Flows on 100 h⁻¹ Mpc Scales

Hume A. Feldman

Physics & Astronomy

University of Kansas

Hume A. Feldman

Peculiar Velocity Field

Measure the line of sight peculiar velocities:

$$v_p = cz - H_or$$

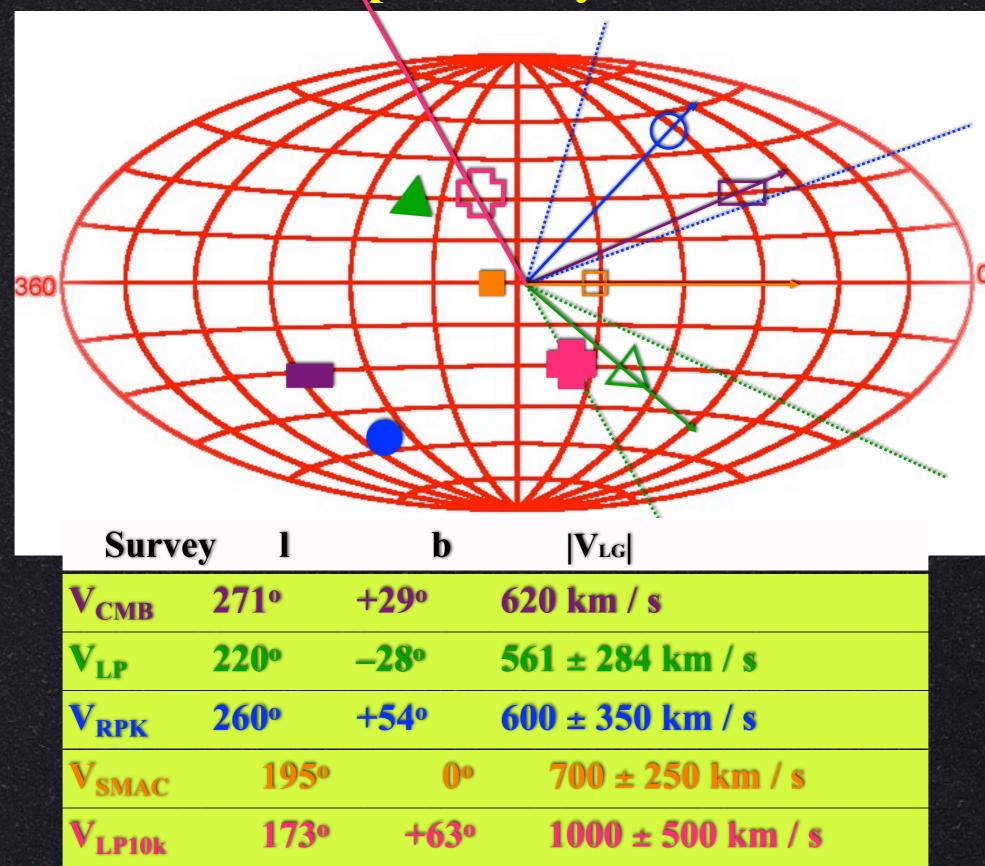
The difference between the redshift and the distance Why should we study vp?

* The peculiar velocity field is dominated by large scales

- * Test of gravitational instability model $\vec{\nabla}\cdot\vec{V}=\frac{\delta\rho}{\rho}$ $\vec{\nabla}\times\vec{V}=0$ * A direct probe of the mass distribution $\vec{V}=-\vec{\nabla}\phi$

 - Comparison of velocity fields & Luminous matter distribution = bias, Ω ...

Local Group Velocity (Cautionary History Lesson)

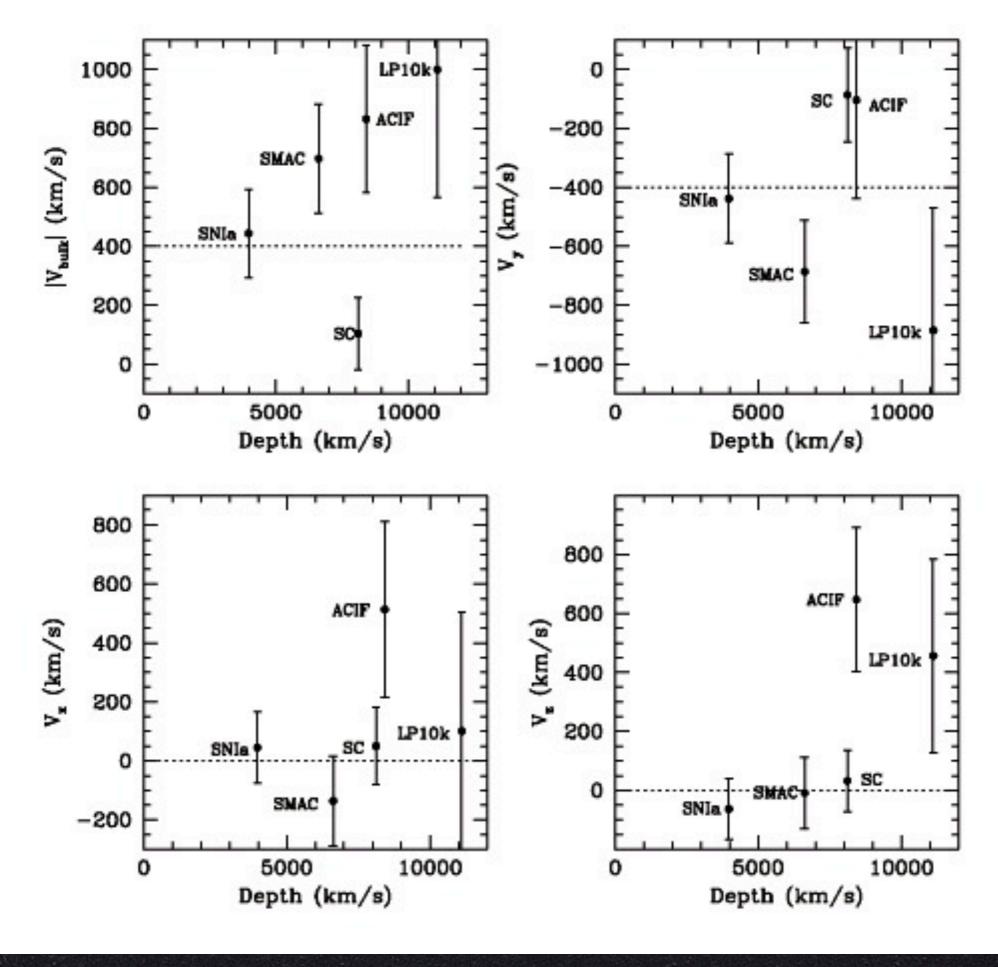


 V_{SC}

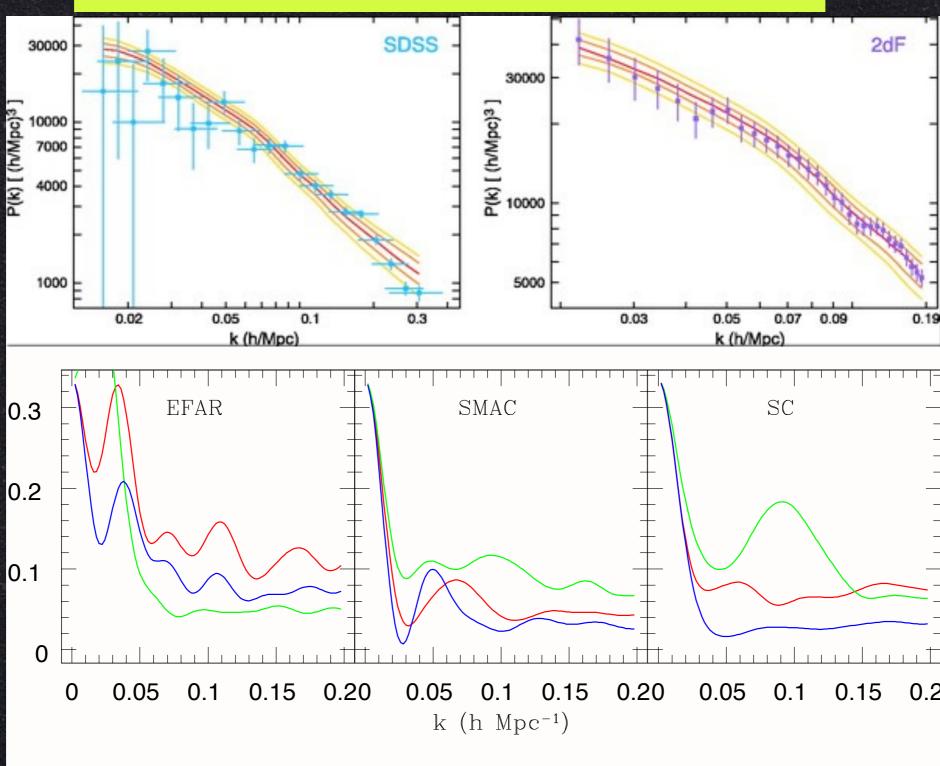
 0^{0}

 $100 \pm 150 \text{ km/s}$

180°



$$\tilde{p} = N \int \frac{d^3k}{(2\pi)^3} p(\vec{k}) W(\vec{k})$$



Velocity Fields The Modern Version

HAF, *Watkins & Hudson*, arXiv.0911.5516 (2009)

Watkins, HAF & Hudson, MNRAS, 392, 743-756 (2009)

HAF & Watkins, MNRAS 387, 825-829 (2008)

Watkins & HAF, MNRAS 379, 343-348 (2007)

Sarkar, HAF & Watkins, MNRAS 375 691-697 (2007)

Redshift-Distance surveys

- Construct the full three dimensional bulk-flow vectors.
- Compare bulk-flow for peculiar velocity surveys.
- Surveys differ in their o geometry o measurement errors o galaxy types.
- The overall errors are
 - Statistical
 - Systematic
 - Aliasing

The Physics of Velocity Fields

On scales that are small compared to the Hubble radius, galaxy motions are manifest in deviations from the idealized isotropic cosmological expansion

$$cz = H_0 r + \hat{\mathbf{r}} \cdot [\mathbf{v}(\mathbf{r}) - \mathbf{v}(0)]$$

The redshift-distance samples, obtained from peculiar velocity surveys, allow us to determine the radial (line-of-sight) component of the peculiar velocity of each galaxy:

$$v(r) = \hat{\mathbf{r}} \cdot \mathbf{v}(\mathbf{r}) = cz - H_0 r$$

_*UCL

The Physics of Velocity Fields

Galaxies trace the large-scale linear velocity field v(r) which is described by a Gaussian random field that is completely defined, in Fourier space, by its velocity power spectrum $P_v(k)$.

