dL(z) = (1 + z)
c

H0

⇧ z

0
ds

⇤
�m(1 + s)3 + (1� �m)(1 + s)3 exp

�
3

⇧ s

0

w(u)
1 + u
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� z

0

� s
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Reconstruction Task

Observer

Theorist
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te
r

Further away
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The Challenge

• Differences in the distance module µ are very small for different dynamical 
dark energy models

• To test our new method and compare with other methods we set up datasets 
for three different dark energy models with data quality of a future survey
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• Assume a GP for dark energy equation of state parameter

• Need to integrate over this in the expression for the distance modulus, where

• Use the fact that the integral over a GP is another GP and specify covariance

• A joint GP for the two variables can be constructed

Reconstructing w(z) with GP Modeling

y(s) =

Z s

0

w(u)

1 + u
du

y(s) ⇠ GP

 
� ln(1 + s),�2

Z s

0

Z s0

0

⇥|u�u0|↵dudu⇥

(1 + u)(1 + u⇥)

!


y(s)
w(u)

�
⇠ GP


� ln(1 + s)

�1

�
,


�11 �12

�21 �22

��

w(u) ⇠ GP(�1.K(u, u⇥)), K(u, u⇥) = �2⇥|u�u0|↵,
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• First: simplify task by fixing                      and 

• GP model:                                           with 

• Determine GP hyperparameters           from data

• Start with mean = -1, adjust after initial burn-in time

• Excellent results!

Results

�m = 0.27 �µ = 0

w(u) ⇠ GP(�1,K(u, u0)) K(z, z⇥) = �2⇥|z�z0|
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• Combined data analysis of supernova data (Hicken et al.), cosmic 
microwave background data (WMAP), and data from the Sloan Digital Sky 
Survey (BAO)

• GP model and parametrization results (Holsclaw et al. Phys. Rev. D 2011)

• All are in agreement with a cosmological constant within error bars
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• LSST will gather equivalent of SDSS data within a couple of 
nights; equivalent of DES data within a couple of months

• We will not be any longer statistics limited but systematics 
limited, both observational and theoretical

More Challenges Ahead, Some Examples

Sloan Digital Sky Survey
~10 years of data taking

Dark Energy Survey
5 years, start 2012

Large Synoptic 
Survey Telescope

10 years, start 2018

• We only observe a finite part of 
the Universe, due to nonlinear 
coupling, modes are correlated

• Emulator provides diagonal 
part of covariance matrix, but 
we need full matrix for error 
estimate, Cov(k,k’)

• We do not know the exact 
initial conditions, so we need 
many realizations to estimate 
the PDF at each mode and 
build up covariance matrix

• Thousands of simulations for 
each cosmology? 

Example I: Covariances

Need estimate of
PDF at each mode,

in linear theory: Gaussian
in nonlinear theory: ?
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• From the same survey, different 
cosmological probes are extracted

• E.g.: clustering statistics of 
galaxies, abundance of clusters of 
galaxies (bound, heavy objects)

• All measured from the same 
galaxies, will have same systematics

• Cross correlation between different 
probes

• Covariances?

• “Brute force”: simulate the full 
survey with galaxy population 
thousands of times, measure 
correlations

• Difficulty: have to cover large range 
of scales

More Challenges Ahead, Some Examples

Example II: Combining Probes Example III: Modeling
• On large scales: gravity dominates

• On small scales: baryons become 
important, gas physics, feedback 
effects, not possible to do simulations 
from first principles

• Many modeling options, different 
groups find different results, if one 
observable is matched, another one 
will be off

• Simulations at least an order of 
magnitude more expensive than 
gravity only, many modeling 
parameters to be varied

• How do we incorporate our ignorance 
about the baryonic physics into our 
error budget and still get good 
constraints? 
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More Challenges Ahead, Some Examples

Example IV: The Data Challenge from a Simulator’s Perspective

• Simulation datasets: Currently simulation 
data generation is constrained only by 
storage and I/O bandwidth, ~PB datasets will 
be available in the near future

‣ In situ analysis: Large-scale analysis tasks on the 
compute platform; data compression

‣ Post-processing: Post-run analyses on host 
system or associated ‘active storage’

• How can we efficiently share data?

‣ Simulation campaigns are carried out at very 
few places (supercomputer centers)

‣ Outputs are very science rich, many people can 
contribute to the analysis

‣ Moving raw data is impractical (at some point 
impossible), analysis often takes a lot of 
computing power

‣ Need for making data and analysis opportunity 
available to the community External Users

Full 
access

Limited
access
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