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Image: NASA/ESA

Directly traces low-redshift structure (via Weyl potential) 
       Neutrino masses, structure growth, cross-correlations 

A cartoon of gravitational lensing
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Low angular resolution lensing: CMB2

Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫

d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫

d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫

d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫

d2l′

(2π)2

[

Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]

W (l′,L) ,

δB(l) =

∫

d2l′

(2π)2

[

B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]

W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect

Hu & Okamoto 2002
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State of the art in CMB lensing: 
40σ detection in Planck, 15σ in SPT+Planck, 7.1σ in ACTpol

CMB-S4: projected ~500σ detection

Low angular resolution lensing: CMB

figure: Alex van Engelen
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Low angular resolution maps can also be made at 
other wavelengths: “(line) intensity mapping” 

Kovetz et al. 2017 (figure: Patrick Breysse)

Low angular resolution lensing: the future?
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The landscape of line intensity mapping experiments

Kovetz et al. 2017 (figure: Ely Kovetz & Patrick Breysse)

Observations planned for 21cm, CO, CII, …
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Line intensity maps provide 
many 2d screens for 

lensing reconstruction

The promise of lensing reconstruction from intensity maps

figure: Romeo et al. 2017

Closely-spaced screens
potentially high S/N on lensing

Widely-spaced sets of screens
different lensing kernels for  
tomography

Different systematics than CMB or galaxy lensing

Understanding a contaminant for e.g. nG constraints

Cooray 2004; Pen 2004; Zahn & Zaldarriaga 2006; Metcalf & White 2009; …
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1. How CMB lensing is measured  
 

2. Extension of method to 3d  

 

3. Reducing gravitational effects in variance:  
“bias-hardening” 
 

4. Forecasts 
 

5. ** Recent work: CMB temperature reconstruction

Outline

• impact of gravitational nonlinearities 
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Review of CMB lensing
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Review of CMB lensing

� ⇠
Z �s

0
d�W (�)�(�n̂, z[�])

Lensing potential: projection of gravitational potentials

Unlensed CMB: different Fourier modes are uncorrelated

D
T (~̀1)T

⇤(~̀2)
E
= (2⇡)2�D(~̀1 � ~̀

2)C
(unlensed)
`1

figure: ESA
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Review of CMB lensing

� ⇠
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0
d�W (�)�(�n̂, z[�])

Unlensed CMB: different Fourier modes are uncorrelated

D
T (~̀1)T

⇤(~̀2)
E
= (2⇡)2�D(~̀1 � ~̀

2)C
(unlensed)
`1

Lensed CMB: different Fourier modes become correlated

+ f(~̀1, ~̀2)�(~̀1 � ~̀
2)

Lensing potential: projection of gravitational potentials
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Review of CMB lensing

Can use this correlation to construct an estimator for   :�

�̂~̀(~L) =
T (~̀)T ⇤(~̀� ~L)

f(~̀, ~̀� ~L)
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Review of CMB lensing

Can use this correlation to construct an estimator for   :�

Can do better by inverse-variance weighting:

�̂~̀(~L) =
T (~̀)T ⇤(~̀� ~L)

f(~̀, ~̀� ~L)

�̂(~L) = NL

X

~̀
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Hu 2001
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Review of CMB lensing
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Review of CMB lensing

Can use this correlation to construct an estimator for   :�

Can do better by inverse-variance weighting:

�̂~̀(~L) =
T (~̀)T ⇤(~̀� ~L)
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X
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Power spectrum of reconstructed     map:�
D
�̂(~L)�̂⇤(~L)

E
= C��

L +NL + · · ·

D
�̂�̂

E
⇠ hTTTT i ⇠ hTT i2 + hTTTT ic(                                )

Gaussian non-GaussianHu 2001



Gravitational lensing of line intensity maps / Simon Foreman

Outline

• exploits mode-couplings induced by lensing 
• connected 4-pt function → lensing potential power spectrum

1. How CMB lensing is measured  
 

2. Extension of method to 3d  

 

3. Reducing gravitational effects in variance:  
“bias-hardening” 
 

4. Forecasts
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Observations in 3d

I(~x?, xk) I(~̀, kk) kk =
2⇡

L j j = 0, 1, 2, . . .