Fourier Transform of the line-of-sight velocity

$$\hat{\mathbf{r}} \cdot \mathbf{v}(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3\mathbf{k} \, \hat{\mathbf{r}} \cdot \hat{\mathbf{k}} \, v(\mathbf{k}) \, \mathbf{e}^{i\mathbf{k}\cdot\mathbf{r}}$$

Define the velocity power spectrum Pv(k)

$$\langle v(\mathbf{k})v^*(\mathbf{k}')\rangle = (2\pi)^3 P_v(k)\delta_D(\mathbf{k} - \mathbf{k}')$$

The Physics of Velocity Fields

In linear theory, the velocity power spectrum is related to the density power spectrum

$$P_v(k) = \frac{H^2}{k^2} (f^2(\Omega_{m,0}, \Omega_{\Lambda})) P(k)$$

The rate of growth of the perturbations at the present epoch

_LUCL

The Physics of Velocity Fields

In linear theory, the velocity power spectrum is related to the density power spectrum

$$P_v(k) = \frac{H^2}{k^2} f^2(\Omega_{m,0}, \Omega_{\Lambda}) P(k)$$

The power spectrum provides a complete statistical description of the linear peculiar velocity field.

Likelihood Methods for Peculiar Velocities

A catalog of peculiar velocities galaxies, labeled by an index n

Positions r_n

Estimates of the line-of-sight peculiar velocities S_n

Uncertainties σ_n

Assume that observational errors are Gaussian distributed.

Model the velocity field as a uniform streaming motion, or bulk flow, denoted by U, about which are random motions drawn from a Gaussian distribution with a 1-D velocity dispersion σ_*

Likelihood Methods for Peculiar Velocities

Likelihood function for the bulk flow components

$$L(U_i) = \prod_{n} \frac{1}{\sqrt{\sigma_n^2 + \sigma_*^2}} \exp\left(-\frac{1}{2} \frac{(S_n - \hat{r}_{n,i}U_i)^2}{\sigma_n^2 + \sigma_*^2}\right)$$

Maximum likelihood solution for bulk flow

$$U_i = A_{ij}^{-1} \sum_{n} \frac{\hat{r}_{n,j} S_n}{\sigma_n^2 + \sigma_*^2}$$

where

$$A_{ij} = \sum_{n} \frac{\hat{r}_{n,i} \hat{r}_{n,j}}{\sigma_n^2 + \sigma_*^2}$$

.*UCL

Likelihood Methods for Peculiar Velocities

The measured peculiar velocity of galaxy n

$$S_n = \hat{r}_{n,i} v_i(\mathbf{r}_n) + \widehat{\epsilon}_n$$

A Gaussian with zero mean and variance $\sigma_n^2 + \sigma_*^2$

Theoretical covariance matrix for the bulk flow components

$$R_{ij} = \langle v_i v_j \rangle = R_{ij}^{(v)} + \delta_{ij} (\sigma_i^2 + \sigma_*^2)$$

$$R_{ij}^{(v)} = \frac{1}{(2\pi)^3} \int P_{(v)}(k) W_{ij}^2(k) d^3k$$

$$= \frac{H^2 f^2(\Omega_0)}{2\pi^2} \int P(k) W_{ij}^2(k) dk$$

mperial College London

Likelihood Methods for Peculiar Velocities

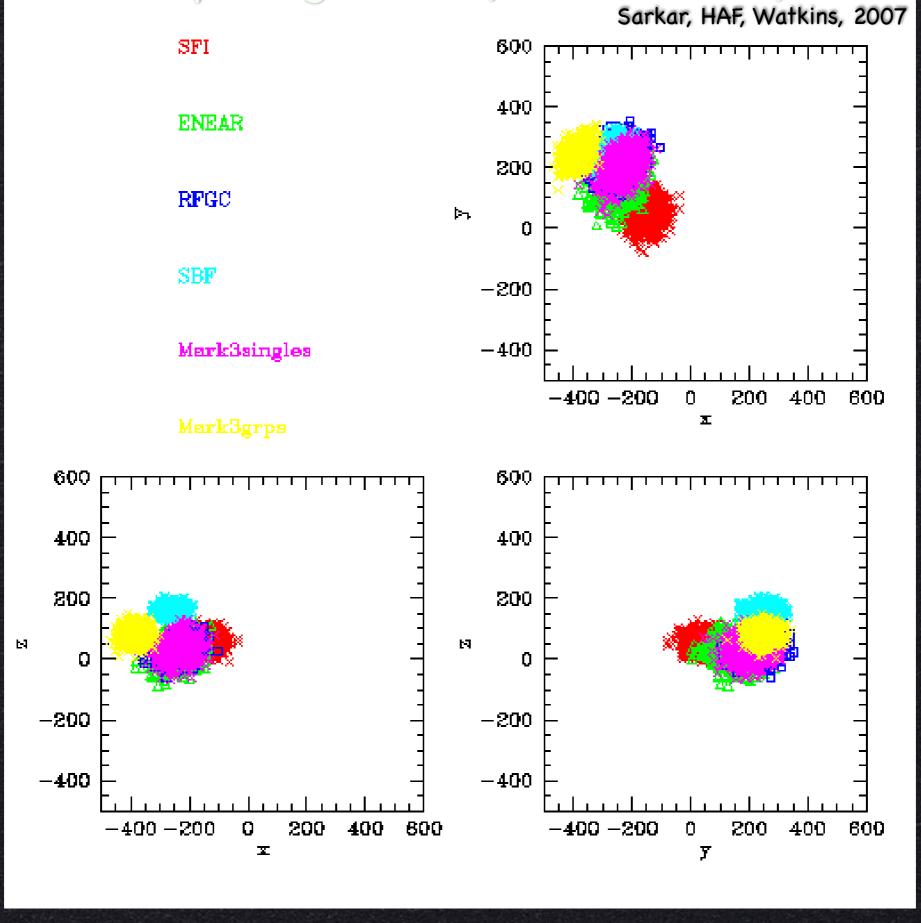
Question: Are surveys consistent with each other?

Even if two surveys are measuring the same underlying velocity field, they will not necessarily give the same bulk flow.

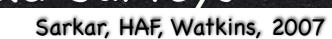
Reasons:

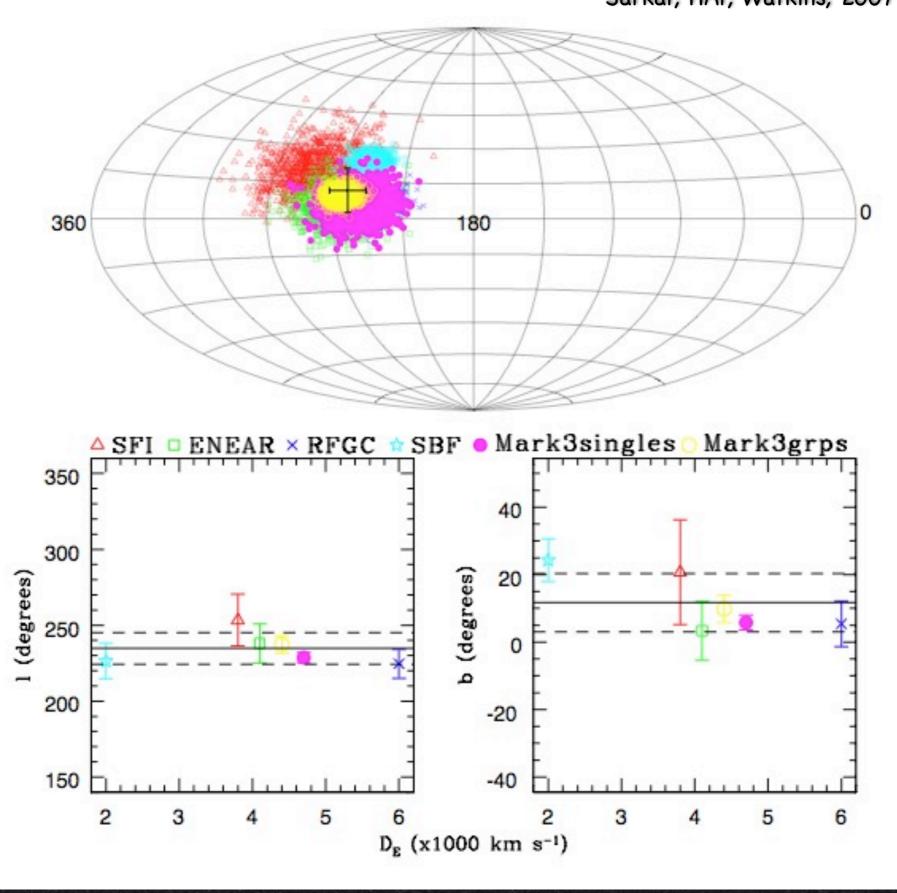
- * measurement errors in the peculiar velocities
- * surveys probe the velocity field in a different way

