

Molecular gas in cosmological simulations

Robert Feldmann
Fermi National Accelerator Laboratory

ALMA!

Outline

* Star formation in simulations and the role of H₂

***** Empirical star formation scaling relations

★ The role of the CO/H₂ conversion factor
The surface densities of molecular clouds
Implications for star formation relations

Outline

* Star formation in simulations and the role of H₂

***** Empirical star formation scaling relations

★ The role of the CO/H₂ conversion factor
The surface densities of molecular clouds
Implications for star formation relations

How to make stars (in simulations)?

Ansatz: "Schmidt law"

$$\begin{array}{c} \epsilon \\ \rho_* = -\rho_{\rm gas} \\ \tau \end{array}$$
 SF efficiency fuel

Motivation:

empirical "Kennicutt-Schmidt" relation

SFR surface density $\sum_* &$ gas surface density $\sum_{
m gas}$

$$\dot{\Sigma}_* \propto \Sigma_{\rm gas}^n$$
 $n \sim 1.4$

Different models - Different fuel efficiencies

- e.g., \mathcal{T} free-fall time $\sim \rho_{\rm gas}^{-0.5}$
 - 2 ϵ/τ constant ~ I Gyr-I
 - pressure based efficiency $A \left(1 \,\mathrm{M}_{\odot} \,\mathrm{pc}^{-2}\right)^{-n} \left(\frac{\gamma}{G} \,f_{\mathrm{g}} P_{\mathrm{tot}}\right)^{(n-1)/2}$

plus additional star formation "criteria"

Stars form from molecular gas

proxy of (obscured) SF

SINGS
(Kennicutt+ 03)

from http://www.mpia.de/~leroy/Site/Talks.html

proxy of H₂

HERACLES
(Leroy+ 08)

from http://www.mpia.de/~leroy/Site/Talks.html

 H_{l}

THINGS
(Walter+ 08)

from http://www.mpia.de/~leroy/Site/Talks.html

In simulations we should form stars based on H₂

$$\rho_{\rm H_2} = f_{\rm H_2} \rho_{\rm gas}$$

Schmidt law

$$\dot{\rho_*} = \frac{\epsilon}{\tau} f_{\mathrm{H_2}} \rho_{\mathrm{gas}}$$

H₂ formation

- catalyzed by dust grains
- gas phase channel exists, but unimportant except in metal/dust free gas (Pop III)
- is slow: e.g., ~ Myr (at solar Z, depends on n_H)

H₂ destruction

- photo-dissociated by UV radiation in the Lyman-Werner bands ~ 912 - 1100 Angstrom
- is fast ~ 1000 yr (at MW UV field)

in steady state:
$$\Gamma_{LW} n_{H_2} = R_D n_{HI} n$$

$$f_{\rm H_2} = 1.8 \times 10^{-5} \left(\frac{n}{30 \, \rm cm^{-3}}\right) \left(\frac{R_{\rm D}}{3 \times 10^{-17} \rm cm^3 \, s^{-1}}\right) \left(\frac{5 \times 10^{-11} s^{-1}}{\Gamma_{\rm LW}}\right)$$

without shielding of UV radiation only trace amounts of H2 in the ISM

need shielding of UV

- H₂ self-shielding
- dust shielding

ART*

N-body + AMR hydro code

*Adaptive Refinement Tree (Kravtsov+ 97,02)

AMR:

- whole space part of a mesh
- selective refinement of the mesh in regions of "interest", e.g., regions of high density
- non-equilibrium cooling & ionization
- non LTE chemical network
- radiative transfer in the LW bands (OTVET)
- subgrid modeling of SF based on H₂

