

Daniel Green

arXiv:1508.06342 with Baumann, Meyers and Wallisch

Outline

Cosmic History

Cosmic Neutrinos

Adiabatic fluctuations

Planck, CMB Stage IV and Neutrinos

Conventions

I will often use particle physics conventions

$$c = k_B = \hbar = 1$$
 $M_{\rm pl} = \sqrt{\frac{1}{8\pi G}} = 2.45 \times 10^{18} \, {\rm GeV}$

$$G_F = \left(\frac{1}{292.8 \,\text{GeV}}\right)^2$$

$$1 \,\mathrm{K} = 8.617 \times 10^{-5} \,\mathrm{eV}$$

$$\tau \equiv \int \frac{dt}{a}$$

A typical view of cosmology is something like this

A typical view of cosmology is something like this

A typical view of cosmology is something like this

A typical view of cosmology is something like this

Back to search results for "history of the universe placemat"

Click to open expanded view

History and Fate of the Universe Laminated Placemat (1)

by Contemporary Physics Education Project (CPEP)

Be the first to review this item

Price: \$4.25 + \$3.95 shipping

Note: Not eligible for Amazon Prime.

In Stock.

Estimated Delivery Date: Nov. 5 - 10 when you choose Standard at checkout.

Ships from and sold by Contemporary Physics Education Project.

Item Package Quantity: 1

- The perfect size for individual use. This placemat is laminated with heavy duty plastic -10 mil.
- Illustrates major stages in the evolution of the Universe starting with the Big Bang.
- Describes the accelerating Universe, dark energy, dark matter, cosmological redshift and cosmic microwave background radiation.
- Up-to date resource guide.
- Attractive colorful educational poster. Perfect addition to any classroom, wall or dining table.

They tell a remarkably consistent story

- 1. Early phase of inflation
- 2. Reheating up to $T\gg 1\,\mathrm{TeV}$
- 3. Standard model cools through expansion
- 4. (Perhaps) WIMP Dark Matter freeze-out

This story is plausible but hardly proven

Initial Conditions

Direct Observation

Inferred from relics

This story is plausible but hardly proven

Unproven(?)

This is more dramatic in terms of scales

The practical difficulty is thermal equilibrium It erases memory from the system Information is stored in relics:

- Long wavelength modes (inflation)
- Decoupling (photons, neutrinos, gravitons)
- Chemical potentials (leptons, baryons, nuclei)

We can still exploit neutrinos and gravitons:

- Neutrinos have a direct view of $T \lesssim 1 \, \mathrm{MeV}$
- Gravitons have unobstructed view
- (DM may also fit on this list one day)

Very difficult to measure either directly

Astrophysical methods are improving significantly

Neutrinos are now a realistic cosmic probe

We want to use the relics to:

- (1) Understand our cosmic history
- (2) Test the laws of physics

These goals are not independent

The challenge is how to interpret observations

Cosmology depends on the history & the laws

I will focus on two related goals:

(1) The cosmic neutrino background

Direct probe of history at temperatures $T \lesssim 1 \, \mathrm{MeV}$

I will focus on two related goals:

(2) Search for new light particles and forces

Probe of entire thermal history & very weak couplings

For $T\gg 1\,\mathrm{MeV}$, neutrinos were in equilibrium

This is a weak process $\;\Gamma \sim G_F^2 T^5$

This process is efficient if

$$\Gamma > H = \sqrt{\frac{\pi^2 g_{\star}}{90}} \frac{T^2}{M_{\rm pl}}$$

For $T \lesssim 1 \, \mathrm{MeV}$, scattering becomes inefficient

But as long as $T_{\gamma} \propto a^{-1}$ we have $T_{\nu} = T_{\gamma}$

Electron-positron annihilation heats photons

$$T_{\gamma} < m_e = 511 \,\mathrm{keV} \qquad e^+ \,e^- \to 2\gamma$$

If neutrinos are completely decoupled then

$$T_{\nu}^3 = \frac{4}{11} T_{\gamma}^3$$

The total energy density in neutrinos is then

$$\rho_{\nu} = 3 \times \left(2 \times \frac{7}{8}\right) \left(\frac{4}{11}\right)^{4/3} \frac{\pi^{2}}{30} T_{\gamma}^{4} = 3 \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

