Density and transverse velocity in the local Universe as probes of cosmology

# Alex Hall

University of Edinburgh

### Based on arXiv: 1811.05454 (Hall 2019) and arXiv: 1911.07855 (Hall 2020)



#### 'Late' times

- What is causing the Universe to accelerate in its expansion?
- What is dark matter?
- What is the mass of the neutrino?
- How do galaxy formation processes interact with the cosmic web?
- Are the apparent 'tensions' due to new physics?









### 'Early' times

- What is the correct physical description of Inflation?
- What is the origin of the Standard Model? How does gravity fit in? What caused baryon asymmetry?



 How and when did reionization occur?

#### 'Late' times

- What is causing the Universe to accelerate in its expansion?
- What is dark matter?
- What is the mass of the neutrino?
- How do galaxy formation processes interact with the cosmic web?
- Are the apparent 'tensions' due to new physics?

### 'Early' times

- What is the correct physical description of Inflation?
- What is the origin of the Standard Model? How does gravity fit in? What caused baryon asymmetry?
- How and when did reionization occur?
- Is General Relativity correct on cosmological scales?

(late) times

What is causing the Universe to accelerate in its expansion?

- What is dark matter?
- What is the mass of the neutrino?
- How do galaxy formation processes interact with the cosmic web?
- Are the apparent 'tensions' due to new physics?

### 'Early' times

- What is the correct physical description of Inflation?
- What is the origin of the Standard Model? How does gravity fit in? What caused baryon asymmetry?
- How and when did reionization occur?
- Is General Relativity correct on cosmological scales?

(Late) times

What is causing the Universe to accelerate in its expansion?

- What is dark matter?
- What is the mass of the neutrino?
- How do galaxy formation processes interact with the cosmic web?
- Are the apparent 'tensions' due to new physics?

### 'Early' times

- What is the correct physical description of Inflation?
- What is the origin of the Standard Model? How does gravity fit in? What caused baryon asymmetry?
- How and when did reionization occur?
- Is General Relativity correct on cosmological scales?

# Cosmological information in the late-time Universe





Galaxy redshift surveys

Weak gravitational lensing surveys

#### See also:

Geometric probes (Sn I a, BAO, H<sub>0</sub>), Lyman- $\alpha$  Forest, cluster number counts, SZ surveys, 21 cm, gravitational waves, ...

## Cosmological information in the late-time Universe



Galaxy redshift surveys



Weak gravitational lensing surveys

### Ultimate aim is to study the statistics of the matter distribution, via its gravitational influence on galaxies and light

## **Outline of this talk**

# Part I

Transverse velocities of galaxies as a probe of cosmic flows, large-scale structure, and cosmology

# Part II

The influence of our *local environment* on the statistics of large-scale structure and implications for cosmology

# Part I

# Cosmology with extragalactic proper motions

### Based on arXiv:1811.05454 (AH 2019)

### Disruption as summer winds batter Scotland

() 7 August 2016

#### 🔗 😏 🗹 < Share

f



Source: BBC News

# Proper motion of luminous sources at cosmological distances

Questions

Can we ever measure the real-time motion of galaxies and quasars across the sky?

What would such a measurement tell us about our Universe?

### Motion of the Solar System: Secular parallax

### Secular aberration drift

Transverse peculiar velocities



McCrea (1935), Weinberg (1972), Kardashev, Pariiskii and Umarbaeva (1973), Novikov (1977), Kardashev (1986), Kasai (1988), Ding & Croft (2009), Darling & Truebenbach (2018), Paine, Darling, Graziani, Courtois (2020)

2) Solar System accelerates towards galactic centre ('secular aberration drift')  $\mu(r) \sim 5 \,\mu {
m as \, yr}^{-1}$ 

