Flows on 100 h⁻¹ Mpc Scales Hume A. Feldman Physics & Astronomy University of Kansas Hume A. Feldman #### Peculiar Velocity Field Measure the line of sight peculiar velocities: $$v_p = cz - H_or$$ The difference between the redshift and the distance Why should we study vp? * The peculiar velocity field is dominated by large scales - * Test of gravitational instability model $\vec{\nabla}\cdot\vec{V}=\frac{\delta\rho}{\rho}$ $\vec{\nabla}\times\vec{V}=0$ * A direct probe of the mass distribution $\vec{V}=-\vec{\nabla}\phi$ - Comparison of velocity fields & Luminous matter distribution = bias, Ω ... #### Local Group Velocity (Cautionary History Lesson) V_{SC} 0^{0} $100 \pm 150 \text{ km/s}$ 180° $$\tilde{p} = N \int \frac{d^3k}{(2\pi)^3} p(\vec{k}) W(\vec{k})$$ # Velocity Fields The Modern Version *HAF*, *Watkins & Hudson*, arXiv.0911.5516 (2009) Watkins, HAF & Hudson, MNRAS, 392, 743-756 (2009) HAF & Watkins, MNRAS 387, 825-829 (2008) Watkins & HAF, MNRAS 379, 343-348 (2007) Sarkar, HAF & Watkins, MNRAS 375 691-697 (2007) #### Redshift-Distance surveys - Construct the full three dimensional bulk-flow vectors. - Compare bulk-flow for peculiar velocity surveys. - Surveys differ in their o geometry o measurement errors o galaxy types. - The overall errors are - Statistical - Systematic - Aliasing # The Physics of Velocity Fields On scales that are small compared to the Hubble radius, galaxy motions are manifest in deviations from the idealized isotropic cosmological expansion $$cz = H_0 r + \hat{\mathbf{r}} \cdot [\mathbf{v}(\mathbf{r}) - \mathbf{v}(0)]$$ The redshift-distance samples, obtained from peculiar velocity surveys, allow us to determine the radial (line-of-sight) component of the peculiar velocity of each galaxy: $$v(r) = \hat{\mathbf{r}} \cdot \mathbf{v}(\mathbf{r}) = cz - H_0 r$$ #### _*UCL ### The Physics of Velocity Fields Galaxies trace the large-scale linear velocity field v(r) which is described by a Gaussian random field that is completely defined, in Fourier space, by its velocity power spectrum $P_v(k)$. Fourier Transform of the line-of-sight velocity $$\hat{\mathbf{r}} \cdot \mathbf{v}(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3\mathbf{k} \, \hat{\mathbf{r}} \cdot \hat{\mathbf{k}} \, v(\mathbf{k}) \, \mathbf{e}^{i\mathbf{k}\cdot\mathbf{r}}$$ Define the velocity power spectrum Pv(k) $$\langle v(\mathbf{k})v^*(\mathbf{k}')\rangle = (2\pi)^3 P_v(k)\delta_D(\mathbf{k} - \mathbf{k}')$$ # The Physics of Velocity Fields In linear theory, the velocity power spectrum is related to the density power spectrum $$P_v(k) = \frac{H^2}{k^2} (f^2(\Omega_{m,0}, \Omega_{\Lambda})) P(k)$$ The rate of growth of the perturbations at the present epoch #### **_**LUCL ## The Physics of Velocity Fields In linear theory, the velocity power spectrum is related to the density power spectrum $$P_v(k) = \frac{H^2}{k^2} f^2(\Omega_{m,0}, \Omega_{\Lambda}) P(k)$$ The power spectrum provides a complete