Number of species of neutrinos

Conventional to measure density in terms of

$$N_{\text{eff}} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\nu}}{\rho_{\gamma}}$$

Called the effective number of neutrino species

In limit of perfect decoupling : $N_{\rm eff}=3$.

 e^+e^- annihilation is soon after "freeze-out"

Still a substantial rate for $e^+e^- \rightarrow \nu\bar{\nu}$

Imperfect decoupling : $N_{\rm eff} = 3.035$

Imperfect decoupling + QED : $N_{
m eff} = 3.046$

Mangano et al. (2005)

(QED changes $\rho_{\gamma}, p_{\gamma}$ for a given T)

Detecting Cosmic Neutrinos

Two basic approaches to "detecting" the $C\nu B$:

- Direct detection via collisions in the lab
- Detect the gravitational effects of neutrinos

Gravity has been surprisingly effective

e.g. Planck 2015
$$N_{
m eff} = 3.04 \pm 0.18$$

The $C\nu$ B has been detected with high significance(?)

Detecting Cosmic Neutrinos

After decoupling, gravity couples neutrinos to SM

Neutrinos carry a large fraction of energy

$$rac{
ho_{
u}}{
ho_{
m total}} \simeq 0.41 \quad {
m for} \quad T \gg T_{
m eq}.$$

This energy significantly affects expansion rate

$$3M_{\rm pl}^2 H^2 \simeq \rho_{\gamma} + \rho_{\nu}$$

Metric fluctuations also affected at the same level

Detecting "Cosmic Neutrinos"

Are we sure these are really neutrinos?

What, if anything, is this teaching us?

The virtues and weaknesses are the same

Gravity is indiscriminate:

- It can't tell us these are exactly neutrinos
- It is sensitive to everything neutrino-like

Punchline: $N_{\rm eff}$ is more than just neutrinos (not less)

Light Particles

From gravity's point of view, massless neutrinos are

• Radiation :
$$\bar{\rho}_{\nu} \propto a^{-4}$$

• Free-streaming :
$$\frac{d}{dt}f(\mathbf{x},t,\mathbf{p})=0$$

We should group everything with these properties

$$N_{
m eff} \equiv rac{8}{7} \left(rac{11}{4}
ight)^{4/3} rac{
ho_R^{
m free-stream}}{
ho_\gamma}$$
 $N_{
m fluid} \equiv rac{8}{7} \left(rac{11}{4}
ight)^{4/3} rac{
ho_R^{
m non-free-stream}}{
ho_\gamma}$

Bell et al. (2005); Friedland et al. (2007)

Light Particles

What we measure is totally different from the lab

E.g. Number of Neutrinos from Z-width

$$N_{\nu} = 2.9840 \pm 0.0082$$
 $N_{\nu} \neq N_{\text{eff}}$

Number of particles with SM couplings of neutrinos

 $N_{
m eff}$ measures gravitational not SM couplings

We need more information to compare to the lab

Light Particles

When is $N_{\rm eff} \neq 3.046$

- Change to thermal history for $\,T < 1\,{
 m MeV}$
- Non-standard neutrino couplings
- New massless particles

Massless fields are easy to parameterize

Also easy to map to other experimental constraints

We will require that m=0 is protected by symmetry

E.g.
$$\mathcal{L} = F(\partial_{\mu}\phi\partial^{\mu}\phi)$$
 has symmetry $\phi \to \phi + c$

Determines minimal coupling to SM Brust et al. (2013)

$$\mathcal{L}_{\text{int}} = \frac{1}{\Lambda^{n \ge 1}} \mathcal{O}_{\text{dark}}^{(\mu..)} \mathcal{O}_{(\mu..)\text{SM}}$$