Titov et al (2011) : VLBI  $6.4 \pm 1.5 \,\mu \mathrm{as} \,\mathrm{yr}^{-1}$ 

Klioner et al (Gaia EDR3) :  $5.05 \pm 0.35 \,\mu {
m as} \,{
m yr}^{-1}$ 

### Dipolar angular structure (independent of distance)





Motion of the Solar System: Secular parallax

$$\mu(r) \sim 80 \left(\frac{r}{1 \,\mathrm{Mpc}}\right)^{-1} \,\mu\mathrm{as}\,\mathrm{yr}^{-1}$$

Secular aberration drift

 $\mu(r) \sim 4 \,\mu \mathrm{as}\,\mathrm{yr}^{-1}$ 

 $\mu$ (

• Transverse peculiar velocities

$$(r) \sim 90 \left(\frac{r}{1 \,\mathrm{Mpc}}\right)^{-1} \mu \mathrm{as} \,\mathrm{yr}^{-1}$$

### End-of-mission Gaia proper motion uncertainties



### End-of-mission Gaia proper motion uncertainties



### Gaia end-of-mission simulated proper motions



Figure from Paine et al (2020)

(First attempt at measuring secular parallax)

### Gaia end-of-mission forecasts on secular parallax



### AH 2019

### Gaia end-of-mission forecasts on secular parallax



Could measure Hubble constant if we could identify proper motion dipole with CMB dipole; bulk flow complicates this!

AH 2019

### Gaia end-of-mission forecasts on secular parallax

![](_page_22_Figure_1.jpeg)

 $\Delta H 20$ 

- Even with prior knowledge of velocity dipole from CMB, detection significance of Solar System-CMB motion is limited if peculiar dipole unknown.
- Potentially can make a significant detection of Solar System-Galaxy dipole: need to go to close, bright objects for this (Paine+20).
- Can get ~3% on H0 with LSST, ~1% with NGRST with 3D velocity reconstruction + bias model (Croft 20)

### What could we measure with galaxy proper motions?

- Dipole due to acceleration (Secular Aberration Drift)
  - Independent of distance, so best off using QSOs (cf recent detections)
  - Partially degenerate with Secular Parallax (both E-mode dipoles) if range of distances limited.

### What could we measure with galaxy proper motions?

- Dipole due to acceleration (Secular Aberration Drift)
  - Independent of distance, so best off using QSOs (cf recent detections)
  - Partially degenerate with Secular Parallax (both E-mode dipoles) if range of distances limited.
- Peculiar velocities of galaxies
  - Have angular structure at all scales.
  - Still an E-mode.
  - If you want to compare with models you need at least:
    - I) distances (TF/FP, or spectroscopic redshifts and incur extra noise from radial velocities).
    - 2) correlation functions, with predictions from largescale structure theory (cosmology!)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_1.jpeg)

### **Vector field on the sphere**

![](_page_27_Figure_1.jpeg)

### **Vector field on the sphere**

**Gradient and curl part** 

![](_page_28_Figure_1.jpeg)

### **Vector field on the sphere**

**Gradient and curl part** 

E and B modes...

# **E-mode dipole**

![](_page_29_Figure_1.jpeg)

# **B-mode dipole**

![](_page_30_Picture_1.jpeg)

## Spin-weighted spherical harmonics

$$V_{\pm} = V_{\theta} \pm i V_{\phi}$$

$$V_{\pm}(\hat{\mathbf{n}}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} (\mp \epsilon_{\ell m} + i\beta_{\ell m})_{\pm 1} Y_{\ell m}(\hat{\mathbf{n}})$$

 $_{\pm 1}Y_{\ell m}(\hat{\mathbf{n}})$ 

- Complete set for square-integrable vector fields on the sphere.
- Simple rotational properties.
- •Orthonormal.
- Explicit form depends on local basis choice.
- Fast implementations available in LIBSHARP (packaged with HEALPIX).