$$\dot{
ho_*} = \frac{\epsilon}{\tau} f_{\mathrm{H_2}} \rho_{\mathrm{gas}}$$

The chemistry in ART

- non-equilibrium network of various H and He species
- incl. H₂ formation on dust grains
- two adjustable parameters that account for limited spatial resolution (~50 pc):
 - clumping factor
 - coherence length (for shielding)

```
\mathcal{I}_{\mathrm{H}_{\mathrm{I}}} = -n_{\mathrm{H}_{\mathrm{I}}}\Gamma_{\mathrm{H}_{\mathrm{I}}} - C_{\mathrm{H}_{\mathrm{I}}}n_{e}n_{\mathrm{H}_{\mathrm{I}}} + R_{\mathrm{H}_{\mathrm{II}}}n_{e}n_{\mathrm{H}_{\mathrm{II}}},
   \dot{\mathcal{I}}_{HII} = -\dot{\mathcal{I}}_{HI} = -R_{HII}n_en_{HII} + n_{HI}\Gamma_{HI} + C_{HI}n_en_{HI},
   \dot{\mathcal{I}}_{\text{He I}} = -n_{\text{He I}} \Gamma_{\text{He I}} - C_{\text{He I}} n_e n_{\text{He I}} + (D_{\text{He II}} + R_{\text{He II}}) n_e n_{\text{He II}},
     \dot{\mathcal{I}}_{\text{He II}} = -n_{\text{He II}}\Gamma_{\text{He II}} - (D_{\text{He II}} + R_{\text{He II}})n_e n_{\text{He II}} - C_{\text{He II}}n_e n_{\text{He II}} + n_{\text{He I}}\Gamma_{\text{He I}} + C_{\text{He II}}n_e n_{\text{He II}} + R_{\text{He III}}n_e n_{\text{He III}},
     \mathcal{I}_{\text{He III}} = -R_{\text{He III}} n_e n_{\text{He III}} + n_{\text{He II}} \Gamma_{\text{He II}} + C_{\text{He II}} n_e n_{\text{He II}},
  \mathcal{I}_{\mathrm{H}_2} = \mathcal{I}_{\mathrm{H}^-} = \mathcal{I}_{\mathrm{H}_2^+} = 0.
    \int \dot{\mathcal{M}}_{\rm H\,{\scriptscriptstyle I}} = \Gamma_{\rm A} n_{\rm H^-} + \Gamma_{\rm B} n_{\rm H_2^+} + 2\Gamma_{\rm E} n_{\rm H_2} + 2\Gamma_{\rm LW} n_{\rm H_2} - k_1 n_e n_{\rm H\,{\scriptscriptstyle I}} - k_2 n_{\rm H^-} n_{\rm H\,{\scriptscriptstyle I}} - k_3 n_{\rm H\,{\scriptscriptstyle II}} n_{\rm H\,{\scriptscriptstyle I}} - k_4 n_{\rm H_2^+} n_{\rm H\,{\scriptscriptstyle I}} 
                                                      -k_{26}n_{\text{He {\sc ii}}}n_{\text{H {\sc i}}} - 2k_{30}n_{\text{H {\sc i}}}^3 - 2k_{31}n_{\text{H {\sc i}}}^2n_{\text{H {\sc i}}} - 2k_{32}n_{\text{H {\sc i}}}^2n_{\text{He {\sc i}}} + 2k_5n_{\text{H {\sc ii}}}n_{\text{H}^-} + 2k_6n_en_{\text{H}_2}^+ + k_7n_{\text{H}_2}n_{\text{H {\sc ii}}}
                                                     +2k_{8}n_{e}n_{H_{2}}+2k_{9}n_{H_{1}}n_{H_{2}}+2k_{10}n_{H_{2}}n_{H_{2}}+2k_{11}n_{He_{1}}n_{H_{2}}+k_{14}n_{e}n_{H^{-}}+k_{15}n_{H_{1}}n_{H^{-}}+k_{21}n_{H_{2}^{+}}n_{H^{-}}
                                                     +3k_{22}n_{\mathrm{H}^-}n_{\mathrm{H}_2^+}+k_{23}n_en_{\mathrm{H}_2}+k_{24}n_{\mathrm{He\,{\sc ii}}}n_{\mathrm{H}_2}+k_{27}n_{\mathrm{He\,{\sc i}}}n_{\mathrm{H\,{\sc ii}}}+k_{28}n_{\mathrm{He\,{\sc ii}}}n_{\mathrm{H}^-}+k_{29}n_{\mathrm{He\,{\sc i}}}n_{\mathrm{H}^-},
   \dot{\mathcal{M}}_{\rm H\,II} = \Gamma_{\rm B} n_{\rm H_2^+} + 2\Gamma_{\rm C} n_{\rm H_2^+} - k_3 n_{\rm H\,I} n_{\rm H\,II} - k_5 n_{\rm H^-} n_{\rm H\,II} - k_7 n_{\rm H_2} n_{\rm H\,II} - k_{16} n_{\rm H^-} n_{\rm H\,II} - k_{27} n_{\rm He\,I} n_{\rm H\,II} + k_4 n_{\rm H_2^+} n_{\rm H\,I}
                                                     +k_{24}n_{\text{He II}}n_{\text{H}_2} + k_{26}n_{\text{H I}}n_{\text{He II}},