Structure depends on spin of particles

Coupling to photons $n \ge 1$, matter $n \ge 2$

Common feature is decoupling at low temperatures

$$\Gamma \propto \frac{1}{\Lambda^{2n}} T^{2n+1}$$
 $H \propto T^2$

$$H\gg \Gamma$$
 for $T < T_{\star}$

If
$$T_{\mathrm{Reheat}} > T_{\star}$$
 then $\Delta N_{\mathrm{eff}} = f(T_{\star})$

Observable predictions quite model independent

Depends on spin and freeze-out temperature

Irreducible contributions (SM + 1 massless particle)

Real Scalar:
$$\Delta N_{
m eff} = 0.027$$

Weyl Fermion:
$$\Delta N_{\rm eff} = 0.047$$

Vector boson:
$$\Delta N_{\rm eff} = 0.054$$

Precision at this level is sensitive to $T \rightarrow T_{\text{Reheat}}$

Adding a non-zero mass has little impact

Even decaying scenarios produce similar $\Delta N_{
m eff}$

Axions

Axions are a concrete example

Many possible coupling to the SM

Coupling to photons

$$\mathcal{L}_{a\gamma\gamma} = \frac{1}{4} g_{a\gamma\gamma} a \tilde{F}_{\mu\nu} F^{\mu\nu}$$

Coupling to gluons

$$\mathcal{L}_{agg} = \frac{1}{4} g_{agg} a \tilde{G}^{a}_{\mu\nu} G^{a\mu\nu}$$

Axion production rate

$$g \propto \frac{1}{\Lambda} \to \Gamma \propto g^2 T^3$$

Axions

Axions

Challenge

What observables give a clean channel for discovery?

I.e. Would you believe a detection?

Many cosmological parameters are degenerate

Must be distinguishable from astrophysics

Must be free of major systematics

Naively - degeneracy might seem like the problem

Fluctuations created during inflation

Live through entire thermal history

Why aren't we sensitive to everything?

Primary reason: Conservation of adiabatic mode

Bardeen et al (1983); Salopek & Bond (1990); Wands et al. (2000); Weinberg (2003)

Physical intuition - locally changes temperature

Since $T \propto a^{-1}$, locally it just a redefinition of a

Long wavelength mode has no local effects

Primary reason: Conservation of adiabatic mode

Technical Explanation - choice of metric / gauge

$$ds^{2} = -dt^{2} + a^{2}(t)e^{2\zeta(x,t)}d\vec{x}^{2}$$

This metric was residue gauge transformation

$$x \to e^{\lambda} x$$
 $\zeta \to \zeta - \lambda$

Constant mode is pure-gauge

This "symmetry" is surprisingly powerful

Consider a long-wavelength fluctuation $\zeta_{\vec{k}\to 0}$

Implies all-order conservation

$$\dot{\zeta}_{\vec{k}\to 0} = b \, \frac{k^2}{a^2} \zeta + \dots \to 0$$

Assassi, Baumann, DG (2012)

Fluctuations frozen - independent of local physics

This "symmetry" is surprisingly powerful

Consider a long-wavelength fluctuation $\zeta_{\vec{k} \to 0}$

Single-field Consistency Conditions Maldacena (2002)

$$\lim_{k\to 0} \langle \zeta_k \ldots \rangle \to x \cdot \nabla \langle \ldots \rangle P_{\zeta}(k)$$

Violations are a clean channel for BSM physics

```
Creminelli & Zaldarriaga (2003) + ...;
Chen & Wang (2009); Baumann & DG (2011);
```

Power of adiabatic modes is not limited to inflation

Origin of many clean cosmological probes

Allows clean detection of cosmic neutrinos via CMB

Channel to search for additional light particles

The physics of the CMB is determine by 4 things

Before CMB, photons-baryons effectively one fluid

What we see is a snap-shot of the sound waves

What we see is a snap-shot of the sound waves

Relates scale $\ell \sim k \tau_0$ and time $k r_s(\tau_\star) = n \pi$

Smaller scale mostly live in radiation domination

Dynamics of baryon-photon fluid simplifies

$$ds^{2} = a^{2} \left[(-1 - 2\Phi)d\tau^{2} + (1 - 2\Psi)\delta_{ij}dx^{i}dx^{j} \right]$$
$$\Phi_{\pm} \equiv \Phi \pm \Psi$$

$$\ddot{d}_{\gamma} - c_{\gamma}^2 \nabla^2 d_{\gamma} = \nabla^2 \Phi_+ \qquad c_{\gamma}^2 \simeq \frac{1}{3}$$

