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FIG. 5.— Left panel: Average star formation rates as a function of halo mass and redshift. The overlaid white lines show average mass accretion histories
for halos as a function of redshift for comparison. The grey area shows halos that would have a mass of > 1015.5M⊙ at z = 0 and therefore are not expected to
exist. Right panel: Star formation histories (SFH) as a function of present-day halo mass and redshift, for galaxies at z = 0. This figure shows the historical star
formation rate for stars in the galaxy at the present day. Since the contribution of stars from merging galaxies is so low, this is equivalent to the star formation
rate traced along the white mass accretion trajectories in the left panel.
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FIG. 6.— Left panel: Average star formation rates for the galaxies in halos at a given halo mass and redshift (lines). Shaded regions indicate the one-sigma
posterior distribution. Right panel: Average star formation histories as a function of halo mass and redshift (lines). Shaded regions indicate the one-sigma
posterior distribution. Histories for 1015M⊙ halos are not shown as they are very similar to those for 1014M⊙ halos.
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FIG. 7.— Left panel: Evolution of the derived stellar mass as a function of halo mass. In each case, the lines show the mean values for central galaxies. These
relations also characterize the satellite galaxy population if the horizontal axis is interpreted as the halo mass at the time of accretion. Error bars include both
systematic and statistical uncertainties, calculated for a fixed cosmological model (see §4 for details). Right panel: Evolution of the derived stellar mass fractions
(M∗/Mh) as a function of halo mass.
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Figure 3. The 68% and 95% CLs of the joint two-dimensional,
marginalized posterior distribution for our Fiducial model, ob-
tained from the simultaneous analysis of the abundance, cluster-
ing and lensing of galaxies in the SDSS. The green contours show
the corresponding CLs for the WMAP7 analysis of the CMB (Ko-
matsu et al. 2011), and are shown for comparison.

variations. The constraints on galaxy bias, as characterized
via the CLF, are discussed in §5.3.

As discussed above, our Fiducial model consists of 16
free parameters; the two primary cosmological parameters
of interest, Ωm and σ8, for which we use uniform, non-
informative priors, the secondary cosmological parameters
ns, h and Ωb h

2, for which we use priors from WMAP7 (in-
cluding their covariance), the 9 CLF parameters that de-
scribe the halo occupation statistics, also with uniform, non-
informative priors, and finally the 2 nuisance parameters, ψ
and η, for which we adopt Gaussian priors as described in
§3.6. With a grand total of 182 constraints (32 data points
for the LF, six bins of 13 data points each for the projected

correlation function‡‡ and six bins of 12 ESD data points),
this implies 182− 16+ 5 = 171 degrees of freedom, which is
the number we have used to compute the reduced χ2 values
listed in the final column of Table 3.

Figs. 1 and 2 compare the predictions of the Fiducial

model (shaded regions, indicating the 95% confidence levels)
to the data used to constrain the model (solid dots with error
bars, indicating the 68 % confidence levels). Fig. 1 shows
that the model accurately fits the r-band galaxy luminosity
function. Although most data points agree with the model
predictions at the 1σ level, the data reveals a few small
‘wiggles’ at the faint end that are not reproduced by the
model, and which contribute dominantly to χ2

LF, the value
of which is listed in Table 3.

‡‡ Although the galaxy-galaxy clustering data points have co-
variance, we have verified that the covariance matrix for each lu-
minosity bin has rank equal to 13, and therefore does not reduce
the number of constraints.

The left-hand side of Fig. 2 shows the projected correla-
tion functions, wp(rp), for six different magnitude bins. We
caution that, because of the covariance in the data, which
is accounted for in the modeling (see §4), the quality of the
fit cannot be judged by eye. However, it is evident from
the χ2 values of the best-fit Fiducial model (see Table 3),
that the total χ2 is clearly dominated by χ2

Wp. In particular,
χ2
Wp > 2χ2

ESD, even though the projected correlation func-
tions only have 78/72 ≃ 1.08 times as many data points.
It turns out χ2

Wp is dominated by the contribution from
the data in the [−20,−21] magnitude bin. Interestingly, this
bin covers the volume that encloses the Sloan Great Wall
(SGW), a huge supercluster at z ∼ 0.08 and the largest co-
herent structure detected in the SDSS (Gott et al. 2005). As
discussed in Zehavi et al. (2011), pruning the data sample
so as to exclude the SGW region results in a significantly
reduced clustering strength for galaxies in the [−20,−21]
magnitude range (i.e., the correlation length is reduced from
r0 = 5.46±0.15 to 4.82±0.23). We return to this issue, and
its potential impact on our cosmological constraints, in §6.4
when we discuss the potential impact of sample variance.

Finally, the right-hand side of Fig. 2 shows the excess
surface densities, ∆Σ(R), again for six different magnitude
bins as indicated. The model nicely reproduces the overall
trends in the data, with only a few data points that fall
outside the 95% confidence region of the model. Overall, we
conclude that our Fiducial model is consistent with the
data at a satisfactory level. In particular, the most impor-
tant features in the data are nicely reproduced by the model
and find a natural explanation within the framework of the
halo model. For example, the fact that brighter galaxies re-
veal stronger clustering and higher excess surface densities
is consistent with the common notion that brighter galaxies
reside in more massive haloes. The lensing signal is directly
sensitive to this aspect because it probes the matter distri-
bution around galaxies, whereas the clustering signal is af-
fected by it only indirectly due to the fact that more massive
haloes are more strongly clustered than less massive ones
(e.g., Mo & White 1996). Also, the relatively weak devia-
tions of wp(rp) and ∆Σ(R) from pure power-laws typically
reflect transitions from scales where the signal is dominated
by different components of the power spectra. Examples are
the 1-halo to 2-halo transition (e.g., Zehavi et al. 2004) and
the 1-halo central to 1-halo satellite transition for the excess
surface densities (e.g., Cacciato et al. 2009).

5.1 Cosmological Parameters

Fig. 3 shows the constraints on our two primary cosmolog-
ical parameters of interest; Ωm and σ8. The blue contours
show the 68% and 95% CLs of the joint two-dimensional,
marginalized posterior distribution obtained from our si-
multaneous analysis of the abundance, clustering and lens-
ing of galaxies in the SDSS. The green contours show the
corresponding CLs for the WMAP7 analysis of the CMB
(Komatsu et al. 2011), and are shown for comparison. Note
that our results are in excellent agreement with those from
WMAP7, strengthening the case for a true concordance cos-
mology. In particular, our analysis yields Ωm = 0.278+0.023

