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AI is in everyday use
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• Voice to text
• smartphones, …

• Traffic prediction
• Google maps, waze, …

• Spam filtering
• Plagiarism checkers  

• Turnitin
• Check deposits
• Fraud detection
• Robo-Readers 

• The Graduate Record Exam (GRE), the primary test used for graduate school, 
grades essays using one human reader and one robo-reader, called e-Rater.

and the FDA just approved a neural-net based diagnostic for diabetic 
retinopathy.   (but see Finlayson+ 1804.05296 for concerns)
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…and is increasingly used in physics and astronomy
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Classification of spectra, time series, etc.  
Classification of particle cascades at LHC 
(e.g. Fraser & Schwartz, arXiv:1803:08066,
Andreassen+ arXiv:1804.09720)
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It would be good to know how 
these ML models work. 
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We are going to talk about deep 
neural nets (DNNs) used for 
image classification.  This is a 
rich topic that provides good 
examples. 

Deep learning
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Goodfellow+ deeplearningbook.org

http://deeplearningbook.org
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The barrier to entry is low…
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Neural net training
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Define a loss function J
J(θ,x,y)

                  

    Goal of training is to find theta 
to minimize the loss:

                minθ J(θ,x,y)

Parameters
Input: 

e.g. images

Output: 
e.g. labels
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Input image

• The weight vectors of the algorithm are not “logical” or high-level
• ML models mimic correlations, do not reveal causation.
• The function is very high dimensional and has complicated gradients

Output

“Stop Sign”

Neural net training
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Models are huge, need lots of training data
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Model Name
GoogleNet

Inception v3
Inception v4

ResNet101
AlexNet
VGG16

#parameters
5M

24M
35M
50M
60M

138M

Image classifiers

The venerable old Inception v3
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Models are huge, need lots of training data
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Data set
MNIST

CIFAR-10
GTRSB

ImageNet (trim)
ImageNet (full)

#classes
10
10
40

1,000
20,000

Selected public data sets used in ML

#samples
60,000
60,000
50,000

1,000,000
14,000,000

size
28x28
32x32

~ 256x256
~300x300

var

…and many others.  The wide availability of 
large, labeled training data has facilitated rapid growth in ML. 
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Image classification
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Error rates (top-5) for the ImageNet Large-Scale Visual Recognition 
Competition (ILSVRC) are so low that it was discontinued in 2017.
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Low-power classification



2018

Adversarial AI

You have to know where to look
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Classification success often 
depends on detecting objects 
within a larger image and finding 
a good bounding box. 
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Translation invariance
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The initial layers of image classifiers are convolutions, but the result 
is not invariant to translation (shifts in x and y position). 
 

CNNs are not translationally invariant. 

In some cases they happen to be to some extent, over some range.  
(See Kauderer-Abrams 1801.01450)  In other cases, the class of an 
object my change with a single-pixel shift. 

For finding smaller objects in larger images, choice of bounding box is 
key.  For judicious choice of bounding box, lack of translational 
invariance is irrelevant. 

But this makes correct classification critically dependent on the 
bounding box algorithm. 
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Computer-designed DNNs
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No reason to believe that humans 
can design better ML models than 
computers can. 

See Google AutoML project
and NASNet
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Despite successes, ML models are fragile 
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• ML models are (at best) as good as their training data                  
(and training data is seldom good enough)

• ML models are very high dimensional and opaque  (what do they 
really learn?)

• Model design and optimization is an art.

• Overfitting can take many forms.  
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Why so fragile?
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One cause of fragility is overfitting.  Neural nets are sophisticated 
fitting functions.  As with all fitting functions, one must balance 
the need to characterize the complexity of the function with the 
failures that occur with too much freedom 
(“freedom” = number of parameters, regularization, …) 

Too little:  Miss important features of the model.

Too much:  Fit the training data, but fail to generalize. 

If performance on the training set is much better than 
performance on a validation set, that indicates overfitting.
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Classifiers may be overfit
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Functions of many parameters may be overfit in some regions or 
some dimensions and not in others. 

The training and validation data may span a (relatively) low-dimensional 
manifold in the input parameters space. 

The classifier may be well fit on that manifold, and fail miserably away 
from it.  And you may never know.  
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Overfitting example
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This can be illustrated with a simple 1-D fitting function. 
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Uniformly distributed 
training sample:
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As fit freedom increases, 
sigma_train falls. 

Overfitting is obvious:
(fit does much better on training
data than validation data)
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Non-uniformly 
distributed sample:
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If training and validation sets 
are concentrated, can be overfit 
some places and not others.  