Sound waves in the photon-baryon fluid

Dynamics of baryon-photon fluid simplifies

$$ds^{2} = a^{2} \left[(-1 - 2\Phi)d\tau^{2} + (1 - 2\Psi)\delta_{ij}dx^{i}dx^{j} \right]$$
$$\Phi_{\pm} \equiv \Phi \pm \Psi$$

$$\ddot{d}_{\gamma} - c_{\gamma}^2 \nabla^2 d_{\gamma} = \nabla^2 \Phi_+ \qquad c_{\gamma}^2 \simeq \frac{1}{3}$$

Interactions with all other matter

Formal solution in terms of $y=c_{\gamma}k au$

$$d_{\gamma} = (d_{\gamma,0} + c_{\gamma}^{-2}A(y))\cos(y) + c_{\gamma}^{-2}B(y)\sin(y)$$

$$A(y) \equiv \int_0^y dy' \Phi_+(y') \sin(y')$$

$$B(y) \equiv \int_0^y dy' \Phi_+(y') \cos(y')$$

High- ℓ is well approximated by $y \to \infty$

$$\delta_{\gamma} = \Delta \cos(y + \varphi) + \mathcal{O}(y^{-1})$$

Phase shift: $\varphi \neq 0 \leftrightarrow B(y \rightarrow \infty) \neq 0$

Bashinsky & Seljak (2003)

We can learn a lot from a very simple trick

$$B + iA = \int_0^\infty e^{iy} \Phi_+(y)$$

$$B = \frac{1}{2} \int_{-\infty}^{\infty} e^{iy} \Phi_{+}^{(S)}(y)$$

Phase shift determined Cauchy's integral formula

$$\frac{1}{2} \oint dz \, \Phi_+^{(S)}(z) e^{iz} = B + \{\text{coutour at } \infty\} = \pi i \sum \text{Res} \Phi_+^{(S)}(z) e^{iz}$$

Non-zero phase shift means that

- $\Phi_+^{(S)}(z)$ is non-analytic • non-adiabatic
- Growth at $z=\pm i\infty$ waves with $c>c_{\gamma}$

Analyticity = conservation $\zeta_{k\to 0} \propto c_0 + c_1 k^2 \tau^2 + \dots$

Phase shift determined Cauchy's integral formula

$$\frac{1}{2} \oint dz \, \Phi_+^{(S)}(z) e^{iz} = B + \{\text{coutour at } \infty\} = \pi i \sum \text{Res} \Phi_+^{(S)}(z) e^{iz}$$

Non-zero phase shift means that

- $\Phi_+^{(S)}(z)$ is non-analytic • non-adiabatic
- Growth at $z=\pm i\infty$ waves with $c>c_{\gamma}$

Free streaming radiation is effectively $\,c=1>c_{\gamma}$

E.g. dark fluid with some EofS and sound speed

Adiabatic modes require $\omega = c_s^2$

E.g. dark fluid with some EofS and sound speed non-adiabatic allows $\ensuremath{\omega} \neq c_s^2$

General lessons:

- Phase shift is clean measure of $N_{
 m eff}$
- Not degenerate with $N_{
 m fluid}$, etc.
- Non-zero anisotropic stress is a red-herring