−0.026

and σ8 = 0.763+0.064
−0.049 (both 95% CL), while the WMAP7

analysis has Ωm = 0.264+0.064
−0.049 and σ8 = 0.801+0.059

−0.058 (both
95% CL). Note also that the degeneracy between Ωm and

c⃝ 2008 RAS, MNRAS 000, 1–21
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Figure 4. Left: Varying the minimum scale included in galaxy clustering and galaxy galaxy lensing measurements. We show the baseline 3x2pt functions,
which assumes Rmin = 10Mpc/h (black/solid), and corresponding constraints when using Rmin = 20Mpc/h (red/dashed), Rmin = 50Mpc/h (blue/dot-dashed),
Rmin = 0.1Mpc/h (green/long-dashed) instead. For the latter we switch from linear galaxy bias modeling to our HOD implementation. Right: Information gain
when using HOD instead of linear galaxy bias for 3x2pt (black solid vs dashed contours) in comparison to corresponding information gain when including
cluster number counts and cluster weak lensing in the data vector (violett/dot-dashed vs long-dashed).
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Figure 5. Change in cosmological constraints when varying the underlying
cosmological model in the covariance matrix. We show three scenarios: 1)
the fiducial cosmology (black/solid), 2) fiducial cosmology but a 10% lower
value in �8 and ⌦m (red/dashed), and 3) fiducial cosmology but changes in
the dark energy parameters, i.e. w0 =�1.3 and wa =�0.5 (blue/dot-dashed).
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with z= z(�). The j dependent term is the normalized distribution of
source galaxies in redshift bin j, fred is the fraction of red galaxies
which is evaluated as a function of limiting magnitude mlim = 27,
and P�I the cross power spectrum between intrinsic galaxy orienta-
tion and matter density contrast.

The IA contamination of our data vector assumes a DEEP2
luminosity function (Faber et al. 2007) and the tidal alignment sce-
nario described in Blazek et al. (2015); Krause et al. (2016). The

tidal alignment scenario is in good agreement with observations;
using the DEEP2 luminosity function should be considered as an
upper limit of the strength of IA contaminations.

In Fig. 6 we compare the baseline analysis for cosmic shear
and 3x2pt (no IA contamination) to the case where IA contami-
nates the data vectors. In the latter case we marginalize over 10
nuisance parameters (4 for IA and 6 for luminosity function uncer-
tainties, see Krause et al. 2016, for details) to account for the IA
contamination. Although we assume the tidal alignment scenario
as a contaminant, we choose a di↵erent IA model for the marginal-
ization (non-linear alignment with the Halofit fitting formula) to
mimic a realistic analysis.

We find that in the presence of multiple probes, photo-z, shear
calibration and galaxy bias uncertainties, the assumption of an im-
perfect IA model in the marginalization is negligible. As expected
when including 10 more dimensions in the analysis the constraints
weaken but again the e↵ect is not severe. Note that the 3x2pt data
vector only includes galaxy-galaxy lensing tomography bins for
which the photometric source redshifts are behind the lens galaxy
redshift bin. Hence only a small fraction of source galaxies in
the low-z tail of the redshift distribution contribute an IA signal
to galaxy-galaxy lensing. As a consequence the 3x2pt data vector
contains only marginally more information on IA, and improve-
ments in the self-calibration of IA parameters is largely due to the
enhanced constraining power on parameters which are degenerate
with IA.

5 Discussion

The first step in designing a multi-probe likelihood analysis is to
specify the exact details of the data vector. This is far from trivial;
the optimal data vector is subject to various considerations.

• Science case This paper focusses on time-dependent dark en-
ergy as a science case with the fiducial model being ⇤CDM. If
there was indication for time-dependence, the data vector can be
optimized (tomography bins, galaxy samples, scales) such that it is
most sensitive to these signatures. The same holds when extending

MNRAS 000, 1–13 (2014)

CosmoLike
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Figure 4. Cosmological constraints for the Fiducial model. Histograms show the marginalized posterior distributions, while the blue
contour show the 68% and 95% CLs of the joint, two-dimensional marginalized posterior distributions. For comparison, the corresponding
CLs from WMAP7 are shown as green contours, while the red, solid curves show the marginalized WMAP7 prior distributions used for
the secondary cosmological parameters, ns, h and Ωb h2.

σ8 inherent in our analysis runs perpendicular to that in-
herent in the CMB data. This indicates that a combined
analysis will be able to significantly tighten the constraints
on Ωm and σ8 (see also Paper II). Finally, Fig. 3 suggests
that our constraints are even tighter than those from the
WMAP7 analysis. However, we emphasize that this is not a
fair comparison since we have used priors from WMAP7 on
the secondary cosmological parameters ns, h and Ωb h

2, but
not on Ωm or σ8 (see Paper II for the case with no priors on
ns, h and Ωb h

2).

Fig. 4 shows the one-dimensional (histograms) and joint

two-dimensional (contour plots) marginalized posterior dis-
tributions on all five cosmological parameters. Solid con-
tours indicate the 68% and 95% CLs obtained from the
analysis presented here, while the dotted contours are the
68% and 95% CLs from the WMAP7 analysis, shown for
comparison. The strongest parameter degeneracies are be-
tween Ωm and σ8 (cross-correlation coefficient r = −0.81),
between Ωb h

2 and ns (r = 0.79), and between Ωm and h
(r = −0.74). All other combinations are only weakly corre-
lated with |r| < 0.5.

Overall, there is good agreement between our con-

c⃝ 2008 RAS, MNRAS 000, 1–21
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Figure 10. Similar to Figure 7, but for the Galileon simulations. The shaded region indicates the distance scale below the force resolution in the simulations.

using mock galaxy samples constructed from different HOD and
semi-analytical model prescriptions. Redshift surveys that probe a
range of galaxy types are especially valuable for those cosmolog-
ical tests because one can check that different classes of galaxies
lead to the same cosmological conclusions even though the galaxy
samples themselves have different clustering and kinematics.

Our GIK modelling of ξscg is complementary to other semi–
analytical approaches based on the halo model (Lam et al. 2013,
2012), both seeking to model the velocity distribution around mas-
sive clusters for testing gravity (also see Tinker et al. 2006; Tinker
2007, for an alternative method of modelling galaxy redshift–space
distortion based on HOD). The semi–analytical velocity model
adopted in Lam et al. (2013) has three components: the empiri-
cal infall velocity from the spherical collapse model, the halo-
halo pairwise velocity distribution, and the intra-halo velocities (as-
sumed Maxwellian with constant scatter). While the model itself is
highly informative, the accuracy is slightly lacking compared to
simulation predictions. We instead use the simulations as emula-
tors for GIK, trading more computer time for better accuracy in the
prediction of our model. In terms of observational applications, our
method differs from Lam et al. (2013) in two significant aspects.
First, they use the stacked redshift differences as the observable,
but the model predicts the LOS velocity dispersion, so they are af-
fected by the systematics in the subtraction of Hubble flow in the
2-halo term; in our method Hubble flow is naturally incorporated
in the calculation of ξscg. Second, they consider the velocity distri-
butions up to the second moment, while we are able to model the
entire P (vr, vt) including all higher moments.

