#### Dissecting the Red Sequence:

Star Formation Histories & Structural Evolution of Early Type Galaxies

Genevieve J. Graves University of California, Santa Cruz

mmymm

with Sandra Faber & Ricardo Schiavon

## galaxy colors: bimodal



mmymm galaxy bimodality Lun







#### evolution onto the red sequence

## early quenching & dry merging

mmm

## late quenching & no dry merging





Faber et al. 2007

## early type galaxy evolution



mymm outline

#### 1. Stellar Populations along the Fundamental Plane

- stellar population modelling: a how-to guide
- the 2-D family of stellar populations
- mapping this 2-D family onto a X-section through the FP
- 2. Mass-to-Light ratios on the Fundamental Plane
  - contributions from different physical processes
  - variations in central dark matter fraction or IMF needed
  - the 2 tilts of the FP
- 3. Scenarios for varying M/L
  - Different types of "top-heavy" IMF
  - central DM fraction variation: efficiency of star formation or distribution of stars?

## stellar population modelling

Use strong, well-understood absorption lines (low resolution okay)

mmy



## stellar population modelling



 $\Rightarrow$  start with Solar-abundance model

m



#### C<sub>2</sub>4668

Mg b

Solar-abundance model is not a good fit to the data - too weak in C and Mg indices

- keep Age and [Fe/H] fixed
- increase [C/Fe] to match C<sub>2</sub>4668
- increase [Mg/Fe] to match Mg b
- iterate fit to get self-consistent solution

## M stellar pop modelling: results

Index measurements:

stellar pop parameters:

H $\beta$ , <Fe>, Mg *b* 



Age, [Fe/H], [Mg/Fe]

Age = "mean luminosity-weighted" age Mg = SN II product (short timescale for production) Fe = SN Ia product (longer timescale for production)

only metals released in SNe before or during active star formation contribute to observed stellar abundances

[Mg/Fe] is related to star formation timescale (or IMF)

# ETG stellar populations

Our sample: ~16,000 SDSS early type galaxy spectra



\* 0.04 < z < 0.08

\* no emission ( <  $2\sigma$  in H $\alpha$  and [OII] )

\* concentrated light profile ( $R_{90}/R_{50} > 2.5$ )

\* no color selection

spectra: S / N ~ 20 Å<sup>-1</sup>









## www.wstellar populations across the fp



@ fixed  $\sigma$ , galaxies with lower  $M_{dyn}/L$  have:

- younger ages
- higher [Fe/H]
- lower [Mg/Fe]



GG, Faber & Schiavon (2008a)



### MHP maps onto FP X-section

(Age, [Fe/H]) 
$$\longleftrightarrow$$
 ( $\sigma$ ,  $\Delta M_{dyn}/L$ )

mmmm





#### outline

#### Stellar Populations along the Fundamental Plane

- stellar population modelling: a how-to guide
- the 2-D family of stellar populations

mymm

mapping this 2-D family onto a X-section through the FP

#### 2. Mass-to-Light ratios on the Fundamental Plane

- contributions from different physical processes
- variations in central dark matter fraction or IMF needed
- the 2 tilts of the FP

#### 3. Scenarios for varying M/L

- Different types of "top-heavy" IMF
- central DM fraction variation: efficiency of star formation or distribution of stars?

mm variations in  $M_{dyn}/L$  within  $R_e$ M<sub>dyn</sub>  $M_{\star,\mathrm{real}}$  $M_{tot}$ *M*<sub>dyn</sub>  $M_{\star,\mathsf{IMF}}$ X X X  $M_{\star,\mathrm{real}}$ M<sub>tot</sub>  $M_{\star,\mathrm{IMF}}$ **DM** fraction stellar population dynamical IMF (age, Z)mass estimator

#### dynamical mass estimator

Cappellari et al. (2006) - IFU data, dynamical models

m

Bolton et al. (2007) - strong lensing





## the metallicity hyperplane



mm

$$M_{\star}/L \text{ vs. } M_{dyn}/L$$

GG, Faber, & Schiavon (2008b)





### two tilts of the FP



monogen

Stellar Population:  $M_{\star}/L \propto \sigma$  $M_{\star}/L$ 

residual tilt:  $M_{dvn} / M_{\star}$ 

Dark Matter, IMF:  $M_{dyn} / M_{\star} \propto \sigma^2 R_e \propto M_{dyn}$ 

GG & Faber (2008, in prep)

mmm M<sub>dyn</sub>/L  $M_{\star}/L$ VS.

GG, Faber, & Schiavon (2008b)



### observational conclusions

- We have mapped stellar population properties in 3-D FP space
- ETG star formation histories = 2-D parameter space (variations with  $\sigma$  and with  $\Delta M_{dvn}/L$ )
- 2-D family of star formation histories = X-section of FP
- Stellar population effects cannot account for observed tilt of the FP, or the observed thickness of the FP



variations in the IMF or central DM fraction required

• The two tilts of the FP:

mm

Stellar population effects  $(M_{\star}/L)$  and variable IMF or DM fraction  $(M_{dvn}/M_{\star})$  tilts rotate the FP around different axes

#### outline

#### Stellar Populations along the Fundamental Plane

- stellar population modelling: a how-to guide
- the 2-D family of stellar populations
- mapping this 2-D family onto a X-section through the FP

#### Mass-to-Light ratios on the Fundamental Plane

- contributions from different physical processes
- variations in central dark matter fraction or IMF needed
- the 2 tilts of the FP

#### 3. Scenarios for varying M/L

- Different types of "top-heavy" IMF
- central DM fraction variation: efficiency of star formation or distribution of stars?

## variations in $M_{dyn}/L$

#### $\implies M_{dyn}/L$ is measured within $R_e$

mmmm

 variations in DM fraction: genuine lack of stellar mass for given halo mass (low star formation efficiency)

 early truncation of star formation through quenching? (by AGN or massive halo)

2. variations in DM fraction: redistribution of stellar and dark matter inside/outside  $R_e$ 

- gas-rich vs. dry mergers?

3. variations in the IMF:

- more low-mass stars or more compact remnants

## 1. halo quenching?

#### Cattaneo et al. (2008)



mmmmmm

early quenching: low *I<sub>e</sub>*, high *M<sub>dyn</sub>/L* 

> late quenching: high *I*<sub>e</sub>, low *M*<sub>dyn</sub>/*L*

naturally produces correlation between  $M_{dyn}/L$ , short duration star formation @ fixed  $\sigma$ 

### 1. AGN feedback?



mmmmm

Galaxy w/ Powerful Radio Jets @ z=2.4

[OIII] $\lambda$ 5007 emission: \* aligned w/ radio lobes \* large outflow velocities \* outflow mass-loading and lifetime can carry out ~ few x 10<sup>10</sup>  $M_{\odot}$ 

> SF truncated in high M<sub>dyn</sub>/L objects

### 2. redistribution of stars?



m

# 3. variations in the IMF?



future work

- the role of environment:
  - both merger and massive halo explanations imply environment plays a role
  - relations for central galaxies vs. satellites
- a role for morphology?:
  - dynamical mass estimator only tested along FP
- chemical evolution models
  - quantitative modelling of the variation in star formation duration
  - include C, N, Ca abundances

mmywwww