OK Not OK
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The boundary between “panda” and “gibbon” may be 
crumpled like tinfoil in a 10,000-dimension space.

 

Class boundaries

22
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The boundary between “panda” and “gibbon” may be 
crumpled like tinfoil in a 10,000-dimension space.

That boundary is far too close for comfort. 

Any regularization that pushes that boundary back may help.
(at the expense of performance)

 

23

Class boundaries



2018

Adversarial AI

Adversarial examples

24



2018

Adversarial AI

Adversarial examples (Advx) for image classifiers are easy to find.  
Making a tiny change to all pixels can change the output radically. 

Adversarial examples (noise)

25

“confidence” is not “probability” Goodfellow+ 1412.6572 
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And it is worse than that.  
In the case of CIFAR-10, 
most classes can be found 
near a random Gaussian 
noise image (single 
gradient step). 

The yellow boxes are class
“airplane.”

This was the hardest case. 

Adversarial examples (noise)
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Goodfellow+ 1412.6572 
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Universal Adversarial examples
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Moosavi-Dezfooli+ 1610.08401 

Transferability is 40-70%

It’s much worse than that.  
One can find noise patterns that fool most classifiers on most images. 

Authors suspect that they are constructing a subspace 
orthogonal to the manifold of “real images”
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Perturbation Rectifying Networks
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Akhtar+ 1711.05929 

Akhtar et al. adds a pre-input 
wrapper to the classifier to “rectify” 
the input. The PRN learns to undo 
the adversarial perturbation. 

“Our defense mechanism acts as an external 
wrapper for the targeted network such that the 
PRN (and the detector) trained to counter the 
adversarial attacks can be kept secretive in order 
refrain from potential counter-counter attacks. 
This is a highly desirable property of defense 
frameworks in the real-world scenarios. 
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Adversarial Training
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Train with specific adversarial examples that are the 
WORST for that algorithm but are hard to detect

minθ J(θ,x,y)

minθ [maxδ J(θ,x+δ,y)]

Looks promising, is hard to implement, 
but is easy to circumvent. 

Madry group, MIT
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Adversarial Training



2018

Adversarial AI

Gradient Masking can help
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Gradient Masking can help
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Gradient Masking can help, but not enough
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Gradient Masking fails
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Conclusion

• This defense works well for “one-step”gradient attacks.
• It is somewhat transferrable. 
• 2-step attacks circumvent it. 
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Examples from in the physical world
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Those were all pixel-based attacks and defenses. 
They are interesting for understanding DNN models, but 
not very relevant to “real life.”

What about attacks in the physical world?
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This works in the physical world as well, e.g. road signs:
(about 40 classes)

Eykholt+17, 1707.08945 

Adversarial examples (physical)

36

“Speed Limit 45”
66% confidence

“Speed Limit 45”
100% confidence
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Eykholt+17, 1707.08945 
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Some examples are less obvious — it looks like a dirty, faded sign. 
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“Speed Limit 45”
100% confidence

Real world example
Will the NN work?

Eykholt+17, 1707.08945 

Adversarial examples (physical)
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Transfer Learning
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Gu+ 1708.06733

Those were attacks where the adversary has detailed knowledge of the 
model (enough to compute derivatives).

Sometimes the adversary cannot access the model, but knows its early 
layers were trained on widely used public data (ImageNet).   This is 
transfer learning. 

Gu et al. demonstrated that a back door installed in one model can be 
inherited by another via transfer learning. 
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BadNets
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Gu+ 1708.06733

A model was trained to misclassify a 
Stop sign with a yellow square. 

When this model was retrained with 
Swedish road signs, it remembered 
the back door. 
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BadNets
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Gu+ 1708.06733
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Models “remember” too much
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A related problem is that models may remember specific instances 
of training data — especially unusual examples.
These faces were recovered from a small number of “features.” 

Mai+17, 1703.00832 
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Reverse engineering
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There is concern about revealing training data. 
In the commercial world one worries about privacy. 
There are also worries about proprietary / sensitive training data.

Database query question is :
Can you tell something about a specific individual from a query?

The techniques of differential privacy limit the probability of revealing 
sensitive information (by adding carefully crafted noise to the output). 

These techniques can be used to protect training data. 
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Distillation
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Original question: Do DNNs need to be so deep?
(Ba & Caruana, 2014)

You can distill the information learned by a deep net
into a smaller net by training on confidence vectors
output by the larger net.  (Hinton+ 2014)

This process may also obscure the original training data to 
some extent. 
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Output
confidence

vector
F(X)

DNN A
Input data

Vectors, labels
X, Y

Minimize loss function
to make F(X) approximate Y.