Comparing Velocity Field Surveys



Comparing Velocity Field Surveys

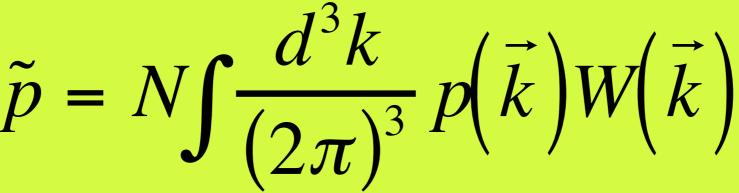


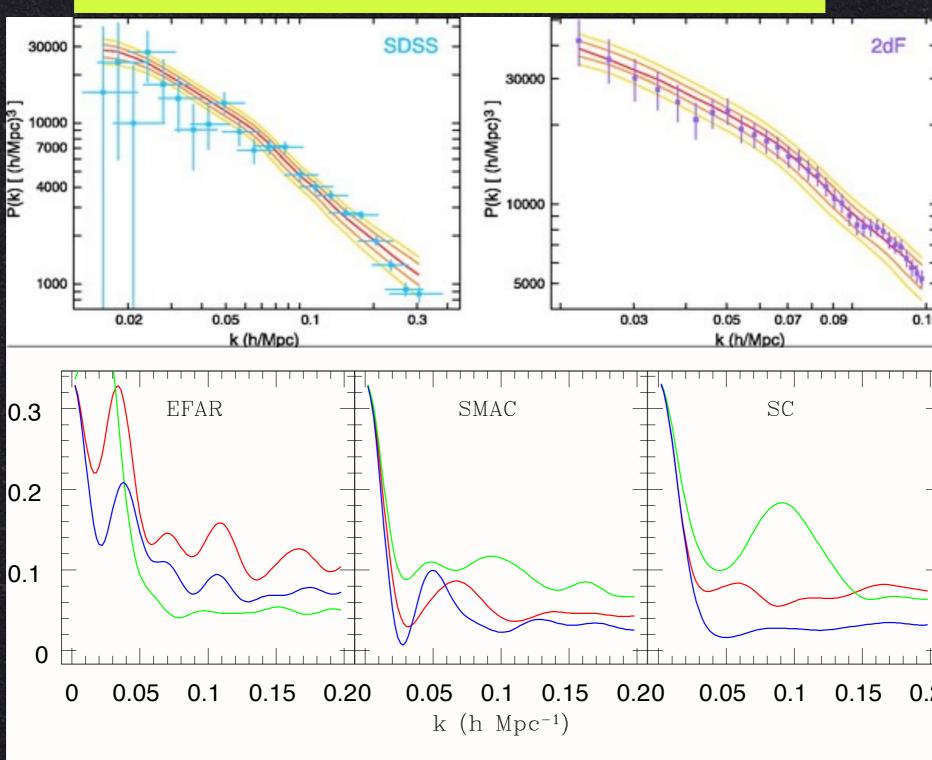


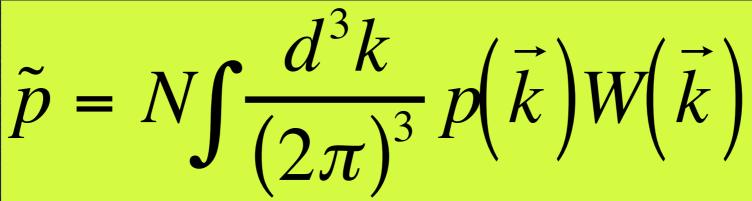
Can we do better?

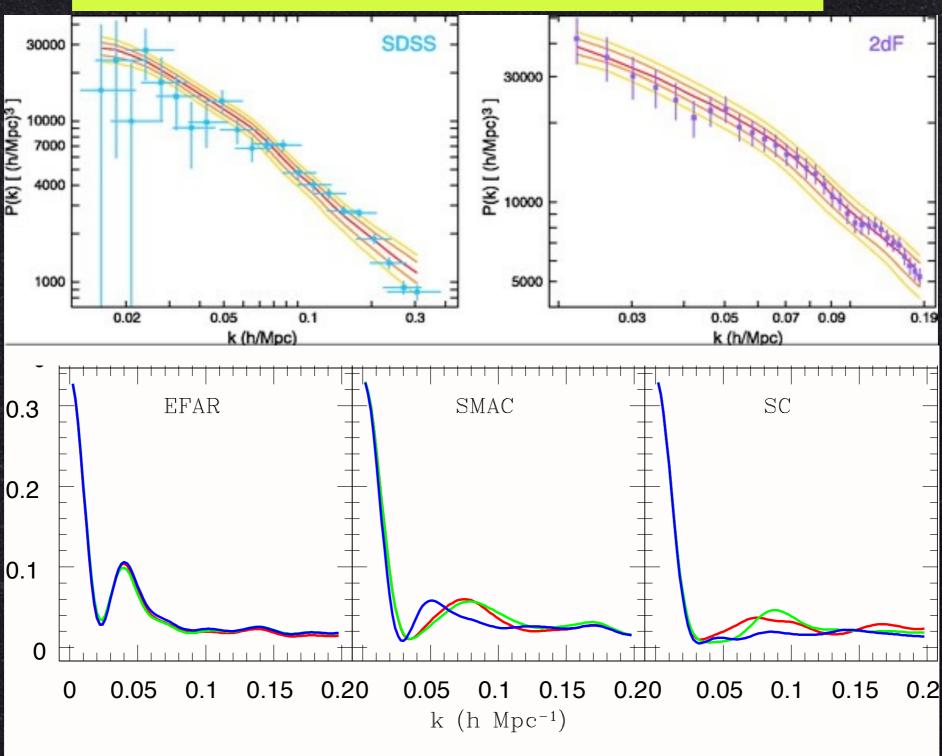
Get rid of small scale aliasing?

Improve the window function design









+UCL

Decomposition of the velocity field

Kaiser 88, Jaffe & Kaiser 95

$$v_i(\mathbf{r}) = U_i + U_{ij}r_j + U_{ijk}r_jr_k + \dots$$

Bulk Flow

Shear

Octuple

If the velocity is a potential flow then both shear and octuple are symmetric (curl Free)

- > 3 DoF for BF
- > 6 DoF for shear
- > 10 DoF for Octuple

19 Independent components

+UCL

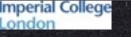
The BF Maximum Likelihood Estimates of the weights (MLE)

$$w_{i,n} = A_{ij}^{-1} \sum_{n} \frac{\mathbf{x}_j \cdot \mathbf{r}_n}{\sigma_n^2 + \sigma_*^2}$$

depends on the spatial distribution and the errors.

Goal:

- Study motions on largest scales
- Require WF that
 - have narrow peaks
 - small amplitude outside peak



Consider an ideal survey

- Very large number of points
- Isotropic distribution
- $^{\circ}$ Gaussian falloff $n(r) \propto \exp(-r^2/2R_I^2)$

 R_I Depth of the survey

Find the weights that specify the moments

$$u_i = \sum_{n} w_{i,n} S_n$$

that minimize the variance $\langle (u_i - U_i)^2 \rangle$

$$\langle (u_i - U_i)^2 \rangle$$

BF and shear moments are orthogonal by design Higher moments are not.

e.g.: A pure octupole flow in a given volume V

$$v_i = U_{ijk} r_i r_k$$

contains a net bulk flow

$$\int_{V} U_{ijk} r_i r_k \ d^3r$$

Which leads to a strong correlation between the bulk flow and octupole moments

+UCL

Redefine the octuple moments

$$v_i(\mathbf{r}) = U_i + U_{ij}r_j + U_{ijk} \left(r_j r_k - \Lambda_{jk}\right) + \dots$$

where

$$\Lambda_{jk} = \int_{V} r_j r_k \ d^3r$$

For a spherically symmetric volume only Λ_{ii} are non-zero

Line-of-sight peculiar velocity

$$s(\mathbf{r}) = \vec{v} \cdot \hat{r}$$

$$= U_i \hat{r}_i + U_{ij} r \hat{r}_i \hat{r}_j + U_{ijk} \left(r^2 \hat{r}_i \hat{r}_j \hat{r}_k - \Lambda_{jk} \hat{r}_i \right) + \dots$$

$$= \sum_{i=1}^{19} U_p g_p(\mathbf{r})$$

Where

$$U_p = \{U_1, U_2, U_3, U_{11}, U_{22}, U_{33}, U_{12}, U_{23}, U_{13}, U_{111}, U_{222}, U_{333}, U_{112}, U_{223}, U_{331}, U_{122}, U_{233}, U_{113}, U_{123}\}$$

and

$$g_{p}(\mathbf{r}) = \{\hat{r}_{1}, \hat{r}_{2}, \hat{r}_{3}, r\hat{r}_{1}^{2}, r\hat{r}_{2}^{2}, r\hat{r}_{3}^{2}, 2r\hat{r}_{1}\hat{r}_{2}, 2r\hat{r}_{2}\hat{r}_{3}, 2r\hat{r}_{1}\hat{r}_{3}, \\ r^{2}\hat{r}_{1}^{3} - \Lambda_{11}\hat{r}_{1}, r^{2}\hat{r}_{2}^{3} - \Lambda_{22}\hat{r}_{2}, r^{2}\hat{r}_{3}^{3} - \Lambda_{33}\hat{r}_{3}, 3r^{2}\hat{r}_{1}^{2}\hat{r}_{2} - \Lambda_{11}\hat{r}_{2}, 3r^{2}\hat{r}_{2}^{2}\hat{r}_{3} - \Lambda_{22}\hat{r}_{3}, \\ 3r^{2}\hat{r}_{3}^{2}\hat{r}_{1} - \Lambda_{33}\hat{r}_{1}, 3r^{2}\hat{r}_{2}^{2}\hat{r}_{1} - \Lambda_{22}\hat{r}_{1}, 3r^{2}\hat{r}_{3}^{2}\hat{r}_{2} - \Lambda_{33}\hat{r}_{2}, 3r^{2}\hat{r}_{1}^{2}\hat{r}_{3} - \Lambda_{11}\hat{r}_{3}, 6r^{2}\hat{r}_{1}\hat{r}_{2}\hat{r}_{3}\}$$

+UCL

Ideal velocity moments

$$U_p = \frac{1}{N_o} \sum_{n=1}^{N_o} g_p(\mathbf{r}_n) s_n = \sum_n w'_{p,n} s_n \text{ where } w'_{p,n} = \frac{g_p(\mathbf{r}_n)}{N_o}$$