   \dot{\mathcal{M}}_{\text{He I}} = -k_{27}n_{\text{H II}}n_{\text{He I}} - k_{29}n_{\text{H}^-}n_{\text{He I}} + k_{24}n_{\text{He II}}n_{\text{H}_2} + k_{25}n_{\text{He II}}n_{\text{H}_2} + k_{26}n_{\text{He II}}n_{\text{H I}} + k_{28}n_{\text{He II}}n_{\text{H}^-},
   \mathcal{M}_{\text{He II}} = -k_{24}n_{\text{H}_2}n_{\text{He II}} - k_{25}n_{\text{H}_2}n_{\text{He II}} - k_{26}n_{\text{H I}}n_{\text{He II}} - k_{28}n_{\text{H}^-}n_{\text{He II}} + k_{27}n_{\text{H II}}n_{\text{He I}} + k_{29}n_{\text{H}^-}n_{\text{He I}},
   \dot{\mathcal{M}}_{\text{H}_2} = -\Gamma_{\text{D}} n_{\text{H}_2} - \Gamma_{\text{E}} n_{\text{H}_2} - \Gamma_{\text{LW}} n_{\text{H}_2} - k_7 n_{\text{H}_2} n_{\text{H}_{\text{II}}} - k_8 n_e n_{\text{H}_2} - k_9 n_{\text{H}_{\text{I}}} n_{\text{H}_2} - k_{10} n_{\text{H}_2} n_{\text{H}_2} - k_{11} n_{\text{He}_{\text{I}}} n_{\text{H}_2}
                                                      -k_{23}n_en_{\mathrm{H}_2}-k_{24}n_{\mathrm{He\,{\sc ii}}}n_{\mathrm{H}_2}-k_{25}n_{\mathrm{He\,{\sc ii}}}n_{\mathrm{H}_2}+k_2n_{\mathrm{H}^-}n_{\mathrm{H}\,{\sc i}}+k_4n_{\mathrm{H}_2^+}n_{\mathrm{H}\,{\sc i}}+k_{21}n_{\mathrm{H}_2^+}n_{\mathrm{H}^-}+k_{30}n_{\mathrm{H}\,{\sc i}}^3
                                                     +k_{31}n_{\rm H_{I}}^{2}n_{\rm H_{2}}+k_{32}n_{\rm H_{I}}^{2}n_{\rm HeI},
   \dot{\mathcal{M}}_{\mathrm{H}_{2}^{+}} = -\Gamma_{\mathrm{B}} n_{\mathrm{H}_{2}^{+}} - \Gamma_{\mathrm{C}} n_{\mathrm{H}_{2}^{+}} + \Gamma_{\mathrm{D}} n_{\mathrm{H}_{2}} - k_{4} n_{\mathrm{H}_{1}} n_{\mathrm{H}_{2}^{+}} - k_{6} n_{e} n_{\mathrm{H}_{2}^{+}} - k_{21} n_{\mathrm{H}^{-}} n_{\mathrm{H}_{2}^{+}} - k_{22} n_{\mathrm{H}^{-}} n_{\mathrm{H}_{2}^{+}} + k_{3} n_{\mathrm{H}_{1}} n_{\mathrm{H}_{11}}
                                                     +k_7n_{\rm H_2}n_{\rm H\,II}+k_{16}n_{\rm H\,II}n_{\rm H^-}+k_{25}n_{\rm H_2}n_{\rm He\,II},
   \dot{\mathcal{M}}_{H^{-}} = -\Gamma_{A}n_{H^{-}} - k_{2}n_{H_{I}}n_{H^{-}} - k_{5}n_{H_{II}}n_{H^{-}} - k_{14}n_{e}n_{H^{-}} - k_{15}n_{H_{I}}n_{H^{-}} - k_{16}n_{H_{II}}n_{H^{-}} - k_{21}n_{H_{7}^{+}}n_{H^{-}} - k_{16}n_{H_{11}}n_{H^{-}} 
                                                      -k_{22}n_{\mathrm{H}_{2}^{+}}n_{\mathrm{H}^{-}}-k_{28}n_{\mathrm{He}_{\mathrm{II}}}n_{\mathrm{H}^{-}}-k_{29}n_{\mathrm{He}_{\mathrm{I}}}n_{\mathrm{H}^{-}}+k_{1}n_{e}n_{\mathrm{H}_{\mathrm{I}}}+k_{23}n_{e}n_{\mathrm{H}_{2}},
 \dot{\mathcal{D}}_{\rm H_2} = D_{\rm MW} R_0 C_{\rho} n_{\rm H_I} (n_{\rm H_I} + 2n_{\rm H_2})
  \dot{\mathcal{D}}_{\mathrm{H}_{\mathrm{I}}} = -2\dot{\mathcal{D}}_{\mathrm{H}_{2}},
\dot{\mathcal{D}}_{\text{H II}} = \dot{\mathcal{D}}_{\text{He I}} = \dot{\mathcal{D}}_{\text{He III}} = \dot{\mathcal{D}}_{\text{He III}} = \dot{\mathcal{D}}_{\text{H}^{-}} = \dot{\mathcal{D}}_{\text{H}^{+}_{2}} = 0,
                                                                                                                                                                                                                                                                                                                                If you can read this, you have good eyes!
```