Established as one of the most powerful probes of dark en-
ergy, stacked WL analysis of clusters requires deep imaging sur-
veys that can simultaneously yield lensed background galaxies and
foreground cluster sample. Forecasts for Stage III and Stage IV

dark energy experiments predict cluster WL constraints that are
competitive with supernovae, baryon acoustic oscillations, and cos-
mic shear (see Weinberg et al. 2013, sections 6 and 8.4). To com-
plement WL as a cosmological test of gravity, GIK modelling of
galaxy clusters requires overlap with a large galaxy redshift sur-
vey, such as the ongoing Baryon Oscillation Spectroscopic Sur-
vey (BOSS, Dawson, Schlegel, et al. 2013), its higher redshift suc-
cessor eBOSS (see Comparat et al. 2013), and the deeper sur-
veys planned for future facilities such as BigBOSS (Schlegel et al.
2009), DESpec (Abdalla et al. 2012), the Subaru Prime Focus
Spectrograph (Ellis et al. 2012), Euclid (Laureijs et al. 2011), and
WFIRST (Green et al. 2012; Spergel et al. 2013). We expect that,
in combination with the stacked cluster WL analysis, the redshift–
space cluster–galaxy cross–correlations can reveal an accurate and
complete picture of the average galaxy infall around clusters, al-
lowing stringent tests of modified gravity theories for the origin of
the accelerating expansion of the Universe.
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FIG. 16.— The quenching timescale of satellite galaxies as a function of
redshift. The purple and orange filled circles show results forM∗ = 1010.5M⊙

galaxies in COSMOS. the “v1” method assumes that all galaxies were star-
forming when accreted. The “v2” method uses fq(cen) from the redshift of
the measurement to obtain tQ; these models bracket the physical range of
models. The red triangle at z = 0.05 is from the analysis of SDSS groups
in Wetzel et al. (2013a), which models the evolution of the red central frac-
tion explicitly. The green squares are taken from the clustering analysis of
Tinker & Wetzel (2010). In order of increasing redshift, these data points
represent COMBO-17 (Phleps et al. 2006), DEEP2 MB < −19.5, DEEP2
MB < −20.5 (Coil et al. 2008), and UKIDSS-UDS (Williams et al. 2009).
The yellow pentagon at z = 2.3 is from Tinker et al. (2010b), analyzing
the clustering of DRGs from Quadri et al. (2008). The shaded band shows
tQ ∼ (1+ z)−3/2, normalized by the datum from the SDSS groups data. This
power-law dependence on z represents the change in the dynamical friction
timescale as the mean density of halos changes proportionately with the mean
density of the universe. The observations in COSMOS as well as the other
sampled plotted above indicate that the fraction of red satellites is constant
with redshift. Because satellite lifetimes decrease with increasing redshift,
the quenching of satellite galaxies must be more efficient in the past.
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Knobel, C., Lilly, S. J., Kovač, K., Peng, Y., Bschorr, T. J., Carollo, C. M.,
Contini, T., Kneib, J.-P., Le Fevre, O., Mainieri, V., Renzini, A., Scodeggio,
M., Zamorani, G., Bardelli, S., Bolzonella, M., Bongiorno, A., Caputi, K.,
Cucciati, O., de la Torre, S., de Ravel, L., Franzetti, P., Garilli, B., Iovino,
A., Kampczyk, P., Lamareille, F., Le Borgne, J.-F., Le Brun, V., Maier,
C., Mignoli, M., Pello, R., Perez Montero, E., Presotto, V., Silverman,
J., Tanaka, M., Tasca, L., Tresse, L., Vergani, D., Zucca, E., Barnes, L.,
Bordoloi, R., Cappi, A., Cimatti, A., Coppa, G., Koekemoer, A. M., López-
Sanjuan, C., McCracken, H. J., Moresco, M., Nair, P., Pozzetti, L., &
Welikala, N. 2013, ApJ, 769, 24

Kriek, M., van der Wel, A., van Dokkum, P. G., Franx, M., & Illingworth,
G. D. 2008, ApJ, 682, 896

Labbé, I., Huang, J., Franx, M., Rudnick, G., Barmby, P., Daddi, E., van
Dokkum, P. G., Fazio, G. G., Schreiber, N. M. F., Moorwood, A. F. M.,
Rix, H.-W., Röttgering, H., Trujillo, I., & van der Werf, P. 2005, ApJ, 624,
L81

Leauthaud, A., Tinker, J., Behroozi, P. S., Busha, M. T., & Wechsler, R. H.
2011, ApJ, 738, 45

Leauthaud, A., Tinker, J., Bundy, K., Behroozi, P. S., Massey, R., Rhodes,
J., George, M. R., Kneib, J.-P., Benson, A., Wechsler, R. H., Busha, M. T.,
Capak, P., Cortês, M., Ilbert, O., Koekemoer, A. M., Le Fèvre, O., Lilly,
S., McCracken, H. J., Salvato, M., Schrabback, T., Scoville, N., Smith, T.,
& Taylor, J. E. 2012, ApJ, 744, 159

Li, C. & White, S. D. M. 2009, MNRAS, 398, 2177
Madgwick, D. S., Somerville, R., Lahav, O., & Ellis, R. 2003, MNRAS, 343,
871

Maller, A. H. 2008, in Astronomical Society of the Pacific Conference Series,
Vol. 396, Astronomical Society of the Pacific Conference Series, ed. J. G.
Funes & E. M. Corsini, 251–+

Mandelbaum, R., Seljak, U., Kauffmann, G., Hirata, C. M., & Brinkmann, J.
2006, MNRAS, 368, 715

Marchesini, D., van Dokkum, P. G., Förster Schreiber, N. M., Franx, M.,
Labbé, I., & Wuyts, S. 2009, ApJ, 701, 1765

Moore, B., Lake, G., & Katz, N. 1998, ApJ, 495, 139
More, S., van den Bosch, F. C., Cacciato, M., Skibba, R., Mo, H. J., & Yang,
X. 2011, MNRAS, 410, 210

Moster, B. P., Somerville, R. S., Maulbetsch, C., van den Bosch, F. C.,
Macciò, A. V., Naab, T., & Oser, L. 2010, ApJ, 710, 903

Moustakas, J., Coil, A. L., Aird, J., Blanton, M. R., Cool, R. J., Eisenstein,
D. J., Mendez, A. J., Wong, K. C., Zhu, G., & Arnouts, S. 2013, ApJ, 767,
50

Muñoz-Cuartas, J. C., Macciò, A. V., Gottlöber, S., & Dutton, A. A. 2011,
MNRAS, 411, 584

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

The Promise of  Empirical Modeling
Satellite quenching timescales "

from clustering + lensing



M3

M2

M1

The threat of assembly bias
A Wrench in the Works



Halo mass alone does not determine clustering 
The Threat of  Assembly Bias

6 WECHSLER et al

Fig. 3.— Relative bias squared for halo samples selected by quar-
tiles in c̃vir and thresholds in the mass variable m̃, compared to the
bias of all halos above the same mass threshold. Each set of curves
shows the mean bias for the indicated c̃vir quartile. The shaded
bands represent the 68% region constructed from 200 random sub-
samples of the unbiased population with the same size as the biased
subsample. The leftmost segments are taken from the z = 0 out-
put of the L80 simulation and are labeled by “80 h−1Mpc”. The
remaining segments are taken from different redshift outputs of the
L120 simulation (labeled “120 h−1Mpc”) as indicated in order to
fill in the entire range of Mvir/M⋆. The left edge of each segment
is determined by a minimum of 250 particles in a halo, while the
right edge is limited by requiring that there be more than 1500
halos in each subsample.