figure: Romeo et al. 2017
Zahn & Zaldarriaga 2006; Pourtsidou & Metcalf 2014

3d intensity field, observed within comoving thickness    :L

, ,

Angular power spectrum  
for given   :j

j

(Easier to account for 
correlations this way)

C`(kk) / PI

⇣q
`2/�2 + k2k

⌘



Gravitational lensing of line intensity maps / Simon Foreman

3d lensing estimator

j

Can construct estimator for each   :j

Power spectra of reconstructed     maps:�

Can coadd j’s to reduce noise in maps:

Var[�̂(~L)] =
1

P
j N

�1

�� (L, kk)
⇠ 1

j
max

N��

Zahn & Zaldarriaga 2006; Pourtsidou & Metcalf 2014

�̂(~L, kk) = N��(L, kk)

D
�̂(~L, kk)�̂

⇤(~L, kk)
E
= C��

L +N��(~L, kk) + · · ·

⇥
Z

~̀
g(~̀, ~L� ~̀)I(~̀, kk)I(~L� ~̀,�kk)
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However, we missed an important contribution!
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However, we missed an important contribution!
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However, we missed an important contribution!

⇠ �kk1,kk2N��(L, kk1) + L2C��
L

⇠
Z

~̀
1

Z

~̀
2

(· · · )(· · · ) hIII⇤I⇤i

2-pt function of 

4-pt function of 

disconnected 4-pt

connected 4-pt from lensing

connected 4-pt of 
unlensed field

�̂

I

N��(L, kk1)

If     traces            , ⇠I �matter

D
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Quantifying the gravitational contribution

Assumptions (21cm):

tree-level perturbation theory for grav. 4-pt. function

instrumental noise = thermal noise, set by Tsys, nbase, …

foregrounds kill modes with low 

(linearly biased tracer)

can cross-correlate with ~LSST

kk

Ĩ ⇠ b �matter

Main goal: quantify impact of gravitational contributions 
                   (                      ) on lensing estimatorh����ic,gravity
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Lensing estimator for single
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1. How CMB lensing is measured  
 

2. Extension of method to 3d  

 

3. Reducing gravitational effects in variance:  
“bias-hardening” 
 

4. Forecasts

Outline

• apply 2d estimator to maps with different k∥ values 
• gravity adds noise, that is correlated between k∥s

• exploits mode-couplings induced by lensing 
• connected 4-pt function → lensing potential power spectrum
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Lensing and gravity both induce mode-coupling

D
I(~̀1, kk)I

⇤(~̀2,�kk)
E
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2)C
(unlensed)
` (kk)

Unlensed intensity: different Fourier modes are uncorrelated

Lensed intensity: different Fourier modes become correlated

+ f�(~̀1, ~̀2)�(~̀1 � ~̀
2)
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Lensing and gravity both induce mode-coupling

D
I(~̀1, kk)I

⇤(~̀2,�kk)
E
= (2⇡)2�D(~̀1 � ~̀

2)C
(unlensed)
` (kk)

Unlensed intensity: different Fourier modes are uncorrelated

Lensed, nonlinear intensity: different Fourier modes become 
                                             correlated

+ f�(~̀1, ~̀2)�m(~̀1 � ~̀
2)

+ f�(~̀1, ~̀2)�(~̀1 � ~̀
2)

(can obtain                 from perturbation theory)+ f�(~̀1, ~̀2)�m(~̀1 � ~̀
2)



Gravitational lensing of line intensity maps / Simon Foreman

Bias-hardened estimators

X̂(~L) ⇠
Z

~̀
gX(~̀, ~L� ~̀)I(~̀)I(~L� ~̀)

Define      and     estimators like so:

Each estimator is biased by the other field:
D
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E
⇠ �+ (· · · )�1(~L/�)

D
�̂
E
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Namikawa et al. 2013
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Bias-hardened estimators

X̂(~L) ⇠
Z

~̀
gX(~̀, ~L� ~̀)I(~̀)I(~L� ~̀)

Define      and     estimators like so:

Define new estimators as solutions of linear system!