Conservation of ζ makes it difficult to fake

Damping Tail

Mean-free path of photon important on small scales

Effective viscosity: damping $d_{\gamma} \propto e^{-k^2/2k_d^2}$

$$k_d^{-2} \equiv \int_0^{a_*} \frac{da}{a^2 \sigma_T n_e H} \frac{R^2 + \frac{16}{15} (1+R)}{6(1+R)^2}$$

$$n_e \propto (1-Y_p) \qquad H^2 \propto (\rho_{\gamma} + \rho_R^{\text{F.S.}} + \rho_R^{\text{non-F.S.}})$$

Damping Tail

Damping tail is not difficult to see

Damping Tail

Damping tail is highly degenerate

- Obviously degenerate with $N_{
 m fluid} + N_{
 m eff}, Y_p$ Bashinsky & Seljak (2003)
- We must also be careful to keep first peak fixed Hou et al. (2011)

Polarization helps break degeneracy with $\,Y_{p}\,$

 Y_p is sensitive to $N_{
m eff}^{
m BBN}$

Current constraints from Planck 2015

$$N_{\rm eff} = 3.04 \pm 0.18$$

Consistent with standard neutrinos

Degeneracy with Y_p is under control

We can further isolate the origin of the constraints

Appears that phase shift breaks the degeneracies

	TT, TE, EE		TT-only		
	varying Y_p	fixed Y_p	varying Y_p	fixed Y_p	
$N_{ m eff}$	$2.78^{+0.30}_{-0.35}$	$2.99^{+0.30}_{-0.29}$	$2.87^{+0.76}_{-0.74}$	$2.94_{-0.69}^{+0.71}$	
$N_{ m fluid}$	< 0.88	< 1.06	< 3.93	< 2.65	

Without damping tail $\sigma(N_{\rm eff}) \simeq 0.3$

With damping tail $\sigma(N_{
m eff}) \simeq 0.2$

Phase shift directly detected in TT data

$$N_{\text{eff}} = 2.3_{-0.4}^{+1.1}$$

Follin et al. (2015)

Constraints correspond to shift $\delta \ell \simeq 1$

Compatible with Planck measurements of peaks

TT power spectrum

Peak 1	220.0 ± 0.5 415.5 ± 0.8	5717 ± 35 1696 ± 13
Trough 1	537.5 ± 0.8	2582 ± 11
Trough 2	676.1 ± 0.8	1787 ± 12
Peak 3	810.8 ± 0.7	2523 ± 10
Trough 3	997.7 ± 1.4	1061 ± 5
Peak 4	1120.9 ± 1.0	1237 ± 4
Trough 4	1288.8 ± 1.6	737 ± 4
Peak 5	1444.2 ± 1.1	797.1 ± 3.1
Trough 5	1621.2 ± 2.3	400 ± 4
Peak 6	1776 ± 5	377.4 ± 2.9
Trough 6	1918 ± 7	245 ± 4
Peak 7	2081 ± 25	214 ± 4
Trough 7	2251 ± 8	119.5 ± 3.5
Peak 8	2395 ± 24	105 ± 4

TE power spectrum

Trough 1	150.0 ± 0.8	-48.0 ± 0.8
Peak 1	308.5 ± 0.4	115.9 ± 1.1
Trough 2	471.2 ± 0.4	-74.4 ± 0.8
Peak 2	595.3 ± 0.7	28.6 ± 1.1
Trough 3	746.7 ± 0.6	-126.9 ± 1.1
Peak 3	916.9 ± 0.5	58.4 ± 1.0
Trough 4	1070.4 ± 1.0	-78.0 ± 1.1
Peak 4	1224 ± 1.0	0.7 ± 0.5
Trough 5	1371.7 ± 1.2	-60.9 ± 1.1
Peak 5	1536 ± 2.8	5.6 ± 1.3
Trough 6	1693.0 ± 3.3	-27.6 ± 1.3
Peak 6	1861 ± 4	1.2 ± 1.0

