

Galaxy Formation in the Filamentary Cosmic Web

Oliver Hahn (ETH Zurich)

in Collaboration with
Marcella Carollo (ETHZ)
Cristiano Porciani (AlfA Bonn)
Avishai Dekel (HU Jerusalem)
Romain Teyssier (CEA Saclay/UniZH)
Adam Amara (ETHZ)

Outline:

- How to define the cosmic environment in simulations?
- How does it affect the formation/evolution of haloes?
- Are halo orientations correlated with LSS if so, how?
- What are the implications of these correlations for (1) cosmic shear, (2) galaxy formation?

The Cosmic Web

d) all little and

Our place in the cosmic web

WHITE PROPERTY OF

The web from first principles

Early Universe Physics predicts the spectrum of density fluctuations.

Create a random realisation and evolve it under self-gravity in an expanding background space-time.

$$\nabla^2 \phi = \frac{3H_0^2}{2} \Omega_{m,0} \frac{\delta}{a}$$

$$\frac{d\mathbf{p}}{da} = -\frac{\nabla\phi}{\dot{a}}, \quad \frac{d\mathbf{x}}{da} = \frac{\mathbf{p}}{\dot{a}a^2}$$

The Formation of the Web

(snapshot from simulation in Hahn et al. 2007a/b)

In 1st order Lagrangian perturbation theory, general perturbations collapse subsequently along 3 axes:

$$\rho(\vec{q},t) = \frac{\rho(\vec{q},0)}{\left[1 - D_{+}(t)\lambda_{1}\right]\left[1 - D_{+}(t)\lambda_{2}\right]\left[1 - D_{+}(t)\lambda_{3}\right]}$$

$$\lambda_{k} \propto \operatorname{eig}\left(\partial_{i}\partial_{j}\Phi\right) \tag{Zel'dovich 1970}$$

- "pancake" formation, $\lambda_1, \lambda_2, \lambda_3$ predict asymptotic morphology.
- In reality this is a multi-scale phenomenon (remember Press-Schechter theory).

Can we use this to quantify the web in simulations?

A Natural Definition of Halo Environment

- i. smooth density field
- ii. compute potential
- iii. compute eigenstructure of tidal tensor

(as Zel'dovich approx. BUT on evolved non-linear field)

Halo Formation and Evolution in the Cosmic Web

WHITE STREET

Clusters, Filaments, Sheets and Voids

At given mass increasingly more likely to be a subhalo in richer environments

Hahn, Porciani, Carollo, Dekel, (2007a), MNRAS 375, 489

Environment Dependence 1: Shapes and Spin

Halo Sphericity
$$S = \frac{l_3}{l_1}$$

Halo Spin Parameter
$$\lambda' = \frac{|\mathbf{J}_{\text{vir}}|}{\sqrt{2GR_{\text{vir}}}M_{\text{vir}}^{3/2}}$$

shapes depend sensitively on halo definition

Environment Dependence 2: The Assembly Bias (i)

Haloes < M* in dense regions are older

or equivalently:

Old haloes are more clustered

(e.g. Sheth & Tormen 2004, Gao et al. 2005, Wechsler et al. 2006)

- hot flow? (Wang et al. 2007)
- stripped haloes? (e.g. Diemand et al. 2007)

See Wetzel et al. (2007), Dalal, White et al. (2008) for M>M*

The Origin of the Assembly Bias (i)

明明明明明明

The Assembly Bias (ii)

Initial conditions: halo age depends on density on large scales

Hahn, Porciani, Dekel, Carollo (2008), MNRAS subm., arXiv:0803:4211

Tidal effects due to another halo

A short calculation shows:

tidal radius
$$r_{\rm Hill} \simeq d \left(\frac{m}{3M} \right)^{1/3}$$

Expect mass loss when $r_{\rm Hill} < r_{\rm vir}$

This is equivalent to

$$d < 3^{1/3} R_{\rm vir} \simeq 1.5 R_{\rm vir}$$

Tides affect assembly of haloes before they enter another halo.

expect suppressed growth if tidal radius inside turnaround radius

The Origin of the Assembly Bias (iii)

Velocity field along main axes of velocity deformation tensor

stripped haloes excluded, $M(0) \sim 2-4 \times 10^{10} \text{ h}^{-1} \text{ M}_{\odot}$