Given U_p , find the weights $w_{p,n}$ such that

$$u_p = \sum_{n=1}^N w_{p,n} S_n$$
 gives the best possible estimates of $\mathbf{U_p}$

 \Rightarrow On average, the correct amplitudes $\langle u_p \rangle = U_p$ for the velocity moments

Require that
$$\sum w_{p,n}g_q(\mathbf{r}_n)=\delta_{pq}$$

25

***UCL**

Enforce this constraint using Lagrange multiplier

$$\langle (U_p - u_p)^2 \rangle + \sum_q \lambda_{pq} \left(\sum_n w_{p,n} g_q(\mathbf{r}_n) - \delta_{pq} \right)$$

or expand out the variance

$$\langle U_p^2 \rangle - \sum_n 2w_{p,n} \langle S_n U_p \rangle + \sum_{n,m} w_{p,n} w_{p,m} \langle S_n S_m \rangle + \sum_n w_{p,n} w_{p,m} \langle S_n S_m \rangle + \sum_n w_{p,n} w_{p,n} \langle S_n S_m \rangle + \sum_n w_{p,n} \langle S_n S_m \rangle + \sum$$

$$\sum_{q} \lambda_{pq} \left(\sum_{n} w_{p,n} g_q(\mathbf{r}_n) - \delta_{pq} \right)$$

Minimize with respect to $w_{p,n}$

$$-2\langle S_n U_p \rangle + 2\sum_m w_{p,m} \langle S_n S_m \rangle + \sum_q \lambda_{pq} g_q(\mathbf{r}_n) = 0$$

$$w_{p,n} = \sum_{m} G_{nm}^{-1} \left(\langle S_m U_p \rangle - \frac{1}{2} \sum_{q} \lambda_{pq} g_q(\mathbf{r}_m) \right)$$

$$\mathbf{G}_{nm} = \langle S_n S_m
angle$$
 individual velocity covariance matrix

$$\lambda_{pq} = M_{pl}^{-1} \left(\sum_{m,n} G_{nm}^{-1} \langle S_m U_l \rangle g_q(\mathbf{r}_n) - \delta_{lq} \right)$$

$$M_{pq} = \frac{1}{2} \sum_{n,m} G_{nm}^{-1} g_p(\mathbf{r}_n) g_q(\mathbf{r}_m)$$

Large Scale Flows

UC Berkeley Lunch Seminar, March 10, 2010

*UCL

The covariance matrix

$$G_{nm} = \langle s_n s_m \rangle + \delta_{nm} (\sigma_*^2 + \sigma_n^2)$$

= $\langle \hat{\mathbf{r}}_n \cdot \mathbf{v}(\mathbf{r}_n) | \hat{\mathbf{r}}_m \cdot \mathbf{v}(\mathbf{r}_m) \rangle + \delta_{nm} (\sigma_*^2 + \sigma_n^2).$

The cross correlation

$$\langle S_m U_p \rangle = \sum_{n'} w'_{pn'} \langle s_m s_{n'} \rangle$$

The correlation matrix

$$R_{pq} = \langle u_p u_q \rangle = \sum_{nm} w_{pn} w_{qm} \langle s_n s_m \rangle = \sum_{nm} w_{pn} w_{qm} G_{nm}$$
$$= R_{pq}^{(v)} + R_{pq}^{(\epsilon)}$$

Velocity correlation matrix

$$R_{pq}^{(v)} = \frac{\Omega_m^{1.1}}{2\pi^2} \int dk \ P(k) \mathcal{W}_{pq}^2(k)$$

Noise correlation matrix

$$R_{pq}^{(\epsilon)} = \sum_{n} w_{pn} w_{qn} \left(\sigma_n^2 + \sigma_*^2\right)$$

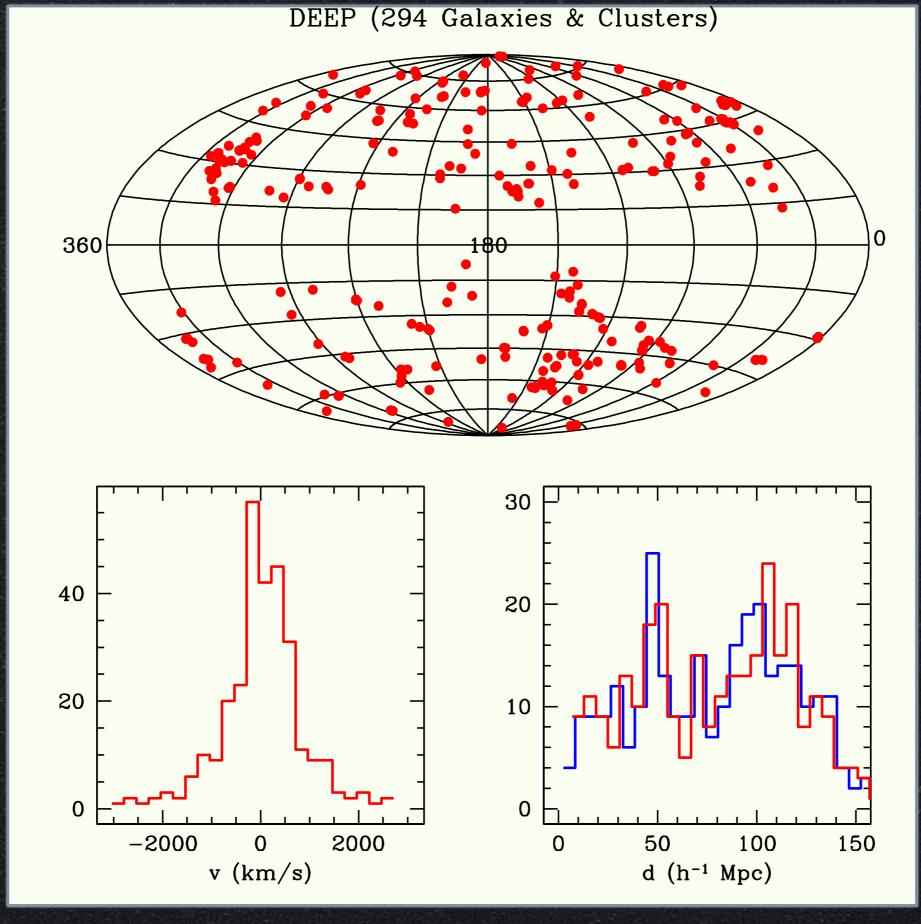
Tensor square window function

$$\mathcal{W}_{pq}^2 = \sum_{n,m} w_{pn} w_{qm} f_{nm}(k)$$

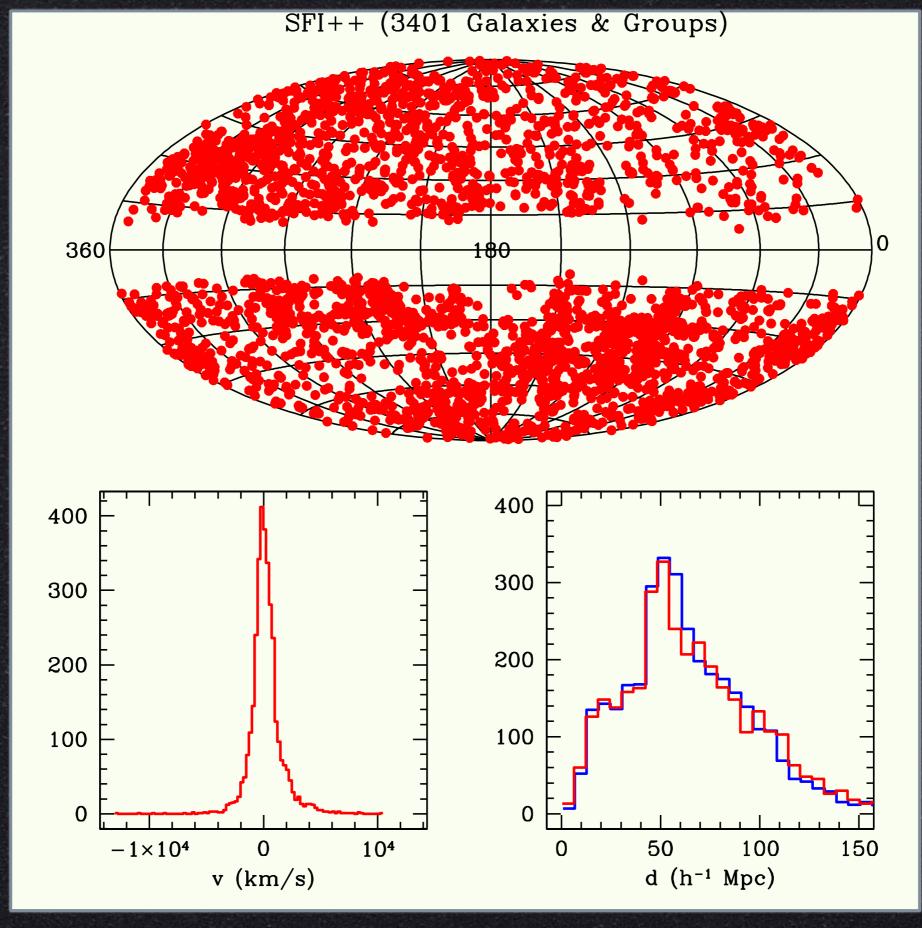
where

$$f_{mn}(k) = \int \frac{d^2\hat{k}}{4\pi} \left(\hat{\mathbf{r}}_n \cdot \hat{\mathbf{k}} \right) \left(\hat{\mathbf{r}}_m \cdot \hat{\mathbf{k}} \right) \exp \left(ik\hat{\mathbf{k}} \cdot (\mathbf{r}_n - \mathbf{r}_m) \right)$$