### Spin-weighted spherical harmonics

Constant relative velocity (e.g. Secular Parallax):

$$\begin{aligned} \epsilon_{lm} &= -\frac{8\pi}{3} \frac{|\mathbf{V}|}{\sqrt{2}} Y_{1m}^*(\hat{\mathbf{V}}) \delta_{l1}, \\ \beta_{lm} &= 0. \end{aligned}$$

Large-scale structure:

$$\begin{aligned} \epsilon_{lm}(r) &= -4\pi i^l \sqrt{l(l+1)} \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} v(\mathbf{k}, r) \frac{j_l(kr)}{kr} Y_{lm}^*(\hat{\mathbf{k}}), \\ \beta_{lm}(r) &= 0 \end{aligned}$$

Relation with VSH:

 $(\hat{\boldsymbol{\theta}} \pm i\hat{\boldsymbol{\phi}}) \cdot \mathbf{S}_{lm} = \mp_{\pm 1} Y_{lm},$  $(\hat{\boldsymbol{\theta}} \pm i\hat{\boldsymbol{\phi}}) \cdot \mathbf{T}_{lm} = i_{\pm 1} Y_{lm}.$ 

#### Angular power spectrum of transverse velocities

![](_page_33_Figure_1.jpeg)

(Spherical harmonic version of Gorski 1988 statistics)

AH 2019

### **Optimal power spectrum estimators**

Use likelihood function of proper motions to derive optimal estimators

Project out the dipole mode

Inverse-variance weighted two-point correlation function of proper motions — rotate each vector to physical basis defined by geodesic connecting the two points

Optimal 'stack' of galaxy proper motions

# Gaia end-of-mission forecast on transverse velocity power spectrum (optimistic)

![](_page_35_Figure_1.jpeg)

Amplitude a proxy for f  $\sigma_8$  H<sub>0</sub>

AH 2019

![](_page_36_Picture_0.jpeg)

### arXiv:1811.05454

- Gaia will measure proper motions for a million galaxies
- •A probe of the Solar System's local motion with respect to the CMB and the Hubble constant
- •A probe of transverse velocities due to gravitational collapse a probe of dark energy
- •Gaia: 2-sigma detection of local motion, 10-sigma detection of LSS transverse velocities
- •Complicated by relativistic aberration, centroid errors, cosmic variance, bulk flow...

# Part II

# The impact of our local environment on cosmological statistics

Based on arXiv:1911.07855

# The 2020s - the decade of wide multi-purpose LSS surveys

![](_page_38_Picture_1.jpeg)

### Euclid

Launch: June 2022 Wide survey: 15,000 sq. deg. Weak lensing and galaxy clustering

![](_page_38_Picture_4.jpeg)

### LSST

Science ops begin: 2023 Main survey: 18,000 sq. deg. Weak lensing and galaxy clustering

![](_page_38_Picture_7.jpeg)

DESI

Science ops begin: 2020 Main survey: 14,000 sq. deg. BAO, RSD Also SKA, SO, 4MOST, LiteBIRD, HIRAX, WFIRST, CMBS4, MSE, etc. etc.

# The 2020s - the decade of wide multi-purpose LSS surveys

![](_page_39_Picture_1.jpeg)

### Euclid

Launch: June 2022 Wide survey: 15,000 sq. deg. Weak lensing and galaxy clustering

![](_page_39_Picture_4.jpeg)

LSST

Science ops begin: 2023 Main survey: 18,000 sq. deg. Weak lensing and galaxy clustering

![](_page_39_Picture_7.jpeg)

DESI

Science ops begin: 2020 Main survey: 14,000 sq. deg. BAO, RSD

#### Forecasts

 $\sigma(\Sigma m_v) \sim 0.03 \text{ eV}$ 

 $\sigma(w_0) \sim 0.01 - 0.03$ 

 $\sigma(w_a) \sim 0.1$ 

Precision constraints on dark energy, neutrino mass, primordial NG, modified gravity etc. The 2020s - the decade of wide multi-purpose LSS surveys

![](_page_40_Picture_1.jpeg)

# Systematics need to be kept under control

# Small effects can matter!

Main survey: 14,000 sq. deg. BAO, RSD

modified gravity etc.

