The Missing Pages of Cosmic History

Anastasia Fialkov ITC Fellow, Harvard

> Berkeley March 15, 2016

Département de Physique École Normale Supérieure

Cosmic History

Cosmic Microwave Background

Quasar at z = 6.3Wu et al. (2016)

Galaxy at z = 11.1Oesch et al. (2016)

Observations of distant galaxies and quasars

The last 13 billion years, rich in data!

Cosmic History

Missing part of the history

Our Best Guess

Dark Ages: z_{star} < z < z_{CMB}

Cold and neutral gas

Epoch of Reionization

Cosmic Dawn:

Z_i < Z < Z_{star}

First stars at z ~ 60 Fialkov et al. (2013)

Space between stars (galaxies) is cold and neutral

Our Best Guess: Thermal History

Thermal decoupling z~200

 $T_{K} = T_{CMB}$

Heating becomes efficient

What Heated Up the Gas?

Open Questions:

Possible Sources:

- Nature of heating sources
- Spectral energy distribution (SED)
- Efficiency
- Time dependence
- X-ray absorption
- Effects of metallicity

- X-ray binaries
- Mini-quasars
- Thermal emission from galaxies
- Shocks
- Dark matter annihilation
- Etc.

In this talk: Sources with hard and soft SED

Shakura & Sunyaev (1973) Tanaka et al. (2012)

Open Questions

Dark Ages: When did the first stars form? In which halos? Contribution of DM?

Cosmic Dawn: What heated up the IGM? Feedbacks?

Epoch of Reionization: How did it happen? Sources? Topology?

Bright Future

JWST and WFIRST will probe the earliest galaxies

X-ray Surveyor and Athena will measure the X-ray emission, count the dimmest quasars.

Radio telescopes are seeking to probe 21-cm signal of HI

Faint Signal of Neutral Hydrogen

- The "highly forbidden" spin-flip transition $(2.9 \times 10^{-15} s^{-1})$ happens often enough in the volume of the Universe.
- Photon of 21-cm are produced, they do not get re-absorbed and can be observed today.

21-cm experiments will map signal from high z What can we learn by reading the 21-cm maps?

Spin Temperature is Determined by 3 Processes

T_S depends on astro and cosmo parameters

$$\frac{1}{T_S} = \frac{T^{-1}_{CMB} + x_C T^{-1}_{K} + x_\alpha T^{-1}_{K}}{1 + x_C + x_\alpha}$$

Predicted Global 21-cm Signal

$$\frac{1}{T_S} = \frac{T^{-1}_{CMB} + x_C T^{-1}_{K} + x_\alpha T^{-1}_{K}}{1 + x_C + x_\alpha}$$

Inhomogeneous Signal. Fluctuations

- Redshift
- Generic dependence of power spectrum on z for a given k
- Each source of fluctuations contributes at different epoch

Line-of-Sight Anisotropy: 3 in 1

$$\delta T_b \propto x_{HI} (1+\delta)(1+z)^{1/2} \left[1 - \frac{T_{CMB}}{T_S} \right] \left[\frac{H(z)/(z+z)}{dv_{||}/dr_{||}} \right]$$

- Gradient along the LOS of the LOS velocity adds anisotropy to the otherwise isotropic signal
- Sign change
- Component separation according to their angular dependence: $\mu = \cos \vartheta$

$$P(k) = P_{iso} + P_X + P_\delta$$

TotalIsotropicμ⁴ term (cosmology)μ² term (cross-correlation)

21-cm Signal is Science-rich but Hard to Model

Simulate both small scales (stars) and large cosmological scales (size of the Universe)

Include many parameters: IC, first stars, their radiation, environment, temperature of the gas etc. Cosmic volumes

BAO, v_{bc} Galaxies AGN, Stars

10⁻³ pc

~100 Mpc

The Role of First X-ray Sources

Were first X-ray sources hard or soft? What was their efficiency? How did it affect the 21-cm signal and the EoR?

Were First X-ray Sources Soft or Hard?

Details of SED are crucial! If hard X-rays

- Mean free pass is longer
- Heat and ionize the gas far from the source
- Fluctuations in gas temperature are washed out at scales below the mfp
- Delayed heating (energy redshifts away)

Effect on Global Thermal History

Log(1+z)

 $Log(T_{gas})$

Historical note: Gas is thought to be pre-heated before EoR, $T_K > T_{CMB}$ Madau et al. (1997) But is it really the case?

Gas Temperature

Gas can be rather cold during EoR!

Effect on Global Thermal History and 21-cm Signal

Fialkov, Barkana, Visbal (2014)

Soft SED: Heating and reionization are separated in time (heating transition at z = 15, $x_i \sim 3.8$ %).

Hard SED: Reionization and heating happen simultaneously (heating transition at z = 12, $x_i \sim 14$ %).

