BEYOND CMB: CROSS CORRELATIONS

AMIR HAJIAN

LBNL, Berkeley December 13, 2013

MEASURED CMB POWER SPECTRUM ...

CMB POWER SPECTRUM: COSMOLOGY FITS

... ALMOST FITS

Planck Collaboration XX

Amir Hajian

LBNL

FULL CMB POWER SPECTRUM

Amir Hajian

Wednesday, 18 December, 13

Wednesday, 18 December, 13

THE OBSERVED SKY

NASA/WMAP Science Team

THE COMPONENTS

Amir Hajian

LBNL

THE COMPONENTS

Wednesday, 18 December, 13

Amir Hajian

LBNL

FULL POWER SPECTRA

Wednesday, 18 December, 13

XRAY X CMB: MOTIVATION

- CMB observes distortions due to the SZ effect
- ROSAT observes X-ray emissions due to the same hot and dense plasma

XRAY X CMB:MOTIVATION

- CMB observes distortions due to the SZ effect
- ROSAT observes X-ray emissions due to the same hot and dense plasma

MOTIVATION

- CMB observes distortions due to the SZ effect
- ROSAT observes X-ray emissions due to the same hot and dense plasma
- The two maps should be correlated and at nu < 220 GHz, the correlation is negative in sign</p>
- WMAPixROSAT studied by Diego, Silk and Sliwa (2003) -> no detection on large scales ell < 800.

FROM MAPS TO PARAMETERS

$$\Delta T(\theta, \phi) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\theta, \phi)$$

Amir Hajian

FROM MAPS TO PARAMETERS

$$\int d\Omega_{\hat{n}} \Delta T(\hat{n}) Y_{lm}^*(\hat{n})$$

 a_{lm}

Spherical Harmonic Transform

Amir Hajian

LBNL

FROM MAPS TO PARAMETERS

$$\int d\Omega_{\hat{n}} \Delta T(\hat{n}) Y_{lm}^*(\hat{n})$$

Spherical Harmonic Transform

Amir Hajian

Amir Hajian

LBNL

$$\Delta T(\theta, \phi) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\theta, \phi)$$

$$\int d\Omega_{\hat{n}} \Delta T(\hat{n}) Y_{lm}^*(\hat{n})$$

 a_{lm}

Amir Hajian

LBNL

$$\Delta T(\theta, \phi) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\theta, \phi)$$

$$\int d\Omega_{\hat{n}} \Delta T(\hat{n}) Y_{lm}^*(\hat{n})$$

 a_{lm}

$$\frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^2$$

Amir Hajian

LBNL

$$\int d\Omega_{\hat{n}} \Delta T(\hat{n}) Y_{lm}^*(\hat{n})$$

 a_{lm}

$$\frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^2$$

Amir Hajian

LBNL

Wednesday, 18 December, 13

,

Amir Hajian

$$\int d\Omega_{\hat{n}} \Delta T(\hat{n}) Y_{lm}^*(\hat{n})$$

 $\rightarrow a_{lm}$

$$\stackrel{\int d\Omega_{\hat{n}}\Delta T(\hat{n})Y_{lm}^*(\hat{n})}{=} a_{lm}$$

Amir Hajian

Wednesday, 18 December, 13

CATALOGS INSTEAD OF MAPS

CLUSTER SAMPLE

Subsamples of MCXC
(flux limited)
REFLEX
BCS
CIZA I&II

RBC

STACKED CLUSTERS

OPTIMAL "STACKING"

- Naive stacking does not take correlations in the map into account
- Optimal estimator uses
 the full covariance
 matrix of the data

$$-\frac{1}{2}(\boldsymbol{\delta T} - \boldsymbol{\delta T}^{\mathrm{SZ}})^{\mathrm{T}}\mathbf{C}^{-1}(\boldsymbol{\delta T} - \boldsymbol{\delta T}^{\mathrm{SZ}}), \ _{-0.2}$$

$$C = C_S + C_N$$
.