EE power spectrum

Peak 1	 137 ±	6	1.15 ±	0.07
Trough 1	 197 ±	8	$0.848 \pm$	0.034
Peak 2	 $397.2 \pm$	0.5	$22.04 \pm$	0.14
Trough 2	 525 ±	0.7	$6.86 \pm$	0.16
Peak 3	 $690.8 \pm$	0.6	$37.35 \pm$	0.25
Trough 3	 $832.8 \pm$	1.1	12.5 ±	0.4
Peak 4	 $992.1 \pm$	1.3	41.8 ±	0.5
Trough 4	 1153.9 ±	2.7	$12.3 \pm$	0.9
Peak 5	 1296 ±	4	31.6 ±	1.0
Peak 4	 992.1 ± 1153.9 ±	1.3 2.7	41.8 ± 12.3 ±	0.5 0.9

CMB Stage IV will be ground based CMB mission

Nothing has been firmly established about it

An overly optimistic version would be

$$N_{\text{detectors}} = 10^6 \qquad f_{\text{sky}} = 0.75$$

To get a sense of raw capabilities

Parameter	1′	2′	3′	$\ell_{\rm max}=3000$	$\ell_{\rm max} = 4000$
$\sigma(N_{ m eff}) \; (Y_p \; { m fixed}, N_{ m fluid} = 0)$	0.013	0.015	0.016	0.023	0.015
$\sigma(N_{\mathrm{eff}}) \; (Y_p \; \mathrm{fixed}, N_{\mathrm{fluid}} eq 0)$	0.026	0.027	0.029	0.034	0.028
$\sigma(N_{ m eff}) \; (Y_p \; { m varying}, N_{ m fluid} = 0)$	0.048	0.051	0.055	0.058	0.052
$\sigma(N_{\mathrm{eff}}) \ (Y_p \ \mathrm{varying}, \ N_{\mathrm{fluid}} \neq 0)$	0.050	0.052	0.055	0.061	0.051
N_{fluid} (Y_p varying)	< 0.16	< 0.17	< 0.18	< 0.20	< 0.17
$N_{ m fluid} \ (Y_p \ { m fixed})$	< 0.068	< 0.072	< 0.076	< 0.090	< 0.072

Most of this improvement is driven by E-modes

De-lensing helps reduce the error bars (like BAO)

Forecasts correspond to $\delta \ell \sim 0.1$

These forecasts are at a very interesting level

 $\sigma(N_{
m eff}) \sim 0.01$ sensitive back to reheating

A null detection would still be very interesting

Sensitivity to phase shift breaks most degeneracies

Can measure $N_{
m eff}, Y_p, N_{
m fluid}$ simultaneously

Summary

Much about our thermal history is uncertain

Large improvements expected from the CMB

Cosmic neutrinos are a direct window to $T\sim 1\,\mathrm{MeV}$

New light particles detectable back to reheating

Sensitive to many changes to "standard" picture

Summary

Phase shift of the acoustic peaks is robust signature

Distinguishes free and non-free streaming radiation

CMB stage IV can in principle reach $~\sigma(N_{
m eff}) \sim 0.01$

 $\Delta N_{
m eff} > 0.027$ is an achievable threshold

Many more opportunities to explore

Relation to Experiments

New massless particles a highly constrained

$$\Lambda_{\phi e, \gamma} \gtrsim 10^9 \, \mathrm{GeV}$$

$$\Lambda_{\phi\mu} \gtrsim 10^6 \, \mathrm{GeV}$$

$$\Lambda_{X^2\Psi^2} \gtrsim 10^3 \, \mathrm{GeV}$$

Implied freeze-out temperature model dependent

$$T_{\rm freeze-out} \gtrsim 10 \, {\rm MeV} - 10 \, {\rm TeV}$$

Relation to BBN

BBN is primarily sensitive to $H(T\sim .1\,{
m MeV})$

Abundances are sensitive to timing / expansion

E.g.
$$Y_p \approx 0.247 + 0.014 \left(N_{\text{eff}}^{\text{BBN}} + N_{\text{fluid}}^{\text{BBN}} - 3.046 \right)$$

Current limit from BBN-only $N_{
m eff}^{
m BBN} = 2.85 \pm 0.28$ Cyburt et al (2015)

Measures radiation density at a few minutes

Also sensitive to late decays / energy injection