pare this relative bias as a function of scaled halo mass
b2
cvir

(m̃) for several subsamples selected on percentiles of
c̃vir . The shaded bands account for the measurement
error in b2

cvir
due to sub-sampling the full halo distribu-

tion by recomputing ξall(r) from 200 random subsam-
ples of the total halo population with the same number
of objects as contained in each subsample. The bands
represent the contours containing 68% of the b2

cvir
values

computed in this manner. Different ranges in Mvir/M⋆

are covered by simulation outputs at different redshifts
as labeled in the figure. Scaling the results by M⋆ delin-
eates a well-defined trend in this concentration bias as a
function of m̃. In each redshift range, we are limited at
the low-mass end by resolution; we require that a halo
have at least 250 particles within its virial radius in order
to be considered. At the high-mass end, the bands are
limited by the requirement that there be at least 1500
halos in each subsample. These requirements give rise
to the finite length of each segment in Figure 3. Results
from the L80 simulation at z ∼ 1 are in good agreement
with the L120 simulation at m̃ ∼ 0.1; however, we do not
plot these in the interest of clarity.

Figure 3 clearly demonstrates the trend already indi-
cated by the mark-correlation functions for the highest-
cvir halos to be much more strongly clustered than av-
erage for Mvir

<∼ M⋆ and less strongly clustered than the
overall halo population for Mvir

>∼ M⋆. It is worth noting
at this point that above M⋆, where the scaling of bias

with mass is very strong, mass is still the dominant vari-
able in determining bias. However, well below M⋆, the
scaling of bias with mass flattens, and formation time
appears to be the dominant variable determining bias.

Below, we provide a fitting function for the bias as a
function of both concentration and mass. Our simula-
tion data are not sufficient to determine this function
with high accuracy, but we present this function to give
a convenient way to estimate the magnitude of the ef-
fects of these trends in particular applications such as
the clustering of specific galaxy populations.

Let c′ ≡ ln(c̃vir )/σ(ln cvir) = log(c̃vir )/σ(log cvir),
such that the probability distribution of c′ at fixed halo
mass P (c′)dc′ is Gaussian with unit variance. We define
the relative bias of halos as a function of c′, as the ratio
of the clustering amplitude of halos of fixed m̃ and fixed
c′ relative to the clustering amplitude of all halos of fixed
m̃,

b2
cvir

(c′|m̃) ≡
ξ(r, c′|m̃)

ξ(r|m̃)
, (5)

where here we have again taken the average of the halo
bias over separations from 5 ≤ r/ h−1Mpc ≤ 10. We
find that a good fit to the simulation data is given by

bcvir
(c′|m̃) = p(m̃) + q(m̃)c′ + 1.61[1 − p(m̃)]c′

2
, (6)

where

p(m̃)=0.95 + 0.042 ln(m̃0.33)

q(m̃)=0.1 −
0.22[m̃0.33 + ln(m̃0.33)]

[1 + m̃0.33]
.

The best fitting parameters for this relation satisfy the
normalization condition

∫
bcvir

(c′|m̃)P (c′)dc′ = 1.0 (7)

to within a few percent. The simulation results are con-
sistent with this normalization within the sizable errors,
and we justify this constraint in more detail in § 4, where
we discuss the implications of this relative bias of halos
on the halo model. In Figure 4, we show the fit of Eq. (6)
compared to the relative bias measured from the simu-
lations as a function of the scaled concentration variable
c′, for several values of the scaled halo mass m̃.

3.3. Halo Occupation Mark

We expect that this clustering effect may extend to
other properties of halos and the galaxies they host,
especially those which are known to be strongly cor-
related with formation time and halo structure. Halo
angular momentum and halo shape are two such halo
properties that are relevant to galaxy formation and
known to correlate well with halo formation history (e.g.,
Vitvitska et al. 2002; Allgood et al. 2006)

The quantity from dissipationless simulations that is
most pertinent to models of the statistics of galaxy clus-
tering is P (Nsat|Mvir), the probability distribution of
the number of subhalos per host halo at fixed host halo
mass. In such simulations this is the best proxy for the
number distribution of satellite galaxies per halo (e.g.,
Kravtsov et al. 2004a). The probability distribution of
this number of satellite galaxies per halo as a function of
halo mass, P (Nsat|Mvir) is a primary ingredient in halo

Not even in the linear regime!

Wechsler et al. 2006
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h
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vir
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)/b
lin

(M
vir

;V
max

).
(4)

Thus for any sample of halos, as r & 10Mpc/h, we have
˜b
h

(r) ! 1, by construction.
The bottom panel of Fig. 3 shows the ratio of ˜bh(r) of

high-V
max

samples divided by bh(r) of low-V
max

samples for
several mass bins. The first three mass bins labeled in the figure,
M

vir

= 10

11.7,12.0,12.2h�1

M�, are from the Bolshoi simula-
tion, and the last two mass bins, M

vir

= 10

12.7,13.1h�1

M�, are
from the MultiDark simulation. High-V

max

halos cluster more
strongly compared to their low-V

max

counterparts at 1h�1

Mpc.
This scale-dependent feature becomes stronger with decreas-
ing M

vir

and exceeds 40% for halos of Milky Way mass and
reaches 60% at M

vir

⇡ 10

11.7h�1

M�.
Up until present, we have used both host halos and ejected

halos to compute halo biases. Both types of halos are identified
as distinct halos at z = 0. Ejected halos, however, are halos
which were identified as part of more massive halos at one or
more occasions in the past, but were ejected and now exist as
a host halo at z = 0. Those ejected halos tend to exist around
more massive halos (Wetzel et al. 2014; Wang et al. 2009, e.g.).
Therefore, the effect on scale-dependent biases may be caused
by those ejected halos.

To test this ejected halo hypothesis, we compute halo-
matter cross correlation functions after first excluding the sub-
population of ejected halos. Our results for the linear regime are
shown as the dashed curves in Fig. 2. The relative difference in
the linear bias between high-V

max

and low-V
max

halos is sup-
pressed to 25% for halos of Milky Way mass. This suppression
due to excluding the ejected halos is consistent with the results
presented in Wang et al. (2009).

In the bottom panel of Fig. 3, we show the scale-
dependence of assembly bias for non-ejected halos.3 Once the
ejected halos have been removed, the scale-dependent feature
of assembly bias is greatly reduced. This implies an intimate
connection between the scale-dependence of assembly bias and
subhalo back-splashing (see §5 for further discussion).

4 OBSERVATIONAL CONSEQUENCES

We now consider possible observational consequences of the re-
sults of the previous section. In order to do this, the key first step
is to relate an observable property of a galaxy (luminosity, stel-
lar mass) to an intrinsic property of its host halo (mass, circular
velocity). As one might infer from above (and we demonstrate
below), different choices for the latter can result in significant
differences for different observables.