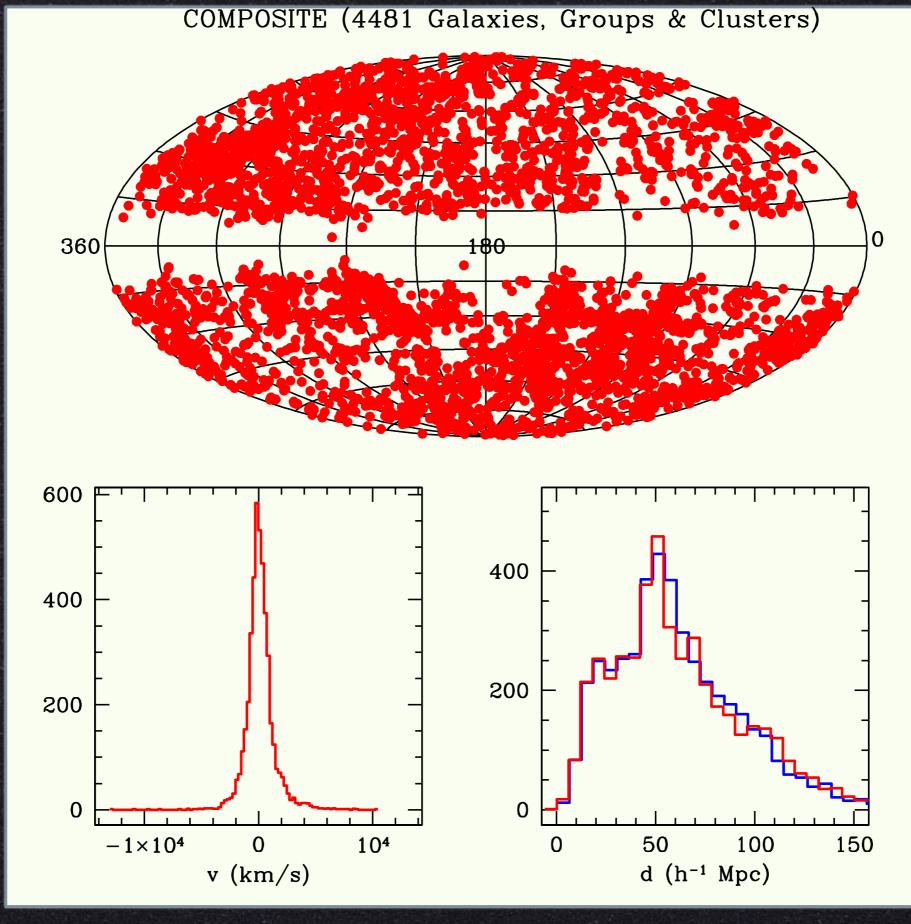
Peculiar Velocity Surveys

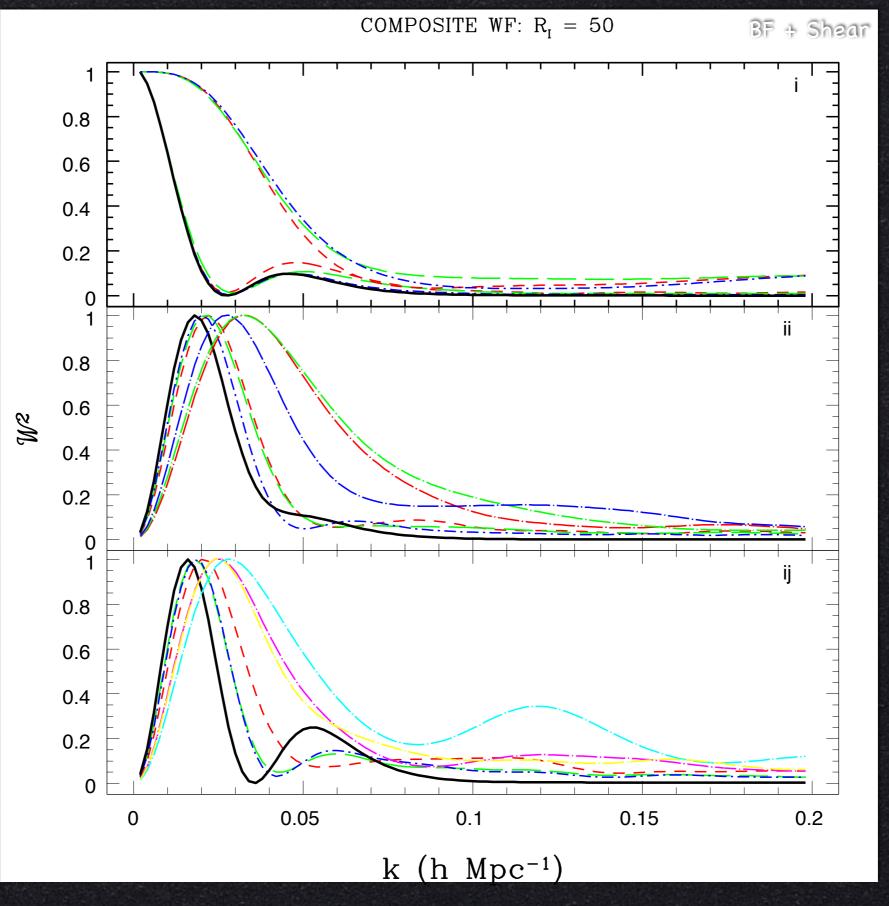


Peculiar Velocity Surveys

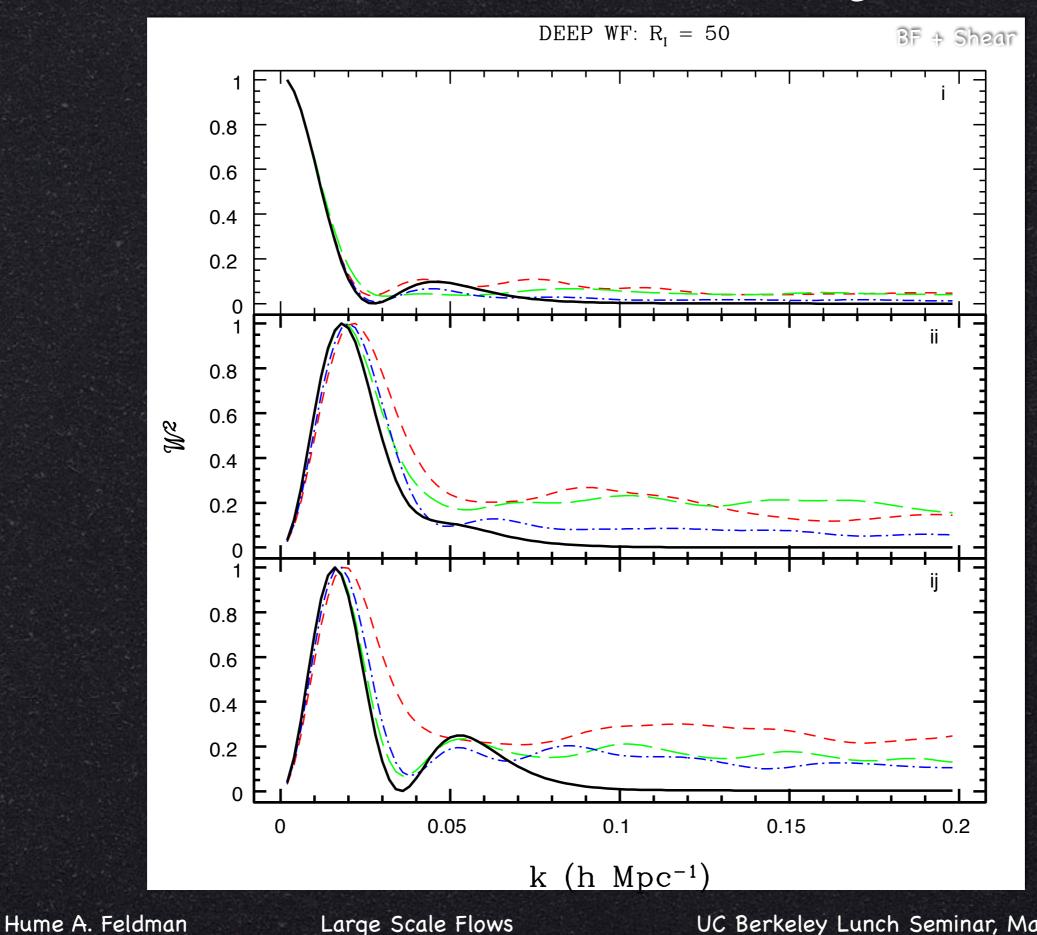


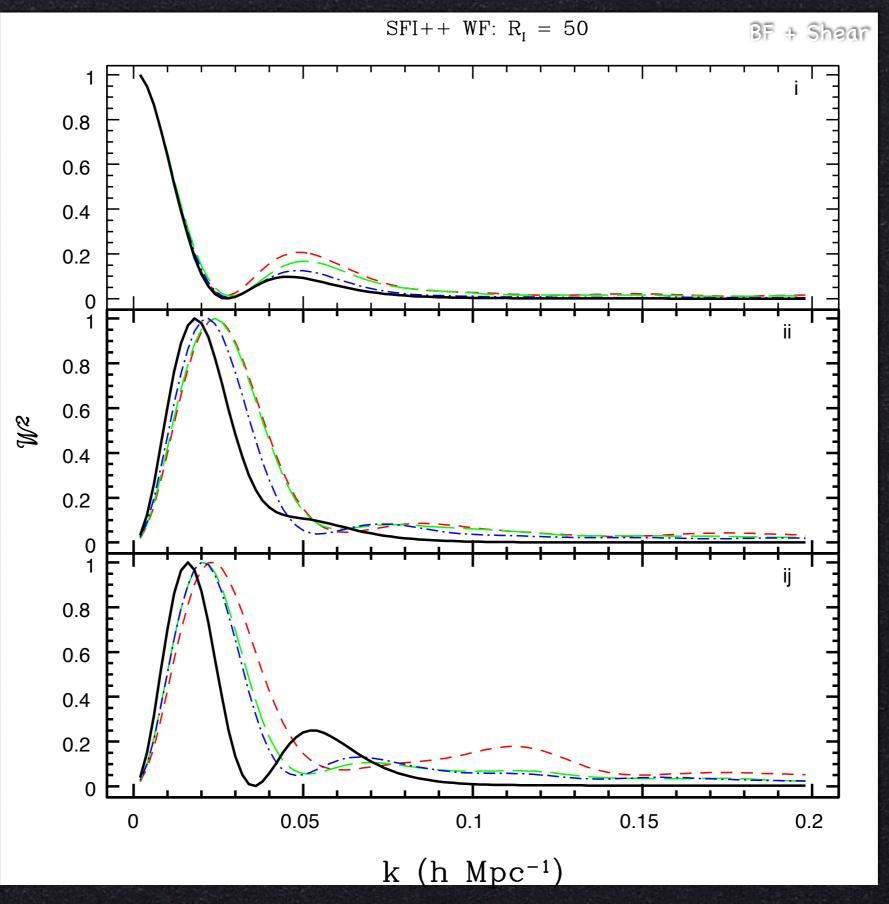