Hard vs Soft X-rays: Heating Peak in the PS

- Mean free path of X-ray photons → characteristic scale
- Fluctuations at scales smaller than mfp are washed out

Hard vs Soft X-rays: Heating Peak

Soft X-rays

Hard X-rays Almost uniform heating

Fialkov & Barkana (2014)

Model-independent Direct Probe of X-ray SED

Low anisotropy, Linear regime

Fialkov, Barkana, Cohen, (2015)

Effect of X-rays on EoR:

- Partial ionization by X-rays: $\Delta \tau = 14\%$ (soft), $\Delta \tau = 2\%$ (XRBs)
- Reionization is smoother
- Fluctuations in the 21-cm are suppressed

Cosmology from 21-cm!

- Saturated heating
- Fully recover x_{HI} from the global 21-cm signal
- Measure the CMB optical depth much better than the CMB experiments

Тсмв

 $\delta T_b \propto x_{HI} (1+\delta)(1+z)^{1/2}$

 $x^{rec}_{HI} \propto \frac{\delta T_b}{(1+\delta)(1+z)^{1/2}}$

Liu et al. 2015

With Complication from X-rays

 $\delta T_b \propto x_{HI} (1+\delta)(1+z)^{1/2} \left[1 - \frac{T_{CMB}}{T_S} \right]$

With X-rays, reconstructed x_{HI} deviates from the real one

With Complication from X-rays

 T_{CMB}

 T_S

 $\delta T_b \propto x_{HI} (1+\delta)(1+z)^{1/2}$

With X-rays, reconstructed x_{HI} deviates from the real one

Thermal info & fitting = x_{HI}

Limits on X-ray Efficiency, f_X

Upper Limit ($f_X \sim 15 - 450$) Unresolved X-ray background (~ 12%), Lehmer et al. (2012). Lower Limit ($f_X \sim 0.001$ -0.01) 21-cm power, Ali et al. (2015), Pober et al. (2015).

Limits on f_x Uncertainty in the Global

binaries ISM **Mini-quasars** http://scitechdaily.com/

Limits on f_x Uncertainty in the PS

binaries ISM Mini-quasars http://scitechdaily.com/

New Frontier:

Cross-correlating the 21-cm signal and the X-ray background, observed in future by X-ray Surveyor and Athena, can help to constrain the nature of the first X-ray sources! Work in progress.

The Role of Mini-halos

Did first stars form in small or large DM halos? How did it affect the 21-cm signal?

Effect of feedbacks
 Effect of initial conditions

1. The Effect of Radiative Feedback

Formation of first stars is via H₂ or HI cooling

- H_2 cooling in ($M_h \sim 10^5 M_{sun}$)
- HI cooling in $(M_h \sim 10^7 M_{sun})$

Lyman Werner photons from stars

- Dissociation of H₂
- Negative feedback to star formation

e.g., Machacek et al. (2001)

Barkana & Loeb (2001) Bromm (2012)

2. The Effect of Initial Conditions Relative Velocities between DM & Gas

Velocities: Large Impact on Structure Formation at High z

Relative velocities affect 10⁴-10⁸ M_{sun} halos

O'Leary & McQuinn (2012)

- Suppresses halo abundance
- Suppresses amount of gas in halos
- Delays star formation

Fialkov, review (2014)

Example: Gas fraction in star-forming halos, z = 40

Visbal, Barkana, Fialkov, Tseliakhovich, Hirata (2012)

Effect of LW Feedback and Velocities

Initial conditions

- H₂ cooling sensitive to v_{bc} and LW feedback
- HI cooling mildly sensitive to v_{bc}

21-cm brightness temperature Molecular cooling

Atomic cooling

Fialkov, Barkana, Visbal, Tseliakhovich, Hirata (2013)

Uncertainty due to Feedback and Velocities

Delay star formation and cosmic milestones by $\Delta z \sim 3.5$

BAO in power spectrum

Fialkov, Barkana, Visbal, Tseliakhovich, Hirata (2013)

New Frontier:

Including the velocities in initial condition of cosmological radiative hydrodynamics simulations

Work in progress, in collaboration with I. Iliev, D. Sulivan et al.

Alternative Probe of EoR: Dispersion Measure of Fast Radio Transients

$$DM = \int_{0}^{z} \frac{n_{e}}{1+z} dl$$
$$\tau = \int_{0}^{z} n_{e} \sigma dl$$

Fialkov & Loeb (2016b)

Fialkov & Loeb (2016b)

Alternative Probe of EoR

Signal to Noise with SKA

Type	Event	Telescope	$\mathrm{DM}_{\mathrm{EG}}$	z_0	$ u_0 $	$L_{\nu_0}^{\mathrm{peak}}$
			$[pc cm^{-3}]$		$[\mathrm{GHz}]$	$[erg s^{-1} Hz^{-1} sr^{-1}]$
Min	FRB010621	Parkes	748	0.22	1.7	5.2×10^{32}
Median	FRB110523	GBT	623	0.55	1.2	$5.0 imes 10^{33}$
Max	FRB110220	Parkes	944	0.85	2.55	2.6×10^{34}
Lorimer	FRB010724	Parkes	375	0.32	1.86	$> 8.2 \times 10^{34}$

Summary

- Bright future in radio
- X-rays are important for EoR and Cosmic Dawn
- With 21-cm we can constrain the nature of heating sources and the role of mini-halos in star formation
- Transients as a probe of EoR

Fialkov, Barkana, Visbal (2014)