In order to be explicit, we use the abundance matching
technique (Kravtsov et al. 2004; Vale & Ostriker 2004; Tasit-
siomi et al. 2004; Vale & Ostriker 2006; Conroy & Wechsler
2009; Guo et al. 2010; Simha et al. 2010; Neistein et al. 2010;
Watson et al. 2012; Rodrı́guez-Puebla et al. 2012; Kravtsov
2013) to connect the stellar masses of central galaxies to either
the mass or circular velocity of host halos. We implement this
by splitting the halo catalog into a series of bins with constant

3 We remind the reader that due to the mass resolution of the MultiDark
simulation, fig. 3 only shows results for Bolshoi halos.

Figure 3. Top panel: Ratio of halo-matter cross correlation functions
between high/low-V

max

halos from the Bolshoi simulation and the
MultiDark simulation at z = 0, normalized by their linear biases. Each
line corresponds to different halo mass bins labeled in the plots. The
top three lines that correspond to low mass halos are computed from
halos in the Bolshoi simulation, while the bottom lines are from the
MultiDark simulation. Those plots show that high-V

max

halos clus-
ter more strongly than low-V

max

halos at 1h�1Mpc and the relative
scale-dependence between those subsamples increases smoothly with
decreasing halo mass. Bottom panel: The same figure as the top panel
without ejected halos only from the Bolshoi simulation. As can be
seen by comparing these results to those in the top panel, the V

max

-
dependence of halo bias on small scales is dramatically reduced by ex-
cluding ejected subhalos. This implies an intimate connection between
the scale-dependence of assembly bias and subhalo back-splashing.

number density (=1.6 ⇥ 10

�3

(h�1

Mpc)

�3), rank ordering ei-
ther by mass or circular velocity. We label each bin by its corre-
sponding stellar mass, computed from the stellar-to-halo mass
relation of (Behroozi et al. 2013a).

Note that when we rank order based on circular veloc-
ity, there is the possibility that the mean halo masses of these
bins could differ from what we obtain after rank ordering by
halo mass. We explicitly check this and find that the mean halo
masses for both cases agree to ⇠ 99.6%, allowing us to consis-
tently compare samples of mock central galaxies with the same
stellar mass, but where the stellar mass is statistically regulated
by either M

vir

or V
max

.
We find only a relatively minor difference in the large-scale

clustering of the two samples of mock central galaxies. At fixed
stellar mass, the linear bias of samples selected by their circular
velocity are ⇠ 5% higher than samples selected by halo mass.

c� 0000 RAS, MNRAS 000, 000–000
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Figure 1. Pairwise radial velocity dispersion profile of
tracer halos surrounding cluster-sized halos, plotted as a func-
tion of cluster-centric distance. Differences between the solid

and dashed black curves show the dependence of the signal
on the mass of the tracer population. Red and blue curves

show results for a tracer sub-population with high- and low-
concentrations for their mass, respectively. The difference be-
tween the red and blue curves demonstrates the manifestation
of assembly bias in velocity space. Differences in σrad

V
are at the

∼ 10% level, of order the difference generated by departures
from general relativity predicted by f(R) models designed to
account for the cosmic acceleration.

Mvir < 1013.5M⊙/h, which I use as tracers of the veloc-
ity field surrounding the cluster-sized halos. In spherical
shells surrounding each cluster halo, I calculate the radial
component of the relative peculiar velocity between the
cluster halo and every tracer halo in the shell, denoted by
Vrad. I then stack all the values of Vrad for every tracer of
every cluster, compute the dispersion σrad

V , and plot the
result with the black curve in Figure 1 as a function of
the radial distance to the mid-point of the spherical shell.

With the red and blue curves in Figure 1, I ad-
ditionally show the velocity structure traced by high-
and low-concentration tracer halos in the mass range
1012.5M⊙/h < Mvir < 1013M⊙/h. To obtain these
concentration-selected tracer sub-populations, I bin the
tracer halos by mass using 0.02dex-width bins, and split
each bin by its median value of NFW concentration, so
that the two sub-populations have the same mass func-
tion.

For R ! 2 Mpc/h, radial velocity dispersion σrad
V

decreases with decreasing cluster-centric distance: the
relative velocity of halos becomes more coherent as
the tracers share an increasing number of large-scale
density modes sourcing their velocities (Fisher 1995;
Reid & White 2011). The dependence of σrad

V on tracer-
mass reflects the fact that higher mass tracers are less
susceptible to tidal forces, so higher mass tracers flow
more coherently with the large-scale velocity field (see

Figure 2. Pairwise line-of-sight velocity dispersion profile of
mock galaxies surrounding clusters, plotted as a function of
the projected cluster-centric distance. Lower, thin curves ex-
clude satellites from the tracer population, upper, thick curves

include the satellite contribution. Black curves pertain to a
tracer population of all galaxies; red curves show results af-
ter applying an additional red sequence cut on the tracers.
Solid curves use the age matching mock, dashed curves its
counterpart in which assembly bias effects have been erased.
Differences between the red and black corresponding curves
demonstrate the significance of color-selection effects on the
cluster RSD signal. Differences between the top and bottom
trio of curves indicate the critical role of accurate modeling
of satellite velocities. Differences between the red dashed and
red solid curves show the influence of assembly bias.

also the top panels of Figure 6 of Tinker 2007, for an al-
ternative demonstration of this point). The most striking
effect shown in Figure 1 is the trend in tracer concen-
tration. Halos with above-average concentration for their
mass exhibit ∼ 10 − 20% higher σrad

V relative to below-
average concentration tracers.

The trend in σrad
V with tracer concentration can be

understood in terms of the well-established trend of two-
point spatial clustering with concentration. Higher con-
centration halos cluster more strongly relative to lower
concentration halos of the same mass.1 Thus at fixed
mass, high-concentration halos are found in preferentially
over-dense regions. As shown in Tinker (2007), the halo-
halo pairwise-velocity distribution depends upon large-
scale density, even when the masses of the halo pairs are
held fixed. Thus sub-selecting tracer halos with high (low)
concentration effectively selects pairs in high (low) den-

1 Note that this statement only applies to the mass range rel-
evant to the tracer population shown here; this trend reverses
for halos with masses Mvir ≫ M∗, the halo model collapse
mass (Dalal et al. 2008).

c⃝ 0000 RAS, MNRAS 000, 000–000
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Figure 1. Pairwise radial velocity dispersion profile of
tracer halos surrounding cluster-sized halos, plotted as a func-
tion of cluster-centric distance. Differences between the solid

and dashed black curves show the dependence of the signal
on the mass of the tracer population. Red and blue curves

show results for a tracer sub-population with high- and low-
concentrations for their mass, respectively. The difference be-
tween the red and blue curves demonstrates the manifestation
of assembly bias in velocity space. Differences in σrad

V
are at the

∼ 10% level, of order the difference generated by departures
from general relativity predicted by f(R) models designed to
account for the cosmic acceleration.

Mvir < 1013.5M⊙/h, which I use as tracers of the veloc-
ity field surrounding the cluster-sized halos. In spherical
shells surrounding each cluster halo, I calculate the radial
component of the relative peculiar velocity between the
cluster halo and every tracer halo in the shell, denoted by
Vrad. I then stack all the values of Vrad for every tracer of
every cluster, compute the dispersion σrad

V , and plot the
result with the black curve in Figure 1 as a function of
the radial distance to the mid-point of the spherical shell.