statistical description of the linear peculiar velocity field. ## Likelihood Methods for Peculiar Velocities A catalog of peculiar velocities galaxies, labeled by an index n Positions r_n Estimates of the line-of-sight peculiar velocities S_n Uncertainties σ_n Assume that observational errors are Gaussian distributed. Model the velocity field as a uniform streaming motion, or bulk flow, denoted by U, about which are random motions drawn from a Gaussian distribution with a 1-D velocity dispersion σ_* # Likelihood Methods for Peculiar Velocities Likelihood function for the bulk flow components $$L(U_i) = \prod_{n} \frac{1}{\sqrt{\sigma_n^2 + \sigma_*^2}} \exp\left(-\frac{1}{2} \frac{(S_n - \hat{r}_{n,i}U_i)^2}{\sigma_n^2 + \sigma_*^2}\right)$$ Maximum likelihood solution for bulk flow $$U_i = A_{ij}^{-1} \sum_{n} \frac{\hat{r}_{n,j} S_n}{\sigma_n^2 + \sigma_*^2}$$ where $$A_{ij} = \sum_{n} \frac{\hat{r}_{n,i} \hat{r}_{n,j}}{\sigma_n^2 + \sigma_*^2}$$ #### .*UCL # Likelihood Methods for Peculiar Velocities #### The measured peculiar velocity of galaxy n $$S_n = \hat{r}_{n,i} v_i(\mathbf{r}_n) + \widehat{\epsilon}_n$$ A Gaussian with zero mean and variance $\sigma_n^2 + \sigma_*^2$ Theoretical covariance matrix for the bulk flow components $$R_{ij} = \langle v_i v_j \rangle = R_{ij}^{(v)} + \delta_{ij} (\sigma_i^2 + \sigma_*^2)$$ $$R_{ij}^{(v)} = \frac{1}{(2\pi)^3} \int P_{(v)}(k) W_{ij}^2(k) d^3k$$ $$= \frac{H^2 f^2(\Omega_0)}{2\pi^2} \int P(k) W_{ij}^2(k) dk$$ mperial College London #### Likelihood Methods for Peculiar Velocities Question: Are surveys consistent with each other? Even if two surveys are measuring the same underlying velocity field, they will not necessarily give the same bulk flow. #### Reasons: - * measurement errors in the peculiar velocities - * surveys probe the velocity field in a different way #### Comparing Velocity Field Surveys #### Comparing Velocity Field Surveys ## Can we do better? Get rid of small scale aliasing? Improve the window function design **+UCL** Decomposition of the velocity field Kaiser 88, Jaffe & Kaiser 95 $$v_i(\mathbf{r}) = U_i + U_{ij}r_j + U_{ijk}r_jr_k + \dots$$ Bulk Flow Shear Octuple If the velocity is a potential flow then both shear and octuple are symmetric (curl Free) - > 3 DoF for BF - > 6 DoF for shear - > 10 DoF for Octuple 19 Independent components +UCL The BF Maximum Likelihood Estimates of the weights (MLE) $$w_{i,n} = A_{ij}^{-1} \sum_{n} \frac{\mathbf{x}_j \cdot \mathbf{r}_n}{\sigma_n^2 + \sigma_*^2}$$ depends on the spatial distribution and the errors. #### Goal: - Study motions on largest scales - Require WF that - have narrow peaks - small amplitude outside peak ### Consider an ideal survey - Very large number of points - Isotropic distribution - $^{\circ}$ Gaussian falloff $n(r) \propto \exp(-r^2/2R_I^2)$ R_I Depth of the survey Find the weights that specify the moments $$u_i = \sum_{n} w_{i,n} S_n$$ that minimize the variance $\langle (u_i - U_i)^2 \rangle$ $$\langle (u_i - U_i)^2 \rangle$$ BF and shear moments are orthogonal by design Higher moments are not. e.g.: A pure octupole flow in a given volume V $$v_i = U_{ijk} r_i r_k$$ contains a net bulk flow $$\int_{V} U_{ijk} r_i r_k \ d^3r$$ Which leads to a strong correlation between the bulk flow and octupole moments **+UCL** #### Redefine the octuple moments $$v_i(\mathbf{r}) = U_i + U_{ij}r_j + U_{ijk} \left(r_j r_k - \Lambda_{jk}\right) + \dots$$ where $$\Lambda_{jk} = \int_{V} r_j r_k \ d^3r$$ For a spherically symmetric volume only Λ_{ii} are non-zero #### Line-of-sight peculiar velocity $$s(\mathbf{r}) = \vec{v} \cdot \hat{r}$$ $$= U_i \hat{r}_i + U_{ij} r \hat{r}_i \hat{r}_j + U_{ijk} \left(r^2 \hat{r}_i \hat{r}_j \hat{r}_k - \Lambda_{jk} \hat{r}_i \right) + \dots$$ $$= \sum_{i=1}^{19} U_p g_p(\mathbf{r})$$ #### Where $$U_p = \{U_1, U_2, U_3, U_{11}, U_{22}, U_{33}, U_{12}, U_{23}, U_{13}, U_{111}, U_{222}, U_{333}, U_{112}, U_{223}, U_{331}, U_{122}, U_{233}, U_{113}, U_{123}\}$$ #### and $$g_{p}(\mathbf{r}) = \{\hat{r}_{1}, \hat{r}_{2}, \hat{r}_{3}, r\hat{r}_{1}^{2}, r\hat{r}_{2}^{2}, r\hat{r}_{3}^{2}, 2r\hat{r}_{1}\hat{r}_{2}, 2r\hat{r}_{2}\hat{r}_{3}, 2r\hat{r}_{1}\hat{r}_{3}, \\ r^{2}\hat{r}_{1}^{3} - \Lambda_{11}\hat{r}_{1}, r^{2}\hat{r}_{2}^{3} - \Lambda_{22}\hat{r}_{2}, r^{2}\hat{r}_{3}^{3} - \Lambda_{33}\hat{r}_{3}, 3r^{2}\hat{r}_{1}^{2}\hat{r}_{2} - \Lambda_{11}\hat{r}_{2}, 3r^{2}\hat{r}_{2}^{2}\hat{r}_{3} - \Lambda_{22}\hat{r}_{3}, \\ 3r^{2}\hat{r}_{3}^{2}\hat{r}_{1} - \Lambda_{33}\hat{r}_{1}, 3r^{2}\hat{r}_{2}^{2}\hat{r}_{1} - \Lambda_{22}\hat{r}_{1}, 3r^{2}\hat{r}_{3}^{2}\hat{r}_{2} - \Lambda_{33}\hat{r}_{2}, 3r^{2}\hat{r}_{1}^{2}\hat{r}_{3} - \Lambda_{11}\hat{r}_{3}, 6r^{2}\hat{r}_{1}\hat{r}_{2}\hat{r}_{3}\}$$ +UCL Ideal velocity moments $$U_p = \frac{1}{N_o} \sum_{n=1}^{N_o} g_p(\mathbf{r}_n) s_n = \sum_n w'_{p,n} s_n \text{ where } w'_{p,n} = \frac{g_p(\mathbf{r}_n)}{N_o}$$ Given U_p , find the weights $w_{p,n}$ such that $$u_p = \sum_{n=1}^N w_{p,n} S_n$$ gives the best possible estimates of $\mathbf{U_p}$ \Rightarrow On average, the correct amplitudes $\langle u_p \rangle = U_p$ for the velocity moments Require that $$\sum w_{p,n}g_q(\mathbf{r}_n)=\delta_{pq}$$ 25 ***UCL** #### Enforce this constraint using Lagrange multiplier $$\langle (U_p - u_p)^2 \rangle + \sum_q \lambda_{pq} \left(\sum_n w_{p,n} g_q(\mathbf{r}_n) - \delta_{pq} \right)$$ or expand out the variance $$\langle U_p^2 \rangle - \sum_n 2w_{p,n} \langle S_n U_p \rangle + \sum_{n,m} w_{p,n} w_{p,m} \langle S_n S_m \rangle + \sum_n w_{p,n} w_{p,m} \langle S_n S_m \rangle + \sum_n w_{p,n} w_{p,n} \langle S_n S_m \rangle + \sum_n \sum$$ $$\sum_{q} \lambda_{pq} \left(\sum_{n} w_{p,n} g_q(\mathbf{r}_n) - \delta_{pq} \right)$$ Minimize with respect to $w_{p,n}$ $$-2\langle S_n U_p \rangle + 2\sum_m w_{p,m} \langle S_n S_m \rangle + \sum_q \lambda_{pq} g_q(\mathbf{r}_n) = 0$$ $$w_{p,n} = \sum_{m} G_{nm}^{-1} \left(\langle S_m U_p \rangle - \frac{1}{2} \sum_{q} \lambda_{pq} g_q(\mathbf{r}_m) \right)$$ $$\mathbf{G}_{nm} = \langle S_n S_m angle$$ individual velocity covariance matrix $$\lambda_{pq} = M_{pl}^{-1} \left(\sum_{m,n} G_{nm}^{-1} \langle S_m U_l \rangle g_q(\mathbf{r}_n) - \delta_{lq} \right)$$ $$M_{pq} = \frac{1}{2} \sum_{n,m} G_{nm}^{-1} g_p(\mathbf{r}_n) g_q(\mathbf{r}_m)$$ Large Scale Flows UC Berkeley Lunch Seminar, March 10, 2010 *UCL The covariance matrix $$G_{nm} = \langle s_n s_m \rangle + \delta_{nm} (\sigma_*^2 + \sigma_n^2)$$ = $\langle \hat{\mathbf{r}}_n \cdot \mathbf{v}(\mathbf{r}_n) | \hat{\mathbf{r}}_m \cdot \mathbf{v}(\mathbf{r}_m) \rangle + \delta_{nm} (\sigma_*^2 + \sigma_n^2).$ #### The cross correlation $$\langle S_m U_p \rangle = \sum_{n'} w'_{pn'} \langle s_m s_{n'} \rangle$$ The correlation matrix $$R_{pq} = \langle u_p u_q \rangle = \sum_{nm} w_{pn} w_{qm} \langle s_n s_m \rangle = \sum_{nm} w_{pn} w_{qm} G_{nm}$$ $$= R_{pq}^{(v)} + R_{pq}^{(\epsilon)}$$ Velocity correlation matrix $$R_{pq}^{(v)} = \frac{\Omega_m^{1.1}}{2\pi^2} \int dk \ P(k) \mathcal{W}_{pq}^2(k)$$ Noise correlation matrix $$R_{pq}^{(\epsilon)} = \sum_{n} w_{pn} w_{qn} \left(\sigma_n^2 + \sigma_*^2\right)$$ Tensor square window function $$\mathcal{W}_{pq}^2 = \sum_{n,m} w_{pn} w_{qm} f_{nm}(k)$$ where $$f_{mn}(k) = \int \frac{d^2\hat{k}}{4\pi} \left(\hat{\mathbf{r}}_n \cdot \hat{\mathbf{k}} \right) \left(\hat{\mathbf{r}}_m \cdot \hat{\mathbf{k}} \right) \exp \left(ik\hat{\mathbf{k}} \cdot (\mathbf{r}_n - \mathbf{r}_m) \right)$$ #### Peculiar Velocity Surveys #### Peculiar Velocity Surveys #### Peculiar Velocity Surveys # Window Function Design # Window Function Design Imperial College London ## Comparing Surveys # Window Function Design ## Window Function Design ## Comparing Surveys ## Moments and correlation coefficients | | COMPOSITE | | SFI++-DEEP | | SFI++ | | DEEP | | |-------------------------|----------------------|------|----------------------|------|----------------------|------|----------------------|-------------------| | | | | | | | | | | | X | 86.5 ± 68.8 | 0.74 | 104.7 ± 71.0 | 0.72 | 69.0 ± 95.7 | 0.64 | 192.7 ± 115.6 | 0.51 | | \overline{y} | -404.9 ± 61.8 | 0.77 | -430.3 ± 63.8 | 0.75 | -473.6 ± 87.2 | 0.67 | -320.7 ± 106.0 | 0.51 | | $\overline{\mathbf{z}}$ | 42.8 ± 37.7 | 0.89 | 64.9 ± 38.7 | 0.88 | 57.7 ± 59.3 | 0.80 | 62.0 ± 55.8 | 0.76 | | XX | 2.73 ± 1.01 | 0.69 | 2.94 ± 1.05 | 0.68 | 3.36 ± 1.29 | 0.62 | 2.19 ± 1.76 | $\overline{0.47}$ | | уу | 1.37 ± 0.98 | 0.69 | 2.07 ± 1.02 | 0.68 | 3.72 ± 1.27 | 0.63 | -0.19 ± 1.79 | $\overline{0.42}$ | | $\overline{\mathbf{z}}$ | -0.03 ± 0.68 | 0.80 | 0.68 ± 0.72 | 0.79 | 2.72 ± 0.96 | 0.71 | -0.72 ± 1.04 | $\overline{0.67}$ | | xy | 0.13 ± 0.76 | 0.51 | -0.01 ± 0.79 | 0.50 | -0.71 ± 0.98 | 0.42 | 0.27 ± 1.29 | 0.31 | | \overline{yz} | -0.95 ± 0.57 | 0.63 | -1.14 ± 0.59 | 0.62 | -1.05 ± 0.78 | 0.52 | -0.71 ± 0.94 | $\overline{0.40}$ | | \overline{z} | 1.22 ± 0.54 | 0.66 | 1.14 ± 0.56 | 0.65 | 1.50 ± 0.74 | 0.56 | 0.98 ± 0.84 | $\overline{0.47}$ | | XXX | $-1.2e-2 \pm 2.2e-2$ | 0.38 | $-5.8e-3 \pm 2.3e-2$ | 0.37 | $-9.3e-3 \pm 2.9e-2$ | 0.31 | $1.0e-2 \pm 3.6e-2$ | $\overline{0.25}$ | | ууу | $-2.4e-2 \pm 1.7e-2$ | 0.41 | $-2.3e-2 \pm 1.8e-2$ | 0.40 | $-1.9e-2 \pm 2.4e-2$ | 0.34 | $-2.2e-2 \pm 2.7e-2$ | $\overline{0.24}$ | | ZZZ | $-7.2e-3 \pm 1.1e-2$ | 0.61 | $-7.7e-3 \pm 1.1e-2$ | 0.60 | $-3.3e-3 \pm 1.6e-2$ | 0.48 | $-2.5e-3 \pm 1.6e-2$ | $\overline{0.47}$ | | \overline{xyy} | $-8.2e-3 \pm 1.2e-2$ | 0.30 | $-5.7e-3 \pm 1.3e-2$ | 0.30 | $-3.3e-2 \pm 1.7e-2$ | 0.23 | $2.0e-2 \pm 1.9e-2$ | 0.20 | | \overline{yzz} | $5.8e-4 \pm 6.6e-3$ | 0.44 | $2.8e-3 \pm 6.7e-3$ | 0.44 | $-1.8e-3 \pm 1.0e-2$ | 0.33 | $8.9e-3 \pm 9.6e-3$ | 0.30 | | \overline{ZXX} | $7.3e-3 \pm 7.8e-3$ | 0.45 | $4.9e-3 \pm 8.1e-3$ | 0.45 | $8.7e-3 \pm 1.1e-2$ | 0.34 | $-2.1e-3 \pm 1.2e-2$ | $\overline{0.34}$ | | xxy | $8.3e-3 \pm 1.2e-2$ | 0.29 | $9.0e-3 \pm 1.2e-2$ | 0.28 | $5.7e-3 \pm 1.6e-2$ | 0.24 | $2.2e-2 \pm 1.9e-2$ | 0.16 | | \overline{yyz} | $6.3e-4 \pm 8.3e-3$ | 0.40 | $2.2e-3 \pm 8.5e-3$ | 0.40 | $7.7e-3 \pm 1.2e-2$ | 0.28 | $-2.5e-3 \pm 1.2e-2$ | 0.30 | | ZZX | $1.2e-2 \pm 7.6e-3$ | 0.46 | $9.9e-3 \pm 7.8e-3$ | 0.46 | $-2.5e-3 \pm 1.1e-2$ | 0.35 | $1.6e-2 \pm 1.1e-2$ | 0.34 | | XyZ | $6.6e-3 \pm 5.5e-3$ | 0.34 | $8.7e-3 \pm 5.6e-3$ | 0.34 | $9.3e-3 \pm 8.2e-3$ | 0.25 | $4.9e-3 \pm 8.2e-3$ | 0.22 | # The total observed P(> χ^2) in percent for N_{MOM} = 3, 9 and 19 for R_I =50 h⁻¹ Mpc, and the WMAP5 central parameters Ω_m = 0.258 and σ_8 = 0.796. | | $N_{MOM} = 3$ $N_{MOM} = 9$ | | | $N_{ m MOM} = 19$ | | | | | |------------|-----------------------------|-------|------|-------------------|-------|------|-------|----------| | | BF | Total | BF | shear | Total | BF | shear | octupole | | COMPOSITE | 1.89 | 6.01 | 1.81 | 41.76 | 17.00 | 0.50 | 52.60 | 78.33 | | SFI++-DEEP | 0.92 | 2.80 | 0.85 | 33.21 | 13.67 | 0.20 | 39.47 | 86.37 | | SFI++ | 3.11 | 1.73 | 3.22 | 7.70 | 16.19 | 0.22 | 11.22 | 89.38 | | DEEP | 6.02 | 30.41 | 6.29 | 82.62 | 55.54 | 3.18 | 91.22 | 81.61 | Hume A. Feldman ### Sources of the Flow **Legend:** image shows 2MASS galaxies color coded by redshift (Jarrett 2004); familiar galaxy clusters/superclusters are labeled (numbers in parenthesis represent redshift). Graphic created by T. Jarrett (IPAC/Caltech) # Conclusions - Given appropriate window functions, velocity field surveys are consistent with each other. - Maximum Likelihood parameter estimation are robust and mostly agree with other methods. - There is a minimal sensitivity to small-scale aliasing which biases the results, hiding large-scale flows - Optimization of window functions removes the bias and shows the flow - lacksquare Bulk flow disagrees with the Standard Λ CDM parameters (WMAP5) to $\sim 3\sigma$ - More power on k ≤ 0.01 will make these results likely