Peculiar Velocity Surveys



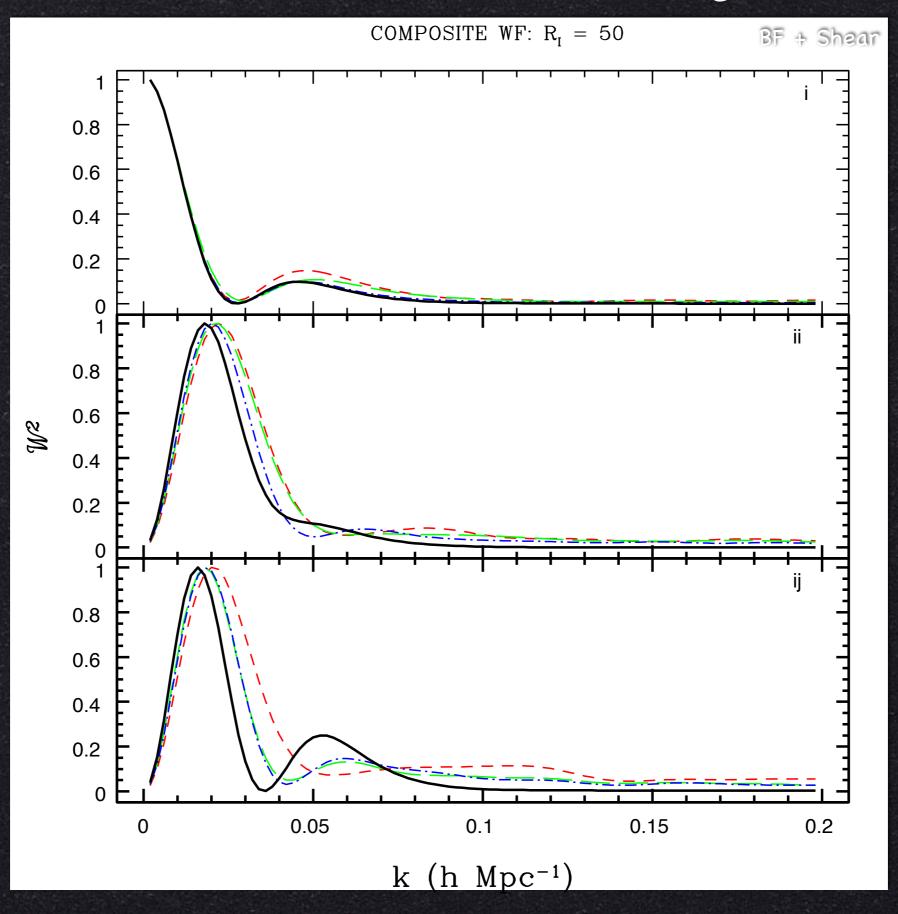


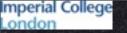
Window Function Design

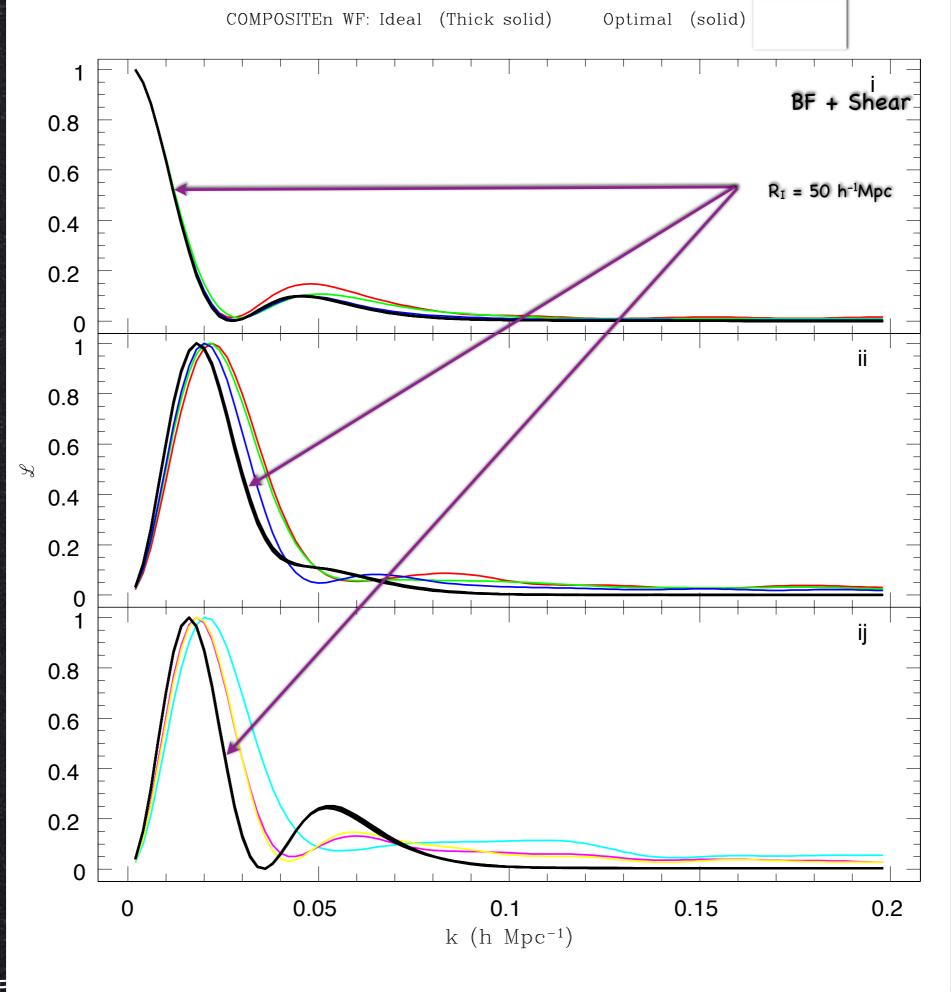