# A schematic illustration of what LSS surveys measure

![](_page_41_Picture_1.jpeg)

BOSS CMASS. Image credit: Daniel Eisenstein and the SDSS-III collaboration

Measure power spectrum or correlation function of map Fit an ensemble-averaged power spectrum Infer posterior probability of cosmological parameters

# The ensemble - Gaussian initial conditions

![](_page_42_Picture_1.jpeg)

- Initial curvature fluctuations laid down during inflation
- Initial power spectrum constrained by CMB
- Evolution imposes physical scales (equality scale, Silk damping scale, non-linear scale)

## Our local environment

# All astronomical measurements are made from within the Local Group, a dense and atypical position in the Universe

![](_page_43_Picture_2.jpeg)

Virgo Cluster. Image: Wikimedia Commons/Kees Scherer

# Our local environment

# All astronomical measurements are made from within the Local Group, a dense and atypical position in the Universe

![](_page_44_Picture_2.jpeg)

Virgo Cluster. Image: Wikimedia Commons/Kees Scherer

Q: Does our dense local environment influence large-scale structure through spatial correlations in the density field?

Q: Does our dense local environment influence large-scale structure through spatial correlations in the density field?

Reischke et al. 2019 : percent-level effects in weak lensing power spectra across all angular scales.

Would be important for Euclid!

![](_page_45_Figure_3.jpeg)

# Constrained and unconstrained ensembles

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

# Constrained and unconstrained ensembles

![](_page_47_Picture_1.jpeg)

Q: Given we reside in an over density which cannot be 'averaged out', which ensemble should be used to compute model predictions?

AH 2020 (1911: 07855)

- For Gaussian fields, no effect for I>0.
- Need to have non-Gaussian (i.e. non-linear) fields to see any effect at all.
- Can predict conditional power spectra analytically using second-order perturbation theory.
- Result is proportional to bispectrum times the local smoothed density contrast.

## Conditional statistics

## Conditional mean:

$$\langle \delta_i | \delta_0 \rangle = \langle \delta_i \delta_0 \rangle \frac{\delta_0}{\sigma^2} + \frac{1}{2} \left[ \langle \delta_i \delta_0^2 \rangle - \frac{\langle \delta_i \delta_0 \rangle}{\sigma^2} \langle \delta_0^3 \rangle \right] \left( \frac{\delta_0^2}{\sigma^4} - \frac{1}{\sigma^2} \right)$$

# Conditional covariance:

$$\operatorname{cov}(\delta_{i}, \delta_{j} | \delta_{0}) = \langle \delta_{i} \delta_{j} \rangle - \frac{\langle \delta_{i} \delta_{0} \rangle \langle \delta_{j} \delta_{0} \rangle}{\sigma^{2}} + \left[ \langle \delta_{i} \delta_{j} \delta_{0} \rangle - \frac{\langle \delta_{i} \delta_{0} \rangle}{\sigma^{2}} \langle \delta_{j} \delta_{0}^{2} \rangle - \frac{\langle \delta_{j} \delta_{0} \rangle}{\sigma^{2}} \langle \delta_{i} \delta_{0}^{2} \rangle + \frac{\langle \delta_{i} \delta_{0} \rangle \langle \delta_{j} \delta_{0} \rangle}{\sigma^{4}} \langle \delta_{0}^{3} \rangle \right] \frac{\delta_{0}}{\sigma^{2}}.$$

## Conditional angular power spectrum

$$\begin{split} \tilde{C}_{l}(r_{i},r_{j}) &= C_{l}(r_{i},r_{j}) - \frac{4\pi\xi(r_{i})\xi(r_{j})}{\sigma^{2}}\delta_{l0}^{K} \\ &+ \left[b_{ll0}(r_{i},r_{j},0) - \xi(r_{i})b_{000}(r_{j},0,0)\delta_{l0}^{K} \\ &-\xi(r_{j})b_{000}(r_{i},0,0)\delta_{l0}^{K} + \xi(r_{i})\xi(r_{j})b_{000}(0,0,0)\delta_{l0}^{K}\right] \frac{\delta_{0}}{4\pi\sigma^{2}}, \end{split}$$