With the red and blue curves in Figure 1, I ad-
ditionally show the velocity structure traced by high-
and low-concentration tracer halos in the mass range
1012.5M⊙/h < Mvir < 1013M⊙/h. To obtain these
concentration-selected tracer sub-populations, I bin the
tracer halos by mass using 0.02dex-width bins, and split
each bin by its median value of NFW concentration, so
that the two sub-populations have the same mass func-
tion.

For R ! 2 Mpc/h, radial velocity dispersion σrad
V

decreases with decreasing cluster-centric distance: the
relative velocity of halos becomes more coherent as
the tracers share an increasing number of large-scale
density modes sourcing their velocities (Fisher 1995;
Reid & White 2011). The dependence of σrad

V on tracer-
mass reflects the fact that higher mass tracers are less
susceptible to tidal forces, so higher mass tracers flow
more coherently with the large-scale velocity field (see

Figure 2. Pairwise line-of-sight velocity dispersion profile of
mock galaxies surrounding clusters, plotted as a function of
the projected cluster-centric distance. Lower, thin curves ex-
clude satellites from the tracer population, upper, thick curves

include the satellite contribution. Black curves pertain to a
tracer population of all galaxies; red curves show results af-
ter applying an additional red sequence cut on the tracers.
Solid curves use the age matching mock, dashed curves its
counterpart in which assembly bias effects have been erased.
Differences between the red and black corresponding curves
demonstrate the significance of color-selection effects on the
cluster RSD signal. Differences between the top and bottom
trio of curves indicate the critical role of accurate modeling
of satellite velocities. Differences between the red dashed and
red solid curves show the influence of assembly bias.

also the top panels of Figure 6 of Tinker 2007, for an al-
ternative demonstration of this point). The most striking
effect shown in Figure 1 is the trend in tracer concen-
tration. Halos with above-average concentration for their
mass exhibit ∼ 10 − 20% higher σrad

V relative to below-
average concentration tracers.

The trend in σrad
V with tracer concentration can be

understood in terms of the well-established trend of two-
point spatial clustering with concentration. Higher con-
centration halos cluster more strongly relative to lower
concentration halos of the same mass.1 Thus at fixed
mass, high-concentration halos are found in preferentially
over-dense regions. As shown in Tinker (2007), the halo-
halo pairwise-velocity distribution depends upon large-
scale density, even when the masses of the halo pairs are
held fixed. Thus sub-selecting tracer halos with high (low)
concentration effectively selects pairs in high (low) den-

1 Note that this statement only applies to the mass range rel-
evant to the tracer population shown here; this trend reverses
for halos with masses Mvir ≫ M∗, the halo model collapse
mass (Dalal et al. 2008).
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sub-populations at a given halo mass. Of course, intro-
duction of the constant ↵ is only one simple way in which
to characterize P

dec

(N
s

|M
h

, x); in practice there is an in-
finite set of possible decorations that satisfy Eq. (17).

4.1.4 The central-satellite term

As discussed in §2.3, halo occupation models also need
to make an assumption regarding hN

c

N
s

i, which specifies
the expectation value for the number of central-satellite
pairs. Throughout this paper we assume that

hN
c

N
s

|M
h

, xi
dec

= hN
c

|M
h

, xi
dec

· hN
s

|M
h

, xi
dec

, (23)

and thus that the occupation numbers for centrals and
satellites at fixed M

h

and x are independent. Note,
though, that because of the mutual covariance with the
secondary halo property x, this will generally not be the
case for the corresponding marginalized moment, i.e.,

hN
c

N
s

|M
h

i

dec

=

Z
hN

c

N
s

|M
h

, xi
dec

P (x|M
h

) dx

6= hN
c

|M
h

i

dec

· hN
s

|M
h

i

dec

. (24)

Assembly bias induces a non-trivial hN
c

N
s

|M
h

i through
the auxiliary property x. This assumption is not a neces-
sary feature of the decorated HOD, and as described in
§6 the Halotools framework is written to accommodate
alternative assumptions for central-satellite correlations.

As discussed in more detail in §4.2 below, the dec-
oration of centrals is limited by the requirement that
0  hN

c

i  1. Consequently, if hN
c

|M
h

i

dec

= 1 (which
is typically the case for massive halos), one also has that
hN

c

|M
h

, xi
dec

= 1 (see §4.2 below), and thus

hN
c

N
s

|M
h

i

dec

= hN
s

|M
h

i

dec

. (25)

Similarly, if hN
c

|M
h

i

dec

= 0 (which is typically the case
in low mass halos), then hN

c

|M
h

, xi
dec

= 0 and thus
hN

c

N
s

|M
h

i

dec

= 0. Hence, under HOD conservation, the
average number of central-satellite pairs in massive halos
for a decorated model is identical to that of its standard
baseline model, except for the fairly narrow range in halo
masses for which 0 < hN

c

|M
h

i < 1 (see also §5.1.1 and
§5.3).

4.2 A Toy Model: Discrete Halo
Sub-Populations

In this section we will develop a simple toy example
of a decorated HOD in which the halo population at
fixed mass is split into two sub-populations. For example,
there is one sub-population that contains a fraction P

1

of
all halos (the “type 1” halos) at fixed mass for which
�N

s

(M
h

, x) = �N
s,1

(a constant) and a second popula-
tion containing P

2

= 1�P
1

of all halos at fixed mass and
for which �N

s

(M
h

, x) = �N
s,2

. This could be achieved
by splitting the halo population into the P

1

percentile
of highest-x halos and assigning them a satellite galaxy
occupation enhancement of �N

s,1

. Likewise, the remain-
ing 1 � P

1

percentile of lowest x halos receive a satellite
galaxy occupation decrement of �N

s,2

This is a simple
case of two, discrete halo sub-populations, with di↵erent
occupation statistics, at fixed mass.

Older halos Younger halos

Abias =1

Abias = 1/2

Abias = 0

Abias = -1/2

Abias = -1

Figure 1. Cartoon illustration of the decorated HOD.
Each row of circles represents a population of halos of the
same mass, divided evenly on the left and right into halos
that are old and young for their mass, respectively. The num-
ber of galaxies in each halo is represented with the small, red
ellipses. As described in §4.2, the A

bias

parameter governs
the strength of assembly bias in our two-population model.
Each row gives a visual representation of a di↵erent value of
�1  A

bias

 1. More positive values of A
bias

correspond to
models in which later-forming halos host more galaxies relative
to earlier-forming halos of the same mass, and conversely for
A

bias

< 0. Note that changing values of A
bias

does not change
hN

g

|M
h

i , the mean number of galaxies averaged across all ha-
los of a fixed mass; this is the defining feature of the decorated
HOD, and the meaning of the principle of HOD conservation.