Start with (data, label) pairs (X, Y)
X: input data
Y: hard label, e.g. (0,0,0, … 1, … 0,0,0)

Distillation

45
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Distillation
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Output
confidence

vector
Fd(X)

DNN B
Input data

Vectors, labels
X, F(X)

• Minimize loss function to make Fd(X) approximate F(X).
• The vectors F(X) contain more information than the original labels, 

because they express uncertainty of ambiguous examples. 
• This allows DNN B to be smaller (fewer nodes and layers).
• Check for loss of accuracy in this procedure! 

Then train a smaller DNN on the probability vectors F(X)
output by the first DNN.
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Idea: Use distillation to increase robustness to advx
rather than decrease size of network. 

Training the first network at a higher “temperature”
effectively smooths the outputs. 

(“Smooth” = classify inputs consistently in the
neighborhood of a given training sample. )

Defensive Distillation

Papernot+ 2016, 1511.04508 
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Defensive Distillation
Papernot et al. obtained promising results on MNIST and CIFAR10-based models:
Robustness increases without much change in accuracy. 

48

Papernot+ 2016, 1511.04508 
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Defensive Distillation

Defensive distillation helps by reducing gradients in the neighborhood of training points. 
However, a substitute model trained on the distilled model still has gradients.  Adversarial 
examples trained on a substitute still work on the distilled model!

See Papernot+ 1602.02697 for how to defeat Papernot+ 2016, 1511.04508 

49

Papernot+ 2016, 1511.04508 
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Defensive Distillation
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Another idea: Use a different set of inputs to train 
the second network. 

(X,Y): large sample of possibly tampered data
(X’,Y’): pristine training data

Train on (X,Y) to obtain F(X)
then train on (X’, F(X’))
Check against Y’ for loss of accuracy. 

If (X,Y) contains backdoors that do not exist in (X’,Y’), 
they will be forgotten!

Perhaps this form of “machine forgetting” will be the most important 
legacy of the distillation idea. 
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Ensembles can protect sensitive data
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• Methods developed to prevent algorithms from 
“memorizing” (and thus revealing) specific input data

• Naturally smooths the model output
• Also defends against model theft by building a layer 

between the input data and the outward-facing model

Papernot+ 1610.05755, Papernot+ 1802.08908
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Noisy Aggregation Example: PATE

52

Papernot+18
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Why PATE-like approaches can help
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Noise and aggregation prevent outcomes from depending on single or 
small number of training points (privacy)

For same reasons, also prevent overfitting and help smooth loss functions

There’s no free lunch: Trade accuracy for robustness by introducing noise 

The level of noise needed (or loss of accuracy) depends strongly on the 
input data — how (in)homogeneous the dataset is
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Deep k-Nearest Neighbors
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A novel approach to detecting mischief is to follow
the training data through the layers alongside a new input.

“In adversarial settings, this yields an approach to defense that differs from 
prior work in that it addresses the underlying cause of poor model 
performance on malicious inputs rather than attempting to make particular 
adversarial strategies fail.”

Papernot et al. go on to develop a 
novel characterization of confidence, called credibility, that spans the 
hierarchy of representations within of a DNN: any credible classification 
must be supported by evidence from the training data. 

 
Papernot & McDaniel 1803.04765
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Deep k-Nearest Neighbors
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A robust result has training 
samples of the same class 
“nearby” in each layer of the 
model. 

An adverse (or genuinely 
ambiguous) example has a mix 
of training points nearby. 

This depends critically on the 
definition of “near.”

Papernot & McDaniel 1803.04765
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Deep k-Nearest Neighbors
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SVHN

GTSRB

Papernot & McDaniel 1803.04765



2018

Adversarial AI

Deep k-Nearest Neighbors
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DkNN represents progress in confidence, interpretability, 
and robustness. 

(a) confidence can be viewed as estimating the distance between the 
test input and the model’s training points, 

(b) interpretability is achieved by finding points on the training 
manifold supporting the prediction, and 

(c) robustness is achieved when the prediction’s support is 
consistent across the layers of the DNN 

 
Papernot & McDaniel 1803.04765
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Adversarial Training
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Train with specific adversarial examples that are the 
WORST for that algorithm but are hard to detect

minθ J(θ,x,y)

minθ [maxδ J(θ,x+δ,y)]

Looks promising, is hard to implement, 
but results in a more robust model. 

