Piecing Together the Epoch of Reionization

Steven Furlanetto UCLA May 8, 2012

Outline

- The Cosmic Dawn
- The Reionization Era(s): Introduction
 - Basic theoretical models
 - Existing Observational Constraints
- Next generation constraints
 - Analogs
 - Direct measures
 - Indirect measures
- Conclusions

The Cosmic Dawn

- The era of the first galaxies
- Birth of complexity
- Transition from exotic to normal
- Strongest interactions with their environment

Robertson et al. 2010

Let's Find Some Galaxies!

Galaxy Surveys: What Do We Know?

- How many bright galaxies there are
- The star formation rate in bright galaxies
- The stellar mass in bright galaxies

Modeling High-z Galaxies: First Steps

Munoz & Furlanetto (2012)

- Basic picture (Thompson et al. 2005):
 - Disk supported by pressure generated by stars (radiation + supernovae)
 - Star formation occurs so as to maintain Q~1
 - Star formation consumes gas and ejects more (winds)
 - Leftover gas funneled into black hole

Modeling High-z Galaxies: First Steps

Munoz & Furlanetto (2012)

- Thick: SFR
- Thin: Accretion rate
- Key parameter: speed of angular momentum transport
 - Red: α-disk
 - Black: spiral wave
 - Blue: shocked infall

X-Rays from Distant Galaxies

- o Horizontal line: current observational limits (Cowie et al. 2012)
- Purple region: "natural" X-rays from star formation
- Lines: model predictions

Galaxy Surveys: What Don't We Know?

- Stellar parameters (age, metallicity, etc.)
- Halo mass
- Faint end of the luminosity function
- IMF
- Escape fraction

Finding the First Galaxies, Indirectly

- Light from the first galaxies affects the Universe around them
- Collective effects
 of many (tiny)
 galaxies can be
 enormous!

H I Reionization: The Movie

Alvarez, Kaehler, & Abel

The Reionization Process I

- Limit #1: "Photon counting"
- Ionizing photons
 escape each source,
 and form ionized
 bubbles in IGM
- Bubbles grow and merge as more sources appear

Mesinger & Furlanetto (2007)

When Was Reionization? (I)

- Ingredients: source luminosity function
- Poorly known for H I reionization, but wellknown for He II!
- Quasars produce enough ionizing photons at z~3.6

Furlanetto & Oh (2008)

Bubble Sizes: H I Reionization

- Bubbles grow throughout reionization
- Driven by source clustering: massive halos, big bubbles
- LOTS of sources per bubble

Reionization: Galaxy Populations

The Reionization Process II

- Most recombinations are inside "Lymanlimit systems"
- Matters once (size of bubble) > (attenuation length)
- Controls postreionization paths

When Was Reionization? (II)

- Ingredients: source luminosity function + clumping
- Recombinations occur in Lyman-α forest
- Again, well-measured at z~3 for He II reionization

Reionization Models: The Ingredients

$$\Gamma x_n \qquad = \alpha(S, T) C\langle m_e \rangle$$

Source luminosity function (at all z)
 He II
 H I

Mean free path and clumping (Lyman-α forest)
 He II
 H I

• The details

Be II HI

。 Temperature He II H I

。 Geometry of absorbers **He II H I**

• Environments of sources **He II H I**

Easy Hard Terrible

Reionization: Existing Constraints

- CMB OpticalDepth
- Quasar Lines of Sight

Furlanetto, Oh, & Briggs (2006)

Reionization and the CMB

- Free electrons can scatter CMB photons again!
- Smears out fluctuations
- Generates polarization
- Integral constraint

Reionization: Existing Constraints

- CMB OpticalDepth
 - But just an integral constraint

Furlanetto, Oh, & Briggs (2006)

The Lya Forest and Reionization

The Biggest Problem: Extrapolation

Oh & Furlanetto (2005)

- Lyα is so optically thick that it probes only the tail of the IGM
- Higher-order
 transitions are
 better, but they have
 other difficulties

Reionization: Existing Constraints

- CMB Optical Depth
 - But only integrated constraint
- Quasar Lines of Sight
 - Suffers from saturation and rarity

New Approaches

- He II reionization as an analog
- Small-scale CMB anisotropies
- Quasar near zones
- Lyman-α emitters
- The Red Damping Wing
- The spin-flip background
- Diffuse line backgrounds
- Deeper galaxy surveys

Ionized Bubbles Around Quasars

- In a neutral
 Universe, smaller
 bubble if...
 - More neutral IGM
 - Younger quasar
 - Fewer intervening absorbers

Quasar "Near-Zones"

Mortlock et al. (2011)

- Near-zone from either...
 - Edge of H II region
 - OR just 1/r² decline!