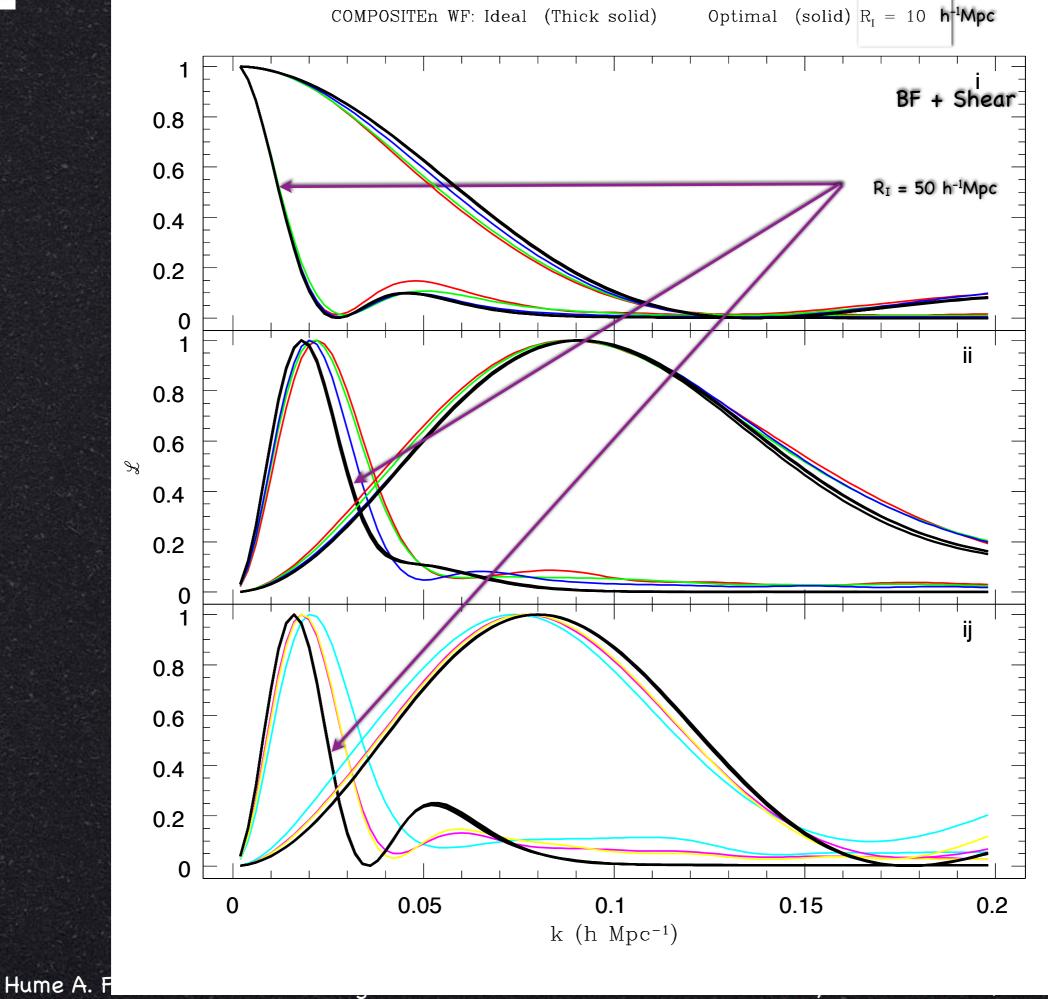
Window Function Design

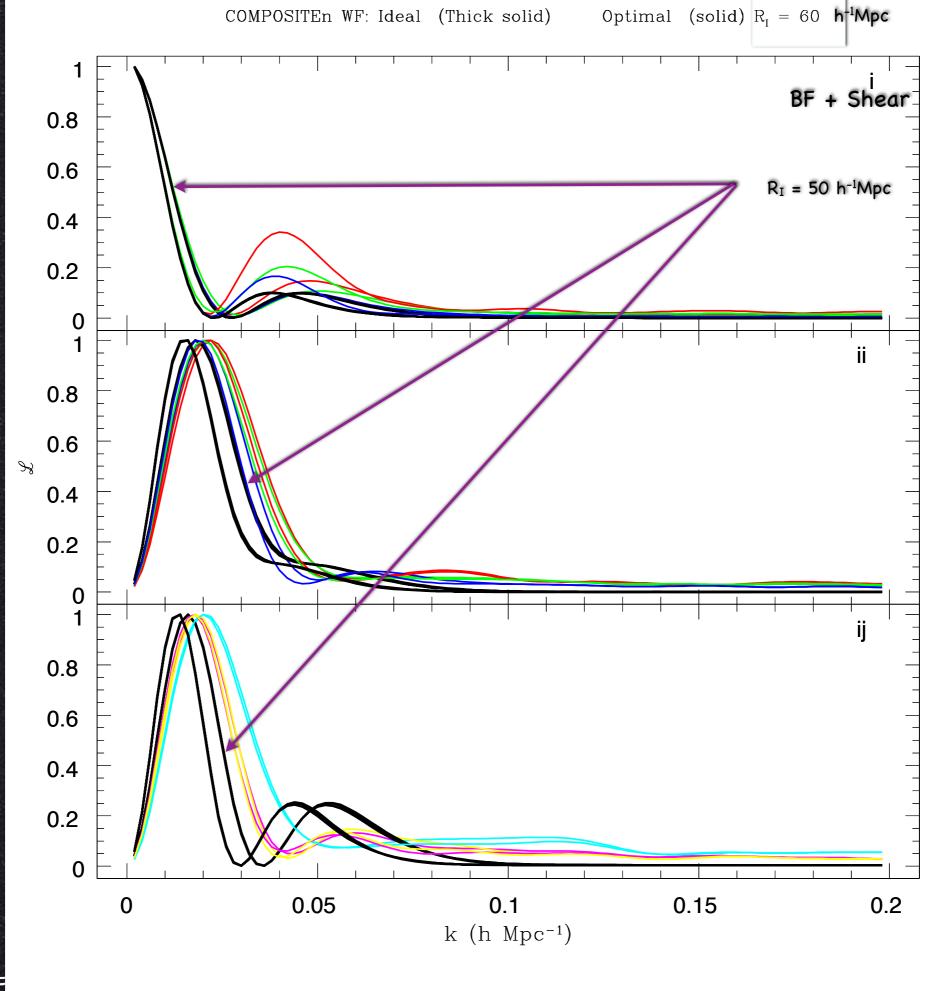




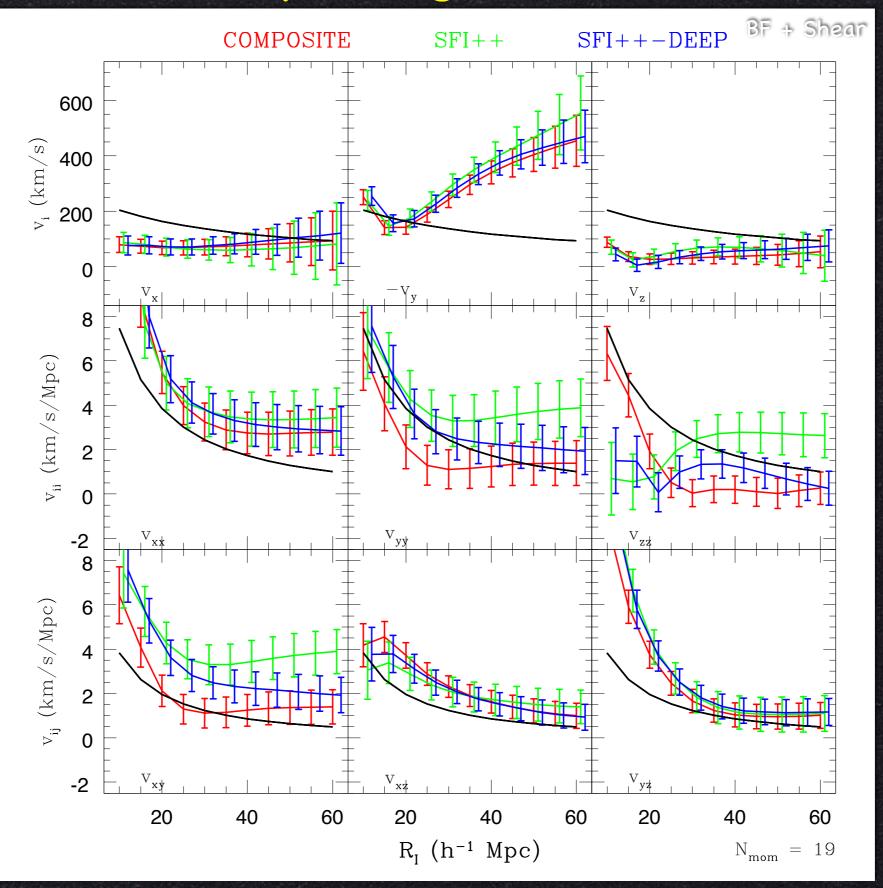


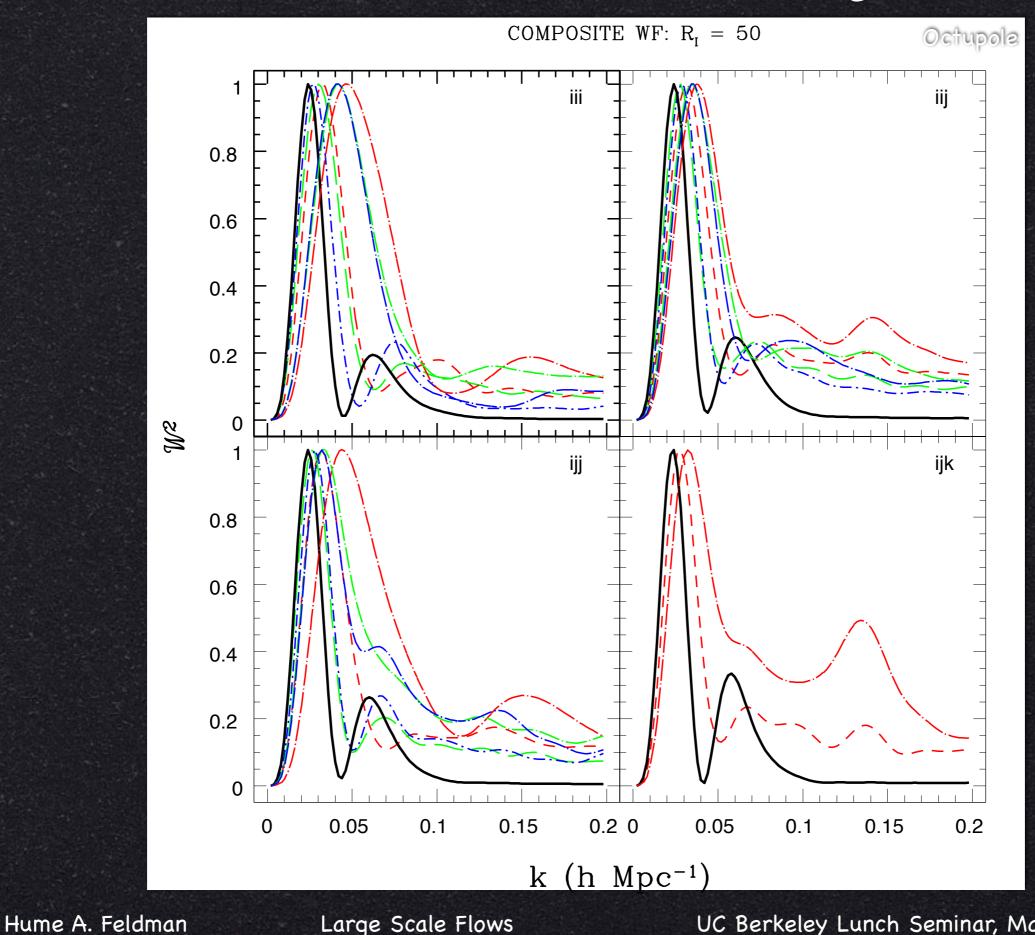
Imperial College London



