

An open-source approach with Halotools

Andrew Hearin

Three complementary approaches

Hydro sim

Semi-analytic model

+

$$\lambda = \frac{J|E|^{1/2}}{GM^{5/2}}$$

$$\frac{dM_{\text{baryon}}}{dt} = \epsilon(M_{\text{halo}}) \frac{dM_{\text{DM}}}{dt}$$

$$\frac{dM_{\text{gas}}}{dt} = -\Psi_{\text{SFR}}(t) + \mathcal{E}_{\text{wind}}^*(t)$$

$$\dots = \dots$$

Empirical model

+

The promise of empirical modeling

Galaxy evolution

Ten years of empirical modeling in one glib cartoon

Halo mass is king!

HOD as a specific example

HOD + simulation fitting functions ==> large-scale structure predictions

Cosmology from clustering + gg-lensing

Cosmology from clustering + gg-lensing

The Promise of Empirical Modeling Modified GR from redshift-space distortions

Zu & Weinberg 2013

Satellite quenching timescales from clustering + lensing

A Wrench in the Works

The threat of assembly bias

The Threat of Assembly Bias

Halo mass alone does not determine clustering

Not even in the linear regime!

The Threat of Assembly Bias

Halo mass alone does not determine clustering

Effects are highly scale-dependent

The Threat of Assembly Bias Potentially disastrous consequences

The Threat of Assembly Bias Potentially disastrous consequences

The Threat of Assembly Bias Potentially disastrous consequences

The Threat of Assembly Bias

Potentially disastrous consequences

Zentner et al. 2013

The Threat of Assembly Bias Potentially disastrous consequences

modified GR

ACDM

quenching physics

A new approach to the problem Direct modeling with decorated HODs

See also Mao et al. 2015, Lehmann et al. 2015

Hearin et al. 2015

Accounting for Assembly Bias Decorated HOD and galaxy clustering

Hearin et al. 2015

Accounting for Assembly Bias

Decorated HOD and gg-lensing

Hearin et al. 2015

Accounting for Assembly Bias

Time evolution of the signal

Introducing Halotools

Open-source python package for LSS modeling

Batteries included

- •HODs (traditional and decorated)
- Abundance matching
- Stellar-to-halo mass relations
- color- and quenching-models
- Many more

Making Universes with Halotools Direct mock-population approach

- Relax/test conventional modeling assumptions
 - Assembly bias, halo exclusion, etc.
 - fitting function approximations
- Easy to explore wide range of alternative statistics
 - Marked correlation functions
 - Group- and void-based statistics
 - Cluster RSD
- Precision calculations of covariance matrices
 - Easily tailorable for each statistic

Modeling Galaxies with Halotools Flexible object-oriented platform to build your own model

Covariance Matrices with Halotools Plug-and-play with any simulation and any summary statistic

Constraining Models with Halotools

Optimized for expansive MCMC-type analyses

Chang, Vakili et al., in prep.

Reproducibility with Halotools Exhaustive documentation, tutorials and automated test suite

halotools.readthedocs.org github.com/astropy/halotools

Conclusions

- Empirical modeling has great potential for both cosmology and galaxy evolution science
- Program is severely threatened by assembly bias
- · Halotools offers an open-source way forward

halotools.readthedocs.org

Some additional information

The empirical modeling approach

Run dark matter-only simulation, build simplest possible statistical model warranted by data

Advantages

Clearly-defined modeling assumptions

Quantitatively successful

Dirt cheap

Disadvantages

Contact lost with fine-grained physics

Highly restrictive:
can only predict a few
galaxy properties at a time
(usually)

The hydro sim approach

Run simulations that simultaneously includes dark matter and gas

Advantages

Self-consistent!

Most fundamental

Direct connection to underlying physics

Disadvantages

Extremely expensive! (~100 million CPU hours)

Whoops, wrong model: Gotta run it all over again!

Grossly incorrect predictions without fine-tuning (usually)

The semi-analytic modeling approach

Run dark matter-only simulation, apply hydrodynamics in post-processing phase

Advantages

Less expensive than hydro (~1 million CPU hours for N-body sim)

Close connection to true gas physics (we hope)

+

$$\lambda = \frac{J|E|^{1/2}}{GM^{5/2}}$$

$$\frac{dM_{\text{baryon}}}{dt} = \epsilon(M_{\text{halo}}) \frac{dM_{\text{DM}}}{dt}$$

$$\frac{dM_{\text{gas}}}{dt} = -\Psi_{\text{SFR}}(t) + \mathcal{E}_{\text{wind}}^*(t)$$

Disadvantages

Too many parameters to properly Monte Carlo (usually)

Not self-consistent