D
�̂
E
⇠ �+ (· · · )�1(~L/�)

D
�̂
E
⇠ (· · · )�+ �1(~L/�){ D

�̂H
E
⇠ �

D
�̂H

E
⇠ �1

� �

Namikawa et al. 2013

Each estimator is biased by the other field:
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Bias-hardened estimators

X̂(~L) ⇠
Z

~̀
gX(~̀, ~L� ~̀)I(~̀)I(~L� ~̀)

Define      and     estimators like so:

Define new estimators as solutions of linear system!

D
�̂
E
⇠ �+ (· · · )�1(~L/�)

D
�̂
E
⇠ (· · · )�+ �1(~L/�){ D

�̂H
E
⇠ �

D
�̂H

E
⇠ �1

� �

Namikawa et al. 2013

Each estimator is biased by the other field:

Var
h
�̂H

i
=

N��

1� ⇢(�̂, �̂)2
+ · · ·Caveat: 

increased variance
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Previous lensing estimator for single
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Bias-hardened lensing estimator for single
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Muntazir M.
Abidi

Omar
Darwish

+ T. Baldauf, SF, D. Meerburg, B. Sherwin 
(work in progress)

Removable mode-coupling from gravity - also interesting signal!

PRELIMINARY

Can also reconstruct long density modes using 
      quadratic estimator:

Cross-correlation 
between 

reconstruction 
and true modes
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1. How CMB lensing is measured  
 

2. Extension of method to 3d  

 

3. Reducing gravitational effects in variance:  
“bias-hardening” 
 

4. Forecasts

Outline

• apply 2d estimator to maps with different k∥ values 
• gravity adds noise, that is correlated between k∥s

• exploits mode-couplings induced by lensing 
• connected 4-pt function → lensing potential power spectrum

• can remove dominant effect with modified lensing estimator 
• can increase noise, depending on observational setup
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Examples of 21cm interferometers

Image: J. Sievers

Image: CBC News

Figure 1: Artist conception of the SKA low-frequency aperture array (top), dish array (middle),
and dense mid-frequency aperture array (bottom).
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Image: arXiv:1311.4288 SKA: 3<z<27 (SKA1-Low) 
- large dish array w/ dense core 
- facility, targeting cosmology  

+ other astro

CHIME: 0.8<z<2.5 
- 4 20m x 100m cylinders 
- dedicated instrument, targeting  

BAO + FRBs

HIRAX: 0.8<z<2.5 
- 32x32 close-packed 6m dishes 
- dedicated instrument, targeting  

BAO + FRBs
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Forecasts for 21cm surveys

lensing auto spectrum
lensing x ~LSST galaxy clustering

lensing x ~LSST galaxy lensing

S/N on lensing power spectra for 21cm surveys
z fsky hi hgLSSTi h�LSSTi

SKA1-Low 6 < z < 14 6.5⇥ 10�4 3.7 27 14
CHIME 1.1 < z < 2.5 0.5 0.26 35 28
HIRAX 1.35 < z < 2.5 0.5 0.98 46 36

Table 1. Total signal to noise for a detection of either the lensing auto power spectrum (hi) or the cross
spectrum between lensing and LSST galaxy clustering (hg

LSST

i) or cosmic shear (h�
LSST

i), for the surveys
from Secs. 4.1 and 4.2 (see those sections for more details about the specifications we assume). In reality, lack
of overlap between CHIME and LSST prevents cross-correlation, but we still perform forecasts in order to have
an apples-to-apples comparison with HIRAX. For hi, we use the noise per � mode from the bias-hardened
lensing estimator, while for the cross-correlations we use the non-bias-hardened noise, fixing the redshift range
of the low-z tracer such that gravitational e↵ects in the source intensity field do not correlate with the tracer.
A detection of the lensing auto spectrum will be weak at best in the SKA survey and impossible for CHIME
and HIRAX. For all surveys, significant measurements of each cross-correlation may be possible, provided that
systematics can be controlled at the appropriate level.

for each of SKA, CHIME, and HIRAX (with the obvious caveat that CHIME cannot practically be
cross-correlated with LSST due to lack of overlap, but our forecasts for that case would apply to an
LSST-like northern survey). For all cross-correlations we consider, the lensing reconstruction noise
(including non-Gaussian contributions) is the limiting factor in the overall signal to noise: for example,
comparable hgi results could be achieved with a galaxy survey with a number density 20 times lower
than LSST (but still covering half the sky).