## Correction at I>0 is

$$\tilde{C}_{\ell}(r_i, r_j) = C_{\ell}(r_i, r_j) + b_{\ell\ell 0}(r_i, r_j, 0) \frac{\delta_0}{4\pi\sigma^2}$$

# Effect of a local overdensity on the matter correlation function

 $\delta_0(R)$ 

 $\approx \left|\frac{68}{21}\xi(d) + \frac{d}{3}\xi'(d)\right| \delta_0(R)$ 

Matter fluctuations within a large-scale overdensity effectively live in an overdense 'closed' Universe

- Matter fluctuations grow faster in a closed Universe
- All distances dilated by effective background curvature
- Mean matter density renormalised

Correction to correlation function is

R

# Effect of a local overdensity on the matter correlation function

 $\delta_0(R)$ 

Matter fluctuations within a large-scale overdensity effectively live in an overdense 'closed' Universe

- Matter fluctuations grow faster in a closed Universe
- All distances dilated by effective background curvature
- Mean matter density renormalised

With  $\xi(d) \sim d^{-n}$  fractional correction is

R

 $\sim \left(\frac{68}{21} - \frac{n}{3}\right)\delta_0(R)$ 

# Effect of a local overdensity on the matter correlation function

 $\delta_0(R)$ 

d

R

Matter fluctuations within a large-scale overdensity effectively live in an overdense 'closed' Universe

- Matter fluctuations grow faster in a closed Universe
- All distances dilated by effective background curvature
- Mean matter density renormalised

Correlation of fluctuations **enhanced** within a local overdensity

![](_page_55_Figure_1.jpeg)

AH 2020 (1911: 07855)

Effect on lensing angular power spectrum

Source redshifts  $z_s = 0.1$  (blue)  $z_s = 0.2$  (orange)  $z_s = 0.4$  (green)  $z_s = 0.8$  (red)

Solid: Linear matter power

Dashed: Non-linear matter power

![](_page_56_Figure_1.jpeg)

Effect on lensing angular power spectrum

Source redshifts  $z_s = 0.1$  (blue)  $z_s = 0.2$  (orange)  $z_s = 0.4$  (green)  $z_s = 0.8$  (red)

Percent-level corrections only for very nearby sources and very large angular scales

AH 2020 (1911: 07855)

![](_page_57_Figure_1.jpeg)

Local dark matter density field inferred from local galaxy and peculiar velocity surveys

2M++ [Carrick et al. 2015]

# No evidence that we live in an extreme part of the Universe

AH 2020 (1911: 07855)

# Dependence on smoothing scale

![](_page_58_Figure_1.jpeg)

Solid: Linear matter power

Dashed: Non-linear matter power

# Conclusions arXiv:1911.07855

- For Gaussian fields there is no effect on two-point statistics from conditioning on our local density fluctuation, in contrast to the claims of Reischke et al. 2019.
- Need to have non-Gaussian (i.e. non-linear) fields to see any effect at all. Can predict conditional power spectra analytically using second-order perturbation theory.
- Result is proportional to bispectrum times the local smoothed density contrast.
- Effects confined to large angular scales and well below cosmic variance, hence negligible for upcoming surveys.
- Potentially bigger effects hidden on very non-linear scales would need constrained N-body simulations to probe this.
- Consistency test of cosmological models and extra information.

# **Final conclusions**

- Upcoming surveys aiming to measure dark energy and neutrino mass will be systematics limited.
- We will need complementary approaches, even if those approaches are individually not competitive.
- Many small systematic errors which were previously negligible are now important for the statistical constraining power of upcoming survey to be realised.
- Real-time transverse velocities of galaxies are a realistic prospect a new probe of cosmic flows, the growth rate of large-scale structure, and hence dark energy and modified gravity.
- A local density fluctuation can modify cosmological power spectra, in particular for weak lensing, but effect much smaller than previously thought — not a limiting systematic for upcoming surveys.

#### AH 2019, MNRAS, 1811.05454 AH 2020, Phys. Rev. D, 1911.07855