The Dark Side of Galaxy Evolution

> Andrew Hearin Fermilab

Basic Goal

Connect Galaxies to Dark Matter Halos

SDSS Galaxies

Dark Matter Halos

Bolshoi N-body simulation

31 Mpc

Motivation

Connect Galaxies to Dark Matter Halos

Cosmological Constraints:

0.9

0.85

0.8

0.75

0.7

σ₈

Cacciato et al. 2013

0.28

 $\Omega_{\rm m}$

0.32

0.36

WMAP7 Fiducia

0.24

0.2

Behroozi et al. 2012

Outline

I. Basic Galaxy Phenomenology

Pender formation rate (SFO) 2. Galaxy & Halo Co-Evolution

star

3. The Threat of Assembly Bias

4. Model Discrimination

Cast of Characters

Peter Behroozi

Andrey Kravtsov

Matt Becker

Andreas Berlind

Doug Watson

Reina Reyes

Andrew Zentner

Ramin Skibba

Frank van den Bosch

Part I

A Lightning Tour of Galaxy Phenomenology

Luminosity-Dependent Clustering

Interplay between theory and observatio

Galaxy Evolution Phenomenology

Bi-modality in color

Tuesday, October 8, 13

Color-Dependent Clustering

Zehavi et al. 2011

Central and Satellite Galaxies

Central & Satellite Quenching

A technical aside

Specific Star Formation Rate (sSFR)

- 1. Bright, Large-M^{*} galaxies cluster more strongly than <u>faint, low-M</u>* galaxies
- 2. **Red "quenched**" galaxies cluster more strongly than **blue "star-forming**" galaxies
- 3. **"Satellite"** galaxies are redder and more quenched than "central" galaxies

Part II

tion rate

Idance

Matching (CAM)

or predicting

Modeling the Co-Evolution of Galaxies and Dark Matter Halos

How bright is the galaxy in a dark matter halo?

How bright is the galaxy in a dark matter halo?

Abundance Matching Ansatz

How much stellar mass fits inside a halo?

Abundance Matching works equally well for M*!

Upshot of Abundance Matching

What color is the galaxy in a dark matter halo?

What color is the galaxy in a dark matter halo?

Age Matching Ansatz

How old is a dark matter halo?

What color is the galaxy in a dark matter halo?

Age Matching Ansatz

What color is the galaxy in a dark matter halo?

Age Matching Prediction

From Color to Star Formation Rate

Age Matching Prediction

Watson et al. (in prep)

Satellite Quenching Profiles

Age Matching Prediction

Watson et al. (in prep)

Age Matching mocks publicly available at:

http://logrus.uchicago.edu/~aphearin

Part III

The Threat of Assembly Bias

The Halo Occupation Distribution (HOD) in a Nutshell

Why do these differences matter?

Why do these differences matter?

Potential well depth impacts halo clustering *at fixed mass*

HOD fit to Age Matching mock

Zentner et al. 2013 arXiv:1311.1818

Best-fitting HOD is Systematically Biased!

Systematic error on satellite quenching

Zentner et al. 2013 arXiv:1311.1818

Systematic error on M_{min}

Model Discrimination

Galactic Conformity: SFR Correlations outside R_{vir}

Kauffman et al. 2013 arXiv:1209.3306

Model Discrimination

Galactic Conformity: HOD predicts identically zero signal

Hearin 2014, in prep

Model Discrimination

Galactic Conformity: Age Matching prediction

Hearin 2014, in prep

Conclusions

- Age Matching is a new, simple, accurate model for the co-evolution of galaxies and their halos
- Importance of post-infall physics to satellite quenching has likely been over-estimated
- 3. New, more sophisticated galaxy-halo models are required to robustly constrain cosmology and galaxy evolution

Some Additional Information

Some Additional Information

Confirming Conformity Campbell et al., in prep

Some Additional Information

Assembly Bias is Scale-Dependent, even on large scales!