We again remind the reader that these numbers represent the absolute best-case scenario for ap-
plication of the lensing estimators in this paper, at the perturbative order we have computed; inevitable
real-world systematics will likely degrade these numbers by a factor of a few at least. However, if these
surveys are successful at detecting 21cm fluctuations at high significance, the forecasts in Table 1 moti-
vate an investigation of lensing reconstruction using those measurements. This would further enhance
the cross-correlation science possible between low-redshift 21cm and photometric surveys, adding to
other existing applications such as calibration of photometric redshift distributions [94].

For SKA1-Low, the S/N that we compute for C��

L

is a factor of ⇠3 lower than it would be
if gravitational nonlinearities in the source field were ignored, while for CHIME and HIRAX, the
multiplier is at least a factor of 5. This rea�rms that these e↵ects should be included in any lensing
reconstruction forecast at these redshifts. Note that when we neglect nonlinearities, we find signal to
noise values that are consistent with previous forecasts, e.g. Ref. [95].

As noted in Sec. 4.3, the amplitudes of an intensity map’s signal and noise power spectra for
our imagined single-dish survey are very uncertain. In Fig. 12, we incorporate this uncertainty by
plotting the lensing signal to noise as a function of jmax. We have used a fiducial fsky of 3.9 ⇥ 10�4,
corresponding to 16 deg2. Under this assumption, we once again find that a strong detection of the
lensing auto spectrum within a single band will not be possible, despite the fact that for the highest
angular resolutions, bias-hardening actually decreases the noise on C��

L

by as much as 70%.

On the other hand, a cross-correlation of lensing from z ⇠ 6 with galaxy clustering from a large
galaxy survey looks more promising, for both the 6m- and 10m-dish cases, with potential S/N & 10,
and likewise for the 10m dish using lensing at z ⇠ 8. A cross correlation with cosmic shear from
lower-redshift galaxies looks slightly less promising. However, as indicated by the figure’s y-axis label,

the signal to noise on any of these measurements scales as f1/2
sky . This implies that even increasing fsky

– 35 –

Conclusion: cross-correlations might be worth a try!
Key factor: angular resolution
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Forecasts for 21cm surveys

lensing auto spectrum
lensing x ~LSST galaxy clustering
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Conclusion: cross-correlations might be worth a try!
Key factor: angular resolution
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i), for the surveys
from Secs. 4.1 and 4.2 (see those sections for more details about the specifications we assume). In reality, lack
of overlap between CHIME and LSST prevents cross-correlation, but we still perform forecasts in order to have
an apples-to-apples comparison with HIRAX. For hi, we use the noise per � mode from the bias-hardened
lensing estimator, while for the cross-correlations we use the non-bias-hardened noise, fixing the redshift range
of the low-z tracer such that gravitational e↵ects in the source intensity field do not correlate with the tracer.
A detection of the lensing auto spectrum will be weak at best in the SKA survey and impossible for CHIME
and HIRAX. For all surveys, significant measurements of each cross-correlation may be possible, provided that
systematics can be controlled at the appropriate level.

for each of SKA, CHIME, and HIRAX (with the obvious caveat that CHIME cannot practically be
cross-correlated with LSST due to lack of overlap, but our forecasts for that case would apply to an
LSST-like northern survey). For all cross-correlations we consider, the lensing reconstruction noise
(including non-Gaussian contributions) is the limiting factor in the overall signal to noise: for example,
comparable hgi results could be achieved with a galaxy survey with a number density 20 times lower
than LSST (but still covering half the sky).