The Forest Evolved: The Red Damping Wing

Quasar "Near-Zones"

- Size decreases as redshift increases
- Especially severe for z=7 object
 - Partly neutral medium?
 - Young quasar?
 - Intervening absorber?

Bolton et al. (2011)

The Damping Wing and Galaxies

Lyman-α GalaxySurveys

$$\tau_{GP} \approx 3 \text{x} 10^5 x_{HI} \left(\frac{1+z}{7} \right)^{3/2}$$

Mesinger & Furlanetto (2008)

- Number density
 declines when
 bubbles reach ~1
 proper Mpc
- Occurs at x_{HI} ~0.5
- Major uncertainty: winds

- LAE surveys show
 steady number
 density from z~3-6,
 then beginnings of
 a decline
- But LBGs also declining!

Ouchi et al. (2010)

Schenker et al. (2011)

- Spectroscopic followup of Lyman-break galaxies
- Measure evolution of fraction with strong Lyman-α emitters
- Three groups now finding a decline! (Schenker et al. 2011; Pentericci et al. 2011; Ono et al. 2011)

Schenker et al. (2011)

- What does it mean?
 - Fast evolution in x_{HI} ?
 - Reionization models wrong?
 - Reionization ends at z<6? (Mesinger 2011)
 - Strange selection?
 - Evolution in stellar populations?

LAEs During Reionization

Mesinger & Furlanetto (2008)

- z=9, R=125 observation, with $M>1.7x10^{10}$ Msun
- Galaxies in small bubbles (underdense regions) masked out by absorption

LAE Clustering During Reionization

- Nearly randomly distributed galaxy population
- Small bubble: too much extinction, disappears
- Large bubble: galaxies visible to survey

LAE Clustering During Reionization

- Small bubble: too much extinction, disappears
- Large bubble: galaxies visible to survey
- Absorption selects large bubbles, which tend to surround clumps of galaxies

LAE Clustering During Reionization

- Small bubble: too much extinction, disappears
- Large bubble: galaxies visible to survey
- Absorption selects large bubbles, which tend to surround clumps of galaxies
- See Furlanetto et al. (2006),
 McQuinn et al. (2008), Mesinger
 & Furlanetto (2008)

The Spin-Flip Transition

- Protons and
 electrons both have
 spin and hence
 magnetic moments
- Produces 21 cm
 photons (v~1.4
 GHz.)

The Fluctuating Background

Mesinger, Furlanetto, & Cen (2010)

The Future: To the Moon!

Combining Measurements

Diffuse Line Backgrounds

- CO transitions
 - Trace molecular star-forming gas
 - Multiple transitions mean easy identification
- C II or atomic lines
 - Trace cool, neutral gas (sort of)
 - Can be extremely luminous
- Lyman-α
 - Traces recombinations in ionized gas
 - Indirect tracer of high-mass star formation rate

Observing Galaxies During Reionization

- HST: UDF12 coming soon! (PI: Richard Ellis)
 - 128 additional orbits
 - 1 mag fainter at z=7, 2 at z=8 (key: steep faint end slope!)
 - Additional filter to quantify spectral shape (and stellar populations)
 - Additional filter to identify z~9-10 candidates

Observing Galaxies During Reionization

- Radio observatories
 - PdBI can place useful constraints on "normal" galaxies already, and detect massive quasar hosts (e.g., Maiolino et al. 2012)
 - ALMA will be much more sensitive!
 - EVLA can detect low-order CO as well

Conclusions

- The Cosmic Dawn is a key epoch in structure formation, and reionization is its hallmark event
- Current constraints are weak and confusing
- Battery of new techniques in the near future, studying the first galaxies both directly and indirectly

Want To Know More?

The First Galaxies in the Universe

Abraham Loeb and Steven R. Furlanetto

 Coming in late 2012 (or so) from Princeton University Press!