In such a scenario, conserving the first moment of
the HOD (Eq. [17], for k = 1) requires that

0 = P
1

�N
s,1

+ P
2

�N
s,2

, (26)

and likewise for centrals. As discussed in §4.1, the sec-
ond central occupation moment is automatically con-
served. For the satellites, we choose to assume that
both P

dec

(N
s

|M
h

, x) and P
std

(N
s

|M
h

) are Poisson, and
thus that the second occupation moment is not con-
served. (see Mao et al. 2015, for the motivation for
this choice based on subhalo occupation statistics). With
these two assumptions, one need only specify the two
first-order decoration functions, �N

c,1

and �N
s,1

, and
then P

dec

(N
g

|M
h

, x) is completely determined.
In order to guarantee that the mean number of galax-

ies is always non-negative and that the mean number of
centrals is never greater than one, there is a restricted
set of values which the decoration functions �N

s,1

and
�N

c,1

may take on. It is easy to show that the maxi-
mum strength of assembly bias for satellites in this two-
population toy model is

�N
s,1

(M
h

, x)  �Nmax

s,1

(M
h

) =
1� P

1

P
1

hN
s

|M
h

i

std

.

(27)
Eq. (27) ensures that hN

s

i � 0 in type-2 halos (x <
x̄(M

h

)). The constraint that hN
s

i � 0 in type-1 halos
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Figure 4. Varying the strength of assembly bias. Impact of assembly bias on galaxy-galaxy clustering (left) and the galaxy-
mass cross correlation (right). The strength of the assembly bias is shown in the legend in the left panel. Green curves show results
for A

bias

> 0, in which case high-concentration halo occupations are boosted relative to low-concentration halos of the same mass;
magenta curves show the opposite case of A

bias

< 0. All curves pertain to a baseline, mass-only HOD with stellar mass threshold
M⇤ > 1010.5M� with �

logM⇤ = 0.4, as in Figures 2 & 3. Notice that the e↵ects of assembly bias, even in this simple toy model, are
potentially large and complex. Furthermore, note that under the assumptions of this model, in the pure one-halo regime assembly
bias always boosts galaxy-galaxy clustering (but not necessarily the galaxy-mass cross correlation).

Figure 5. Same as Fig. 4, but central and satellite assembly bias have opposite sign.

galaxy-matter cross correlation is sensitive to galaxy-
matter “pairs,” not galaxy-galaxy pairs. Instead, in this
regime, there are two contributions to the clustering: one
proportional to hN

c

|M
vir

i and another proportional to
hN

s

|M
vir

i. For both contributions, the one-halo term of
galaxy-matter clustering is a probe of the halo mass pro-
file, and so we should naturally expect that preferentially
populating halos with high-concentration profiles should
boost ⇠

gm

in the one-halo regime.

The right-hand panel of Figure 3 shows that this ex-
pectation is born out: the galaxy-matter cross correlation
gets a ⇠ 10% boost on R . 400kpc when A

bias

= 1. Per-
haps not surprisingly, we can see that this e↵ect is far
more important for satellite galaxies than for centrals.
Referring to Eq. (3), we can see that there are two dis-
tinct e↵ects responsible for this di↵erence. The first e↵ect
is due to the di↵erent spatial distributions of centrals and

satellites. Because we model satellite galaxies to trace the
underlying dark matter potential, then by boosting satel-
lite occupations in high-concentration halos, both ⇢

m

(r)
and n

sat

(r) get a boost to the e↵ective concentration pa-
rameter, c

e↵

. The convolution factor ⌅
gm

in the hN
s

|M
vir

i

term therefore gets a boost that is quadratic in c
e↵

. Cen-
tral galaxies, on the other hand, are assumed to sit at the
halo center, and so the ⌅

gm

factor in the hN
c

|M
vir

i term
is only boosted in linear proportion to c

e↵

.

The second reason central and satellite assembly bias
have distinct contributions to one-halo lensing has to do
with the combinatorics of assembly bias. As discussed in
§ 5.1.1, the halo mass range over which assembly bias
can influence central galaxy occupations is restricted by
the constraint that 0 < hN

c

i < 1; as a result, central
assembly bias for our fiducial M⇤ > 1010.5M� sample
ceases to be operative for M

vir

& 5⇥1012M� (see Fig. 2).
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Figure 4. Varying the strength of assembly bias. Impact of assembly bias on galaxy-galaxy clustering (left) and the galaxy-
mass cross correlation (right). The strength of the assembly bias is shown in the legend in the left panel. Green curves show results
for A

bias

> 0, in which case high-concentration halo occupations are boosted relative to low-concentration halos of the same mass;
magenta curves show the opposite case of A

bias

< 0. All curves pertain to a baseline, mass-only HOD with stellar mass threshold
M⇤ > 1010.5M� with �

logM⇤ = 0.4, as in Figures 2 & 3. Notice that the e↵ects of assembly bias, even in this simple toy model, are
potentially large and complex. Furthermore, note that under the assumptions of this model, in the pure one-halo regime assembly
bias always boosts galaxy-galaxy clustering (but not necessarily the galaxy-mass cross correlation).

Figure 5. Same as Fig. 4, but central and satellite assembly bias have opposite sign.

galaxy-matter cross correlation is sensitive to galaxy-
matter “pairs,” not galaxy-galaxy pairs. Instead, in this
regime, there are two contributions to the clustering: one
proportional to hN

c

|M
vir

i and another proportional to
hN

s

|M
vir

i. For both contributions, the one-halo term of
galaxy-matter clustering is a probe of the halo mass pro-
file, and so we should naturally expect that preferentially
populating halos with high-concentration profiles should
boost ⇠

gm

in the one-halo regime.

The right-hand panel of Figure 3 shows that this ex-
pectation is born out: the galaxy-matter cross correlation
gets a ⇠ 10% boost on R . 400kpc when A

bias

= 1. Per-
haps not surprisingly, we can see that this e↵ect is far
more important for satellite galaxies than for centrals.
Referring to Eq. (3), we can see that there are two dis-
tinct e↵ects responsible for this di↵erence. The first e↵ect
is due to the di↵erent spatial distributions of centrals and

satellites. Because we model satellite galaxies to trace the
underlying dark matter potential, then by boosting satel-
lite occupations in high-concentration halos, both ⇢

m

(r)
and n

sat

(r) get a boost to the e↵ective concentration pa-
rameter, c

e↵

. The convolution factor ⌅
gm

in the hN
s

|M
vir

i

term therefore gets a boost that is quadratic in c
e↵

. Cen-
tral galaxies, on the other hand, are assumed to sit at the
halo center, and so the ⌅

gm

factor in the hN
c

|M
vir

i term
is only boosted in linear proportion to c

e↵

.