Definition:

$$\mathbf{w}_{i} = \text{eigenvec}\left(\frac{1}{2} \left[\frac{\partial v_{k}}{\partial r_{l}} + \frac{\partial v_{l}}{\partial r_{k}} \right] \right)$$

⇒ suppression of growth (see also Dalal et al. 2008)

also would make shape of Lagrangian patches dependent on late time tidal field (cf. Sandvik et al. 2007)

LSS-galaxy alignments

d) tillitie om

Alignments with LSS (i)

probe alignment with structure using tidal field eigenvectors

filament

sheet

This will teach us about how halos are oriented in the web:

take their spin as indicative for how disks would be oriented and shapes for ellipticals.

Alignment with the LSS (ii) - disks

mass dependent (see also Aragon-Calvo et al. 2007, Paz et al. 2008)

Alignment with the LSS (iii) - ellipticals

In Progress...

WHITE PROPERTY

Importance of Alignments for Weak Lensing

Lensing potential

$$\phi(\boldsymbol{\theta}, \chi_s) = \frac{2}{c^2} \int_0^{\chi_s} d\chi \frac{d_A(\chi_s - \chi)}{d_A(\chi_s) d_A(\chi)} \Phi(\chi, d_A(\chi)\boldsymbol{\theta})$$

weak shear is a weighted integral of the tidal field:

$$\gamma_1 = \frac{1}{2}(\phi_{,11} - \phi_{,22})$$
 $\gamma_2 = \phi_{,12}$

Observable is total ellipticity

$$\epsilon_{\rm obs} = \gamma + \epsilon_I$$

Correlation function thus becomes

$$\langle \epsilon_{
m obs} \epsilon'_{
m obs} \rangle = (\langle \gamma \gamma' \rangle) + \langle \gamma \epsilon'_I \rangle + (\langle \epsilon_I \gamma' \rangle) + (\langle \epsilon_I \epsilon'_I \rangle)$$
structure

GI

background galaxies

Alignments - Contaminant and Signal

$$II = \langle \epsilon_I \, \epsilon_I' \rangle$$

Arises, when close galaxies are intrinsically aligned to one another Can be removed by downweighting close pairs (e.g. King & Schneider 2002, Heymans & Heavens 2003).

$$GI = \langle \epsilon_I \, \gamma' \rangle$$
 (Hirata & Seljak 2004)

Arises, when galaxies intrinsically aligned with tidal field Can possibly be dealt with by modelling the signal, or by nulling contribution if redshifts are precise (Joachimi&Schneider 2008).

Modelling Intrinsic Alignments from Simulations

Linear alignment model:

$$P_{\delta\gamma}(k,z) = -\frac{C\bar{\rho}_m(z)}{(1+z)D_+(z)}P_{\delta\delta}(k) = b_{\gamma}(z)P_{\delta\delta}(k)$$

Bridle & King 2007, but see also Heymans, White et al. 2006

What is the mass/scale/redshift/satellite-vs-central dependence of this 'bias'? Use DM only + recipe to measure in sims. Include subhaloes.

The next step: full hydro simulations

include baryons, cooling, star formation and feedback

computational cost explodes

take small refinement volume and measure correlations with tidal_field

working hypothesis: if we understand how galaxies form in the web, we'll hopefully understand intrinsic alignments

RAMSES (Teyssier 2002) AMR simulation currently running:

- 0.38 kpc/h physical resolution
- Lagrangian refinement region placed on single filament
- total box 100 Mpc/h
- roughly ~300 well resolved galaxies by z=0
- roughly 10^8 star particles by z=0

Summary & Conclusions

- Signature of smoothed tidal field eigenvalues allows a robust classification of large-scale structure
- Tides influencing the collapse of matter onto haloes seems to explain assembly bias at low masses
- Using the eigenvectors of the smoothed tidal fields we find a mass-dependent alignment-signal of halo spins and shapes
- We can use weak lensing to study these alignments
- Use simulations to understand them, model them and remove them from cosmic shear measurements
- Hydro results are coming...

Connection between assembly and alignment?

A speculation - to be studied in simulations:

cf. cold accretion?

If the large-scale structure leaves its signature in galactic orientations, we can learn about galaxy formation from weak lensing efforts.