Aslanbeigi, Lavaux, Hajian, Afshordi (2013)

Amir Hajian

LBNL

ROSAT X W96, P100 GHZ

CMB map:

$$\Delta T(\hat{\theta}) = T_{\rm SZ} + T_{\rm CMB} + T_{\rm CIB} + T_{\rm fg} + T_{\rm PS} + N$$

Cluster overdensity map

$$\delta_n(\hat{ heta}) = rac{n(\hat{ heta})}{ar{n}} - 1$$

RXP143GHZ

RXP217GHZ

Wednesday, 18 December, 13

RXP353GHZ

MODELLING XSPECTRA

Simulated Compton-y map: Feedback

= AGN or Starburst E-feedback + radiative cool + SN energy + wind

$$C_{\ell}^{SZ\times n} = f_{\nu} \int_{0.04}^{\infty} \frac{\mathrm{d}V}{\mathrm{d}z} \mathrm{d}z \int_{0}^{\infty} \frac{\mathrm{d}n(M,z)}{\mathrm{d}M} \tilde{y}_{\ell}(M,z) \Theta(M,z) \mathrm{d}M,$$

Amir Hajian

LBNL

FITTING XSPECTRA

 $C_l^{\mathrm{obs}}(\nu) = A_{\times}(\nu)C_l(\nu_0) + B(\nu)$

Wednesday, 18 December, 13

COMBINED XSPECS

LBNL

Amir Hajian Wednesday, 18 December, 13

PARAMETERS

PARAMETERS

Hajian, Battaglia, Spergel, Bond, Pfrommer, Sievers (2013)

Amir Hajian

LBNL

PARAMETERS

Hajian, Battaglia, Spergel, Bond, Pfrommer, Sievers (2013)

Amir Hajian

LBNL

CONSISTENCY

Spergel et al 2013

30

LBNL

December 13, 2013

Lensed CMB/

Lensing

CIB

SZ

Lensed CMB/Lensing

Primordial signals

CIB

SZ

= 31

Lensed CMB/

Lensing

CIB

SZ

Lensed CMB/Lensing

Primordial signals

CIB

Star formation history

SZ

32

Lensed CMB/

Lensing

CIB

SZ

Lensed CMB/Lensing

Primordial signals

CIB

Star formation history

SZ

sigma_8

Amir Hajian

LBNL

Lensed CMB/Lensing

CIB

SZ

Lensed CMB/Lensing

CIB

Primordial signals

of potential, measurements of galaxy bias

Star formation history

SZ

sigma_8

Amir Hajian

LBNL

Lensed CMB/Lensing

CIB

SZ

Lensed CMB/Lensing

Primordial signals

of potential, cluster mass measurements measurements of galaxy bias

CIB

Star formation history

SZ

sigma_8

Amir Hajian

LBNL

Lensed CMB/Lensing

CIB

SZ

Lensed CMB/Lensing

Primordial signals

of potential, cluster mass measurements of galaxy bias

CIB

Star
formation contamination
history

SZ

sigma_8

Amir Hajian

LBNL

Balloon-borne Large Aperture Submillimeter Telescope

BACKGROUND RADIATION BUDGET OF THE UNIVERSE

- Star formation takes place in clouds composed of hydrogen and dust.
- Dust absorbs the starlight from young, hot stars, heats to -30K.
- Light re-emitted at longer (sub)millimeter wavelengths: Cosmic Infrared Background (Bond, Carr, Hogan (1986))

December 13, 2013

Dust in NGC 1055, a nearby spiral galaxy, seen in emission and absorption.

LBNL

- About 9 sq. deg. overlap with ACT
- Maps in three frequencies: 250 um, 350um and 500um
- Clean from Galactic dust emission

Hajian, Viero et al 2012

Lensed CMB/Lensing

CIB

SZ

Lensed CMB/Lensing

Primordial signals

of potential, cluster mass measurements measurements of galaxy bias

CIB

Star
formation contamination
history

SZ

sigma_8

CLUSTERS AND CIB

Both are correlated with the underlying dark matter density like a landscape covered by snow

Amir Hajian

LBNL

CLUSTERS AND CIB

40 SIGMA DETECTION!

Hincks, Hajian, Addison (2013)

Amir Hajian

LBNL

CMB LENSING

45

LBNL

QUASAR BIAS MEASUREMENTS

$$C_{\ell}^{\kappa q} = \int \frac{dz H(z)}{\eta^2(z)} W^{\kappa}(z) W^{q}(z) P(k = \ell/\eta(z), z).$$

 $b(z)\frac{dN}{dz}$

Sherwin, Das, Hajian + (2012)

QUASAR BIAS MEASUREMENTS

Sherwin, Das, Hajian + (2012)

Amir Hajian

LBNL

QUASAR BIAS MEASUREMENTS

WHAT'S NEXT

Lensed CMB/Lensing

CIB

SZ

Lensed CMB/Lensing

Primordial signals

of potential, cluster mass measurements of galaxy bias

CIB

Star
formation contamination
history

SZ

sigma_8

Amir Hajian

LBNL