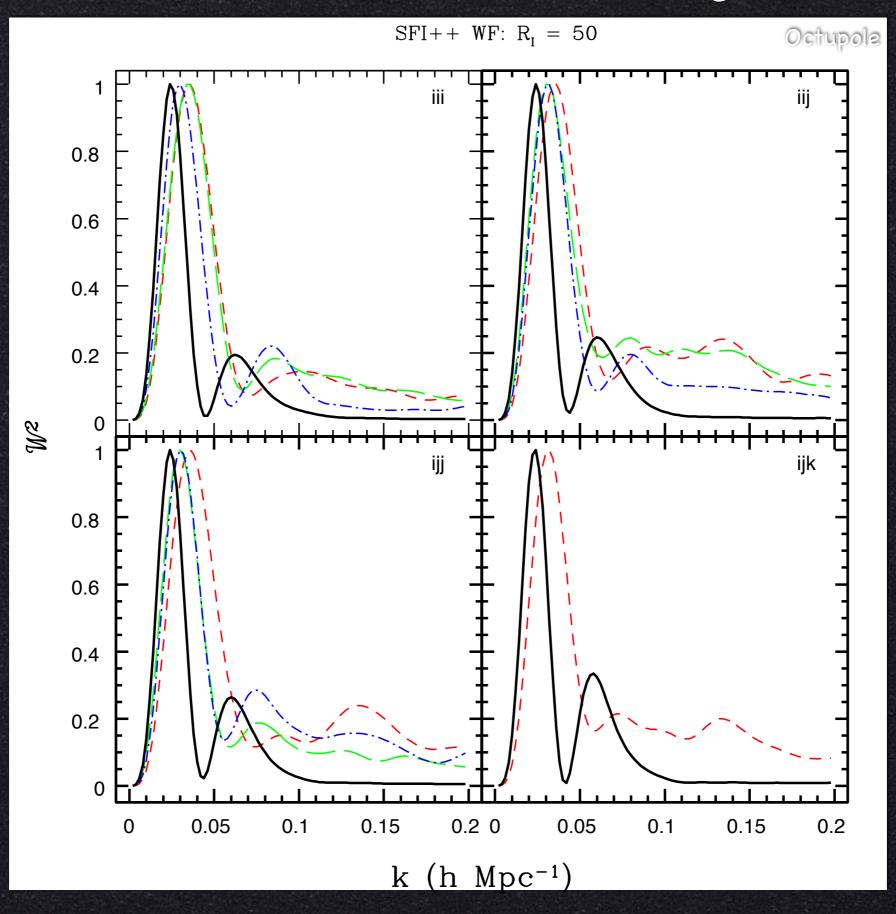


Comparing Surveys

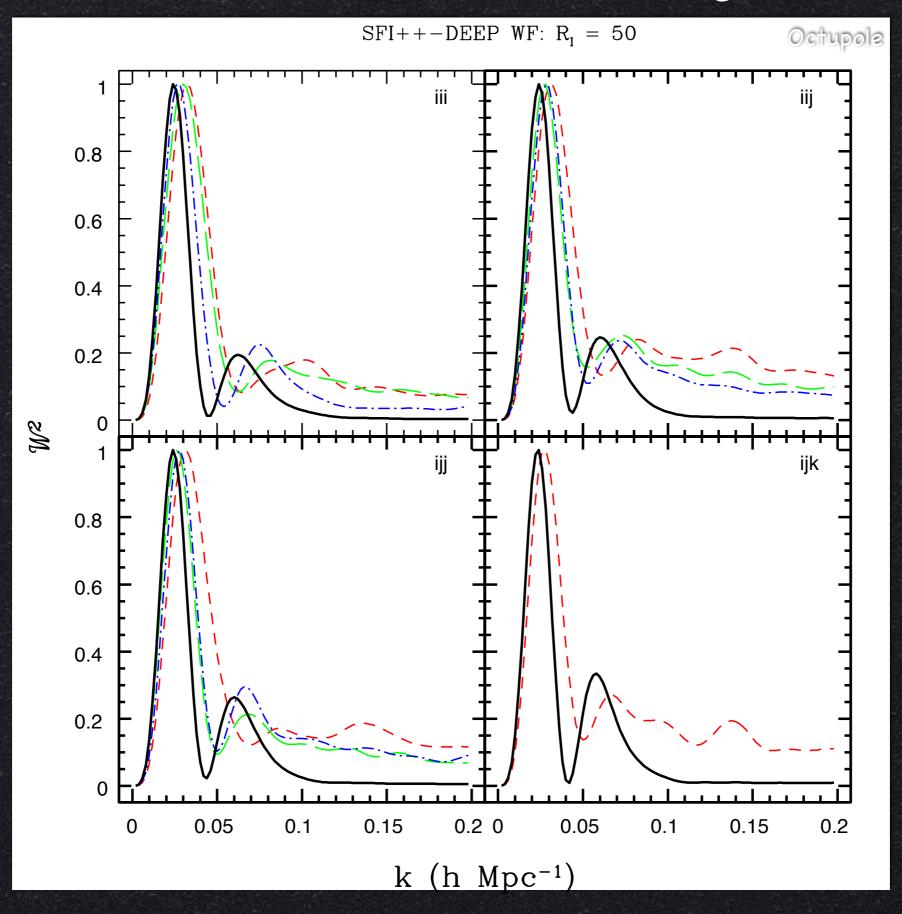


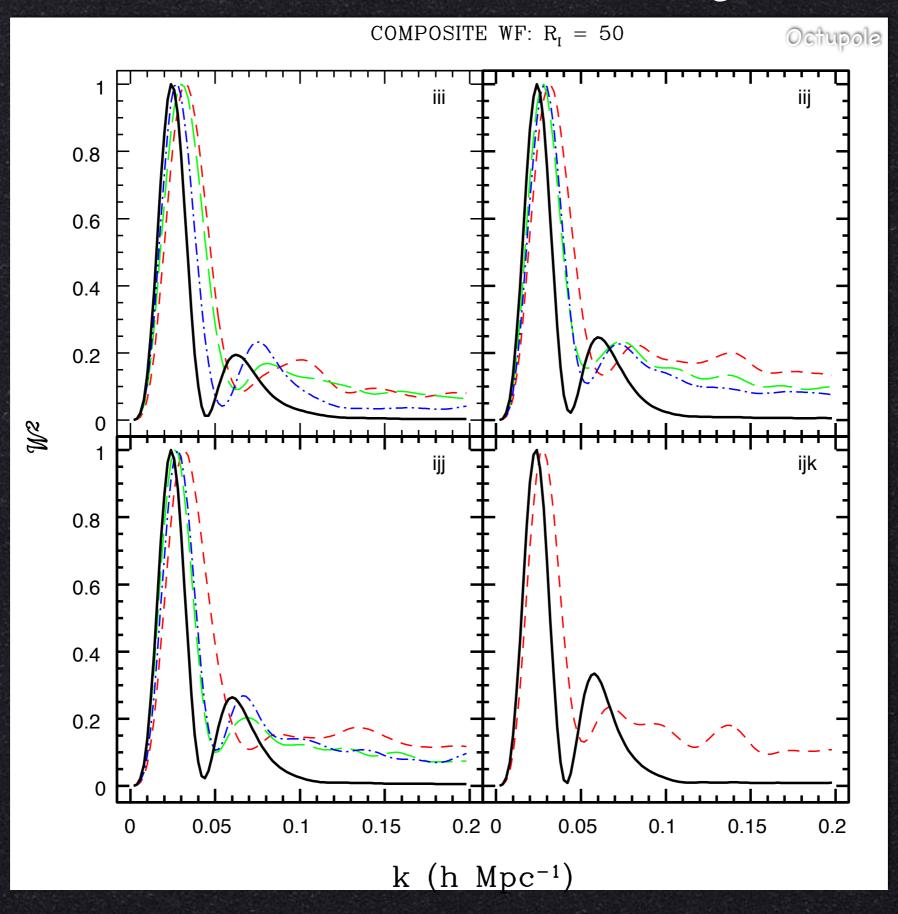


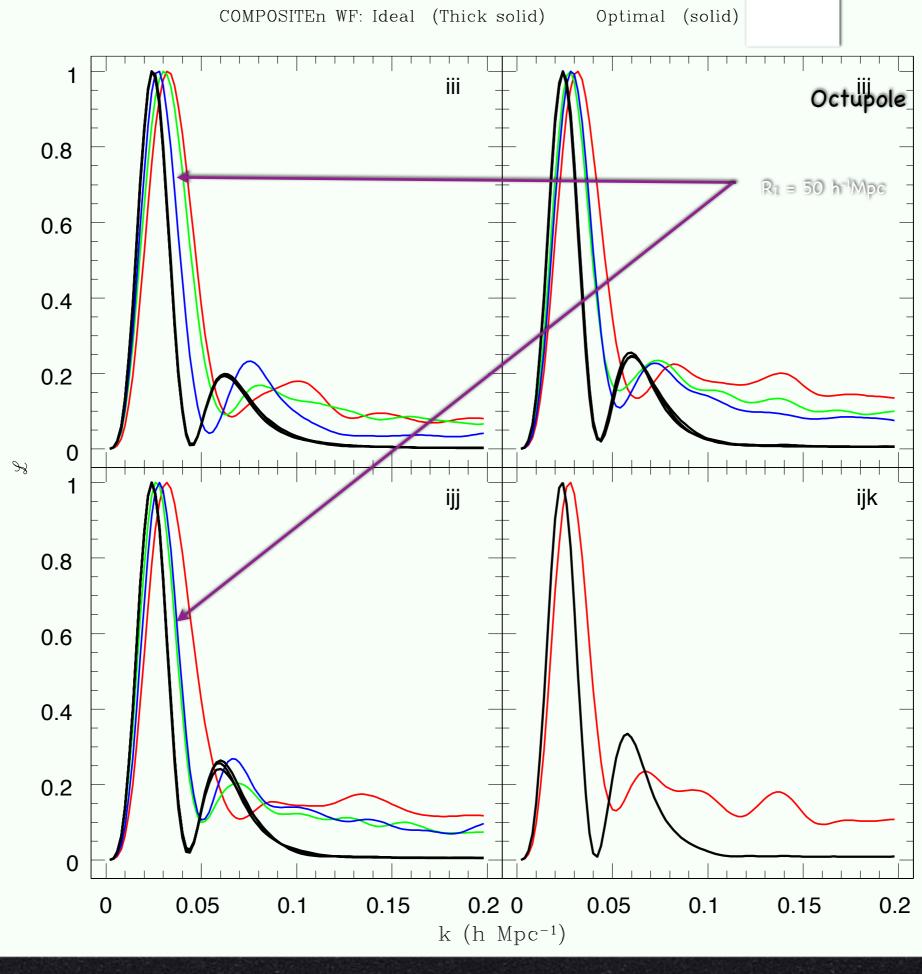
Window Function Design