We again remind the reader that these numbers represent the absolute best-case scenario for ap-
plication of the lensing estimators in this paper, at the perturbative order we have computed; inevitable
real-world systematics will likely degrade these numbers by a factor of a few at least. However, if these
surveys are successful at detecting 21cm fluctuations at high significance, the forecasts in Table 1 moti-
vate an investigation of lensing reconstruction using those measurements. This would further enhance
the cross-correlation science possible between low-redshift 21cm and photometric surveys, adding to
other existing applications such as calibration of photometric redshift distributions [94].

For SKA1-Low, the S/N that we compute for C��

L

is a factor of ⇠3 lower than it would be
if gravitational nonlinearities in the source field were ignored, while for CHIME and HIRAX, the
multiplier is at least a factor of 5. This rea�rms that these e↵ects should be included in any lensing
reconstruction forecast at these redshifts. Note that when we neglect nonlinearities, we find signal to
noise values that are consistent with previous forecasts, e.g. Ref. [95].

As noted in Sec. 4.3, the amplitudes of an intensity map’s signal and noise power spectra for
our imagined single-dish survey are very uncertain. In Fig. 12, we incorporate this uncertainty by
plotting the lensing signal to noise as a function of jmax. We have used a fiducial fsky of 3.9 ⇥ 10�4,
corresponding to 16 deg2. Under this assumption, we once again find that a strong detection of the
lensing auto spectrum within a single band will not be possible, despite the fact that for the highest
angular resolutions, bias-hardening actually decreases the noise on C��

L

by as much as 70%.

On the other hand, a cross-correlation of lensing from z ⇠ 6 with galaxy clustering from a large
galaxy survey looks more promising, for both the 6m- and 10m-dish cases, with potential S/N & 10,
and likewise for the 10m dish using lensing at z ⇠ 8. A cross correlation with cosmic shear from
lower-redshift galaxies looks slightly less promising. However, as indicated by the figure’s y-axis label,

the signal to noise on any of these measurements scales as f1/2
sky . This implies that even increasing fsky

– 35 –

Next-gen 21cm can do much better:
see Cosmic Visions white paper! Ansari et al (incl. SF), 1810.09572
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Monty Python 
1971



Gravitational lensing of line intensity maps / Simon Foreman

Another application of small-scale mode-couplings

Lensing estimator based on 3-pt correlation:
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Another application of small-scale mode-couplings

Lensing estimator based on 3-pt correlation:

Same logic leads to estimator for long T modes

hT
short

T
short

�
long

i

hT
long

T
short

�
short

i

D
T (~̀1)T (~̀2)�(~̀3)

E

b�
long

⇠ hT
short

T
short

i

bT
long

⇠ hT
short

�
short

i

squeezed 
limit

other 
squeezed 

limit



Gravitational lensing of line intensity maps / Simon Foreman

Reconstructing long modes of CMB temperature

reconstruction from CMB S4
reconstruction with {max = 3500
direct cosmic-variance-limited measurement
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CMB temperature power spectrum: low-z contribution
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CMB temperature power spectrum: low-z contribution
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Reconstruction improves measurements of ISW effect

Subtract reconstructed T from directly measured T
Isolate ISW contribution (with lower noise)

Our (simplistic) forecasts:
Consider CV-limited measurements of T,    up to � `

max
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Reconstruction improves measurements of ISW effect

Subtract reconstructed T from directly measured T
Isolate ISW contribution (with lower noise)
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Reconstruction improves measurements of ISW effect
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Isolate ISW contribution (with lower noise)
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Can we actually do it?

• Need lensing map at small enough scales
• Need to clean kSZ + other T secondaries at small scales
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Can we actually do it?

• Need lensing map at small enough scales
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Conclusions

1. How CMB lensing is measured  
 

2. Extension of method to 3d  

 

3. Reducing gravitational effects in variance:  
“bias-hardening” 
 

4. Forecasts

• apply 2d estimator to maps with different k∥ values 
• gravity adds noise, that is correlated between k∥s

• exploits mode-couplings induced by lensing 
• connected 4-pt function → lensing potential power spectrum

• can remove dominant effect with modified lensing estimator 
• can increase noise, depending on observational setup

• first detections may be possible in the near term! 
• future promise: “stage 2” 21cm survey could compete with 

CMB-S4 in lensing precision