The best - it actually works!

Outline

* Star formation in simulations and the role of H₂

* Empirical star formation scaling relations

★ The role of the CO/H₂ conversion factor
The surface densities of molecular clouds
Implications for star formation relations

Kennicutt-Schmidt relation

- "threshold" ~ 10 M_{sun} pc⁻²
- slope n~1.4

Kennicutt-Schmidt relation

- "threshold" ~ 10 M_{sun} pc⁻²
- slope n~1.4
- there exists a molecular version:
 - slope n~l
 - ~const depletion time I-2 Gyr

Threshold in KS relation consequence of HI - H2 transition

Threshold in KS relation consequence of HI - H2 transition

KS relation not universal! Changes with Z & UV

What about the molecular version of the KS relation?

What about the molecular version of the KS relation?

What about the molecular version of the KS relation?

Is $\Sigma_{
m SFR} - \Sigma_{
m H_2}$ universal?

Is $\Sigma_{ m SFR} - \Sigma_{ m H_2}$ universal?

change in slope & intercept with Z, UV!

Is $\Sigma_{ m SFR} - \Sigma_{ m H_2}$ universal?

change in slope & intercept with Z, UV!

Is $\Sigma_{ m SFR} - \Sigma_{ m H_2}$ universal?

- •changing density pdf with Z, UV (intercept)
- due to •changing density pdf with large scale surface density (slope)

•non-linear Schmidt law

What is causing its scatter?

Due to width of density pdf & non-linear Schmidt law?

No

- subdominant
- does not increase with decreasing scale as observed

Instead

- Due to the way SFR are measured!
 - => time averaging
- Due to the way H₂ masses are measured!
 - => conversion factor

Outline

* Star formation in simulations and the role of H₂

***** Empirical star formation scaling relations

★ The role of the CO/H₂ conversion factor

The surface densities of molecular clouds

Implications for star formation relations

The CO/H₂ conversion ("X") factor

- lowest excited levels in the rotational ladder ~ few 100 K
- in the electronic ground state no electric dipole moment
 => impossible to detect in emission at conditions
 typical of molecular cloud (~10 K)
- measure emission from tracer molecules instead
- CO 2nd most abundant molecule (after H₂)
- I will discuss only J=I-0 transition of ¹²C¹⁶O

$$X_{\rm CO} = \frac{N_{\rm H_2}}{W_{\rm CO}}$$

 H_2

X-factor

- CO integrated intensity => H2 column density
 - CO luminosity => H2 mass

introduces major observational uncertainty

Modeling the X-factor

complicated problem:

