

Consistency relations of the large scale structure and how to break them

Jerome Gleyzes, JPL/Caltech

Surveys for Cosmology

Many new surveys to come online: LSST, WFIRST, EUCLID,...

What's causing the accelerated expansion of the Universe ?

Cosmological constant?

Dark Energy?

Modifications of General Relativity?

Equivalence Principle (EP)

→ Do all objects fall the same way?

Initial conditions

Is the distribution initially Gaussian?

Prediction of simplest inflation models

Simplest case and consistency relations

Breaking the Equivalence Principle

Non Gaussian initial conditions

Simplest case and

consistency relations

Assume Equivalence Principle

$$\Phi_L(\eta, \vec{x}) = \Phi_L(\eta)|_0 + \partial_i \Phi_L(\eta)|_0 x^i + \partial_i \partial_j \Phi_L(\eta)|_0 x^i x^j + \dots$$

Assume Equivalence Principle

Assume Equivalence Principle

Assume Gaussianity (no correlations long/short)

 $\langle \delta^{(g)}(\eta_1, \vec{x}_1) \cdots \delta^{(g)}(\eta_n, \vec{x}_n) | \Phi_L \rangle = \langle \delta^{(g)}(\eta_1, \vec{\tilde{x}}_1) \cdots \delta^{(g)}(\eta_n, \vec{\tilde{x}}_n) \rangle$

Assume Equivalence Principle

Assume Gaussianity (no correlations long/short)

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(g)}(\eta_1) \cdots \delta_{\vec{k}_n}^{(g)}(\eta_n) \rangle_{\vec{p} \to 0}' = -P(p,\eta) \sum_a \frac{D(\eta_a)}{D(\eta)} \frac{\vec{k}_a \cdot \vec{p}}{p^2} \langle \delta_{\vec{k}_1}^{(g)}(\eta_1) \cdots \delta_{\vec{k}_n}^{(g)}(\eta_n) \rangle'$$

Riotto et al '13 Creminelli et al, '13

♦ Extensions

Full relativistic treatment

Redshift space

♦ Equal time correlators

 $\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(g)}(\eta) \cdots \delta_{\vec{k}_n}^{(g)}(\eta) \rangle_{p \to 0} = \mathcal{O}([k/p]^0)$

Creminelli et al, '13

with Creminelli, Simonović and Vernizzi, '13

Equal time correlators

 $\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(A)}(\eta) \delta_{\vec{k}_2}^{(B)}(\eta) \rangle = \mathcal{O}[(k/p)^0]$

Breaking the assumptions

♦ Equivalence principle

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(A)}(\eta) \delta_{\vec{k}_2}^{(B)}(\eta) \rangle_{p \to 0}' = \left(\epsilon \frac{\vec{p} \cdot \vec{k}}{p^2} + \mathcal{O}[(k/p)^0] \right) P(\eta, p) P_{AB}(\eta, k)$$

Model dependent

♦ Correlation short-long modes

$$\blacksquare$$
 Local Non Gaussianity $\Phi = \Phi_{\rm G} + f_{\rm NL}^{\rm Loc} (\Phi_{\rm G}^2 - \langle \Phi_{\rm G} \rangle^2)$

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}(\eta) \delta_{\vec{k}_2}(\eta) \rangle_{p \to 0}' = \left(\frac{6f_{\mathrm{NL}}^{\mathrm{Loc}} \Omega_{\mathrm{m},0} H_0^2}{p^2 T(p) D(\eta)} + \mathcal{O}[(k/p)^0] \right) P(\eta,p) P(\eta,k)$$

Peloso & Pietroni '13

Breaking the Equivalence Principle

♦ Test of gravity on unusual scales

 $\diamond~$ Extra coupling in the dark sector

♦ Difference screened/unscreened in modified gravity

The physical picture

with Creminelli, Hui, Simonović and Vernizzi, '13

Extra scalar field couples only to dark matter (B) but not baryons (A)

- ♦ Compute full bispectrum with SPT

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(A)}(\eta) \delta_{\vec{k}_2}^{(B)}(\eta) \rangle_{p \to 0}' = \left(\epsilon \frac{\vec{p} \cdot \vec{k}}{p^2} + \mathcal{O}[(k/p)^0] \right) P(\eta, p) P_{AB}(\eta, k)$$

$$\epsilon \propto \alpha^2$$

and Vernizzi '15

More prone to degeneracies

Primordial Non-Gaussianity (PNG)

Why study non-Gaussianity? $\Phi = \Phi_{\rm G} + f_{\rm NL}^{\rm Loc} (\Phi_{\rm G}^2 - \langle \Phi_{\rm G} \rangle^2)$ $\longrightarrow f_{\rm NL}^{\rm loc} \longrightarrow -\frac{5}{12} (n_s - 1) \qquad \text{Maldacena '02}$ Single field inflation $\qquad \text{Creminelli \& Zaldarriaga '04}$ Multi fold inflation ?

Multi-field inflation

Why study non-Gaussianity?

${ m Prob}(|f_{ m NL}^{ m Loc}|>1)\gtrsim 50\%^*$ with de Putter and Doré arXiv:1612.05248

*: 2-field models with spectator field

Measuring PNG from surveys

♦ CMB: Bispectrum

 $\sigma(f_{\rm NL}^{\rm Loc}) \sim 5$

♦ Galaxy surveys: scale-dependent bias

Single field inflation

Multi-field inflation

Multi-field inflation

$$\Rightarrow \text{ Local PNG}$$

$$\mathcal{M}(q) \equiv \frac{2q^2 T(q)D(z)}{3\Omega_m H_0^2}$$

$$b_{\text{NG}}(q) = 2 f_{\text{NL}}^{\text{Loc}} \left(b_{\delta} - 1 \right) \delta_c \, \mathcal{M}^{-1}(q) \sim \frac{1}{q^2 T(q)}$$

♦ Equilateral PNG

$$\text{Typical size of halos}$$
$$b_{\text{NG}}(q) = 6 f_{\text{NL}}^{\text{Eq}} \left(b_{\delta} - 1 \right) \delta_c \left(q \, R_* \right)^2 \mathcal{M}^{-1}(q) \sim \frac{1}{T(q)}$$

Biasing and PNG

with de Putter, Green and Doré arXiv:1612.06366

♦ Generalized model of bias McDonald & Roy '09, Assassi et al '15

$$\delta_h = b_\delta \delta + b_{\rm NG}(q)\delta + F_{\rm nonlocal}[\nabla^2 \delta] + F_{\rm nonlinear}[\delta]$$

$$\left[b_{q^2}(qR_*)^2 + b_{q^4}(qR_*)^4\right]\delta$$

Seen in simulations Chan et al '12, Baldauf et al '12

♦ Evolution or PNG?

$$T(q) \sim 1 + T_1 q^2 + T_2 q^4$$

$$b_{\rm NG}^{\rm Loc} \sim q^{-2}$$

$$b_{\rm NG}^{\rm Eq} \sim c + c_1 q^2 + \cdots$$

Consistency relation not broken

Equilateral PNG and bias

Equilateral PNG and bias

Conclusions

Consistency relations are robust consequences of $\Lambda {
m CDM}$

Not satisfied if Equivalence principle is broken $\implies \sigma(\epsilon) \sim 10^{-3}$

Broken in multi-field inflation, with $f_{
m NL}^{
m Loc} \sim 1$ for spectator fields

Unbroken for equilateral PNG - degenerate with evolution

Bispectrum more appropriate for PNG beyond local