The second reason central and satellite assembly bias
have distinct contributions to one-halo lensing has to do
with the combinatorics of assembly bias. As discussed in
§ 5.1.1, the halo mass range over which assembly bias
can influence central galaxy occupations is restricted by
the constraint that 0 < hN

c

i < 1; as a result, central
assembly bias for our fiducial M⇤ > 1010.5M� sample
ceases to be operative for M

vir

& 5⇥1012M� (see Fig. 2).
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Figure 8. M⇤� and z�dependence of assembly bias. All curves in both panels pertain to our fiducial assembly bias model,
in which A

cen

bias

= 1, A

sat

bias

= 0.2, the secondary halo property is concentration and �
logM⇤ = 0.4. In the left panel, we show

the fractional e↵ect on ⇠
gg

for the three di↵erent M⇤�thresholds indicated in the legend; in our baseline HOD model, the M⇤
threshold-dependence derives from the M⇤ �M

h

relation (see Eq. [8]). Over this stellar mass range, the impact of assembly bias
generally weakens as the M⇤ threshold increases; the apparent non-monotonic behavior seen by comparing the green and black
curves in the left panel is a numerical resolution artifact, as discussed in the text. In the right panel we show how a fixed level of
assembly bias has an impact on galaxy clustering with a strength that varies with redshift. In our model z�dependence derives
from the evolution of the stellar-to-halo-mass relation (see Eq. [7]). For L⇤

�type galaxy samples defined by a fixed stellar mass
(or luminosity) threshold, the impact of assembly bias on galaxy clustering becomes less important at higher redshift, a generic
result.

surface brightness profile). By fitting measurements of
n�dependent clustering with an HOD decorated accord-
ing to t

lmm

, one can statistically test the hypothesis
that galaxy morphology is physically connected to ma-
jor mergers.

(ii) Let x = �M
vir

/�⌧ be halo mass accretion rate,
defined over some timescale ⌧, and let hf |M

h

i be some
baseline model for the duty cycles of quasars. By fit-
ting such a decorated HOD to the two-point functions of
quasar samples and finding the time ⌧ over which the cor-
relation is strongest, it becomes possible to statistically
quantify the timescale over which the cosmic supply of
fresh gas impacts the quasar duty cycle.

(iii) Let x = N
c

(M
h

) be the number of central galaxies
in a halo (i.e., zero or one), and let hf |M

h

i = hN
s

|M
h

i .
This is the variation on the decorated HOD alluded to
in §2.2 that allows one to explore intermediate cases be-
tween the two extreme assumptions for how hN

c

N
s

|M
vir

i

is computed in ordinary HOD models.

We conclude this section by noting that the
Halotools code base already supports all of the
above generality. As described in the code doc-
umentation http://halotools.readthedocs.org, the
HeavisideAssembias orthogonal mix-in class can be used
to decorate any one-point function with the step-function
style assembly bias employed in the present paper. There
is also freedom to explore A

bias

= A

bias

(M
h

), as well
as M

h

�dependence in how the halos are split into sub-
populations, i.e., P

1

= P
1

(M
h

). This level of generality
is made possible through the use of a python decorator,
from which the decorated HOD derives its name. We will
explore many of these interesting avenues for extending
the HOD approach in forthcoming papers.

6.2 Previous Formulations

6.2.1 Early HOD-style models

The general approach taken in our work is most closely re-
lated to Wechsler et al. (2006). In that paper, the authors
considered generalizing the halo model to predict dark
matter and/or galaxy clustering given that the clustering
of halos is both mass- and density-profile dependent. Our
mathematical formulation of the decorated HOD builds
naturally upon this early work by introducing the con-
cept of “HOD conservation” into the framework outlined
in Section 4.4 of Wechsler et al. (2006).

Another early formulation of assembly-biased HOD-
style models appears in Tinker et al. (2008). There the
authors introduced a dependence of the first occupa-
tion moment of central galaxies hN

c

i on �
5

, the num-
ber density of dark matter particles smoothed with a
spherical tophat window of radius 5Mpc. In this model,
hN

c

|M
h

; �
5

i 6= hN
c

|M
h

i , and the level at which the equal-
ity is violated is controlled by additional parameters. The
baseline HOD model explored in Tinker et al. (2008)
included a parameter M

min

, which can intuitively-but-
roughly be thought of as the minimum mass required for
a halo to host a central galaxy above a given brightness.
In Tinker et al. (2008), the authors implemented assem-
bly bias by manually changing the M

min

parameter in
high- and low-density regions such that the overall num-
ber density of galaxies is held fixed.

The model presented in Gil-Maŕın et al. (2011) has
much in common with the Tinker et al. (2008) model. In
Gil-Maŕın et al. (2011), the authors partition the dark
matter density field into three disjoint categories, voids,
filaments and nodes, and allow the values of all the HOD
parameters to separately vary in each of these regions.
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 Introducing Halotools

•HODs (traditional and decorated)"
•Abundance matching"
•Stellar-to-halo mass relations"
•color- and quenching-models"
•Many more

Batteries included

Open-source python package for LSS modeling



•Relax/test conventional modeling assumptions 
• Assembly bias, halo exclusion, etc."
• fitting function approximations

•Precision calculations of covariance matrices
• Easily tailorable for each statistic

•Easy to explore wide range of alternative statistics
• Marked correlation functions"
• Group- and void-based statistics"
• Cluster RSD

Making Universes with Halotools
Direct mock-population approach



Flexible object-oriented platform"
to build your own model

Modeling Galaxies with Halotools



Plug-and-play with any simulation "
and any summary statistic

Covariance Matrices with Halotools

Composite "
Model

Simulation 1 

Simulation 2

Simulation 3

Covariance 
estimation 



Optimized for expansive MCMC-type analyses

Constraining Models with Halotools

Chang, Vakili et al., "
in prep.



Reproducibility with Halotools

halotools.readthedocs.org
github.com/astropy/halotools

Exhaustive documentation, tutorials"
and automated test suite



 Conclusions

•Empirical modeling has great potential for both 
cosmology and galaxy evolution science 

•Program is severely threatened by assembly bias

•Halotools offers an open-source way forward

halotools.readthedocs.org



 Some additional information



The empirical modeling approach

Modeling Galaxy Evolution

Run dark matter-only simulation, "
build simplest possible statistical model warranted by data 

Advantages Disadvantages

+

Clearly-defined !
modeling assumptions

Quantitatively successful

Dirt cheap

Contact lost with!
fine-grained physics

Highly restrictive:!
can only predict a few!

galaxy properties at a time!
(usually)



The hydro sim approach

Modeling Galaxy Evolution

Run simulations that simultaneously "
includes dark matter and gas"

  

Advantages

Self-consistent!

Most fundamental

Direct connection to !
underlying physics

Disadvantages

Extremely expensive!!
(~100 million CPU hours)

Whoops, wrong model:!
Gotta run it all over again!

Grossly incorrect predictions !
without fine-tuning!

(usually)



The semi-analytic modeling approach

Modeling Galaxy Evolution

Run dark matter-only simulation, "
apply hydrodynamics in post-processing phase"

  

Advantages Disadvantages

Less expensive than hydro!
(~1 million CPU hours !

for N-body sim)

Close connection !
to true gas physics!

(we hope)

Too many parameters!
to properly Monte Carlo!

(usually)

Not self-consistent

+

1

V
max

= GM(< R)/R

� =
J |E|1/2

GM5/2

dM
baryon

dt
= ✏(M

halo

)
dM

DM

dt

dM
gas

dt
= � 

SFR

(t) + E⇤
wind

(t)

� =
J |E|1/2

GM5/2

dM
baryon

dt
= ✏(M

halo

)
dM

DM

dt
dM

gas

dt
= � 

SFR

(t) + E⇤
wind

(t)

. . . = . . .

c� 0000 RAS, MNRAS 000, 000–000