- need to know CO & H₂ abundance
 - => chemical network required
- CO line is rarely optically thin
 - => optical depth effects need to be considered
- CO emission depends on gas temperature & velocity dispersion
 - => need some estimates for them
- the ISM is highly turbulent, complicated density structure and is not in steady state
- cannot resolve relevant scales (sub-pc) in a cosmological simulation

• ...

all approaches rely on approximations

Approaches for modeling the X-factor

simplified geometry / steady state

main drawback: simplistic treatment of the ISM

small scale ISM simulations

main drawback: rather expensive

Our approach for modeling the X-factor

cosmological simulation simulation cell ISM simulation

ISM Simulations

magneto-hydrodynamical, driven turbulence simulations (ZEUS) of a 20 pc box

Glover, Federrath, Mac Low, Klessen 2009 Glover, Mac Low, 2010

CO abundance as function of Z & N
 & only them!!

only for UV=I

follow

•thermal,

chemical and,

dynamical evolution

but

no self-gravity

•no star formation or

feedback

Model predictions

- metallicity dependence strong
- UV dependence only secondary role
- increase of X_{CO} for low and high N_{H2}

- for cells of ~60 pc (~GMC size)
 consistent with observations of MW GMCs
- under MW conditions: $X_{CO} \sim 2 \times 10^{20} \text{ K}^{-1} \text{ cm}^{-2} \text{ km}^{-1} \text{ s}$ for wide range of H_2 column densities

A fitting formula

$$X'_{\text{CO}} = (1 + e^{-N'_{\text{H}_2}}/N'_{\text{H}_2})^{5.5}(1 + e^{-1/N'_{\text{H}_2}}N'_{\text{H}_2})^{0.445},$$

$$X'_{\text{CO}} = (1 + e^{-W'_{\text{CO}}}/W'_{\text{CO}})^{0.78}(1 + e^{-1/W'_{\text{CO}}}W'_{\text{CO}})^{0.88}$$

Inferred H₂ column densities from CO observations

$$2 \times 10^{20} \text{cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s}$$
 $N_{\text{H}_2}^{\text{obs}} = N_{\text{H}_2} X_{\text{CO,MW}} / X_{\text{CO}}$

$$X_{\rm CO} = X_{\rm CO,MW} \left(\frac{N_{\rm H_2}}{10^{22} {\rm cm}^{-2}} \right)^{1/2}$$

$$N_{\rm H_2}^{\rm obs} = (10^{22} {\rm cm}^{-2} N_{\rm H_2})^{1/2}$$

biased!

"Forbidden" region in the molecular KS relation?

Closing Remark: Bimodality in SF?

Genzel et al. 2010

- two distinct relations?
 (Genzel, Tacconi)
- just a short phase during mergers (Teyssier, Bournaud)
- excitation effect of 3-2 CO, while in truth a 1.5 slope (Narayanan)

Note:

any $X_{CO}(N_{H2})$ will collapse the bi-modality

Another possibility:

linear SF relation & CO emission driven by SFR at fixed H₂ surface density

Closing Remark: Bimodality in SF?

$$W_{\rm CO} = \alpha \Sigma_{\rm SFR}|_{\Sigma_{\rm H_2}}$$

 $\Sigma_{\rm SFR} = \alpha^{-1} \Sigma_{\rm H_2} / X_{\rm CO}$
 $\Sigma_{\rm H_2}^{\rm obs} = \Sigma_{\rm H_2} X_{\rm G} / X_{\rm CO} = \Sigma_{\rm SFR} \alpha X_{\rm G}$

observed

 $SFR > SFR_{expected}, W_{CO} > W_{CO, expected},$ thus $X < X_G$, $\Sigma_{H2}^{obs} > \Sigma_{H2}$

Maybe we know less about the KS relation than we think!

Summary

- non-linear H₂-based Schmidt law
 => slope & intercept of molecular KS relation depend on Z, UV
- large scatter in molecular KS relation due to time averaging property of SF tracer (& X_{CO} effects)
- Xco effects can narrow the observed surface density range of molecular clouds
- X_{CO} dependence on Z & surface density may explain slight super-linearity of molecular KS relation