Madry+ 1706.06083, Tsipras+ 1805.12152
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Adversarial Training

59

Turtle → Bird

Madry+ 1706.06083, Tsipras+ 1805.12152
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Adversarial Training
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Madry+ 1706.06083, Tsipras+ 1805.12152

Turtle → Bird
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Adversarial Training
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Madry+ 1706.06083, Tsipras+ 1805.12152

Cat → Dog
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Adversarial Training
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Madry+ 1706.06083, Tsipras+ 1805.12152

Cat → Dog



2018

Adversarial AI

Adversarial Training
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Madry+ 1706.06083, Tsipras+ 1805.12152

Cat → Dog
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Interpreting outputs as probability

66

The DNN classification literature often refers to the output
of the final softmax layer of a DNN classifier as a vector
of probabilities. 

We should be uneasy with this terminology and the report uses 
the vague term confidence. 

But this raises the question: what would it take for the 
outputs to reflect the probability that the classification is 
correct?
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Interpreting outputs as probability
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We want to know P(y|x), the probability that the class label is y, 
given input x. 

According to Bayes’ theorem, this is proportional to 

P(x|y) P(y)

where P(x|y) is the probability of the features x, given class y, 
and P(y) is the prior on y. 
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Interpreting outputs as probability
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In choosing a training data set, we may select a number of 
examples of each class y and then for each example generate or 
observe the features x.  

Example: in the case of ImageNet, one can choose y=“cat” and 
find a large number of cat images on the Internet.  

The images used are (ideally) a “fair draw” from the space of all 
possible cat images that we care about, that is, cat images that 
someone thought worthy of posting. 
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Training forces Q to approximate P
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P(y|x)  : The true probability of y conditional on x.  
                 Training data generated by P(x|y) ~ P(y|x) / P(y)

Q(y|x; θ)  : The NN model with parameters θ, intended to 
                  approximate P(y|x). 

Training of a classifier minimizes the cross-entropy loss function,

is equivalent to minimizing the Kullbeck-Leibler divergence, DKL.
The entropy of P, H(P), depends only on the training data, and is 
constant during training. 
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Kullbeck-Leibler Divergence
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The Kullbeck-Leibler divergence, DKL(P⎟⎢Q), is a measure of the 
difference between two probability distributions, P and Q. 

In information theory, it is the number of “wasted bits” of 
information if you transmit a message with symbols occurring with 
frequency P using a compression scheme developed assuming 
frequency Q. 

In Bayesian inference, it is the amount of information learned from 
your data for prior distribution Q and posterior P. 

Colloquially, it is the amount of surprise if you expected distribution 
Q and observe distribution P. 

Kullbeck & Leibler, 1951
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Minimizing the cross entropy loss function (and therefore DKL) is 
equivalent to saying

“Make Q as similar to P as possible.”
i.e., 
“Make the model distribution match the data-generating 
distribution as closely as possible.”

But how close is that?  If the model has too little freedom, 
Q may not approximate P very well.  If it has too much freedom, 
Q may approximate P well at the training points, and not 
elsewhere. 

Training forces Q to approximate P
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…but only so well…
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To summarize:  IF

- the training samples fully describe P(x|y), and
- the output is a softmax layer, and
- the loss function is cross-entropy, and
- the model has enough freedom, but not too much,

THEN you could treat the output class probabilities as real 
probabilities.  Because these requirements are seldom satisfied, the 
output generally is not actually a probability of anything. 
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And that was non-adversarial
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That was for non-adversarial examples.  In general, adversarial
examples reside “off the manifold” described by the training data. 

Existing models may classify such inputs incorrectly, and with high 
confidence — indeed, often with higher confidence than non-
adversarial inputs.  

See Papernot+ 1803.04765 Sec III for a discussion of confidence, 
interpretability, and robustness. 
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Could it ever work?
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The requirement that the training samples fully describe P(x|y)
may be intractable for natural images of the world, but there are 
other applications. 

- low-resolution (R=100-1000) spectrum
- 100s of molecular species of interest
- training data spanning likely concentrations and combinations

This is a non-linear problem because of line saturation and 
radiative transfer, but it is mostly quasi-linear.  A sample of millions 
of synthetic spectra might well span the relevant space.  

It is conceivable that a NN could output a rigorous probability
of detection in this case. 
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Calibrated confidence
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More often, calibrated confidences will have to suffice. 
Temperature scaling (effectively rescaling the inputs to the softmax 
layer) is surprisingly effective at calibrating in some cases.  These 
do not provide rigorous probability estimates, but may be useful 
anyway.  

See Guo+ 1706.04599
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The End

76

 

We’re doomed.  But not forever.

By thinking carefully about how ML models break (in general, not just DNNs!!!)
we can gain confidence in our results. 

Maybe we can get to a point where we really trust neural nets.  But we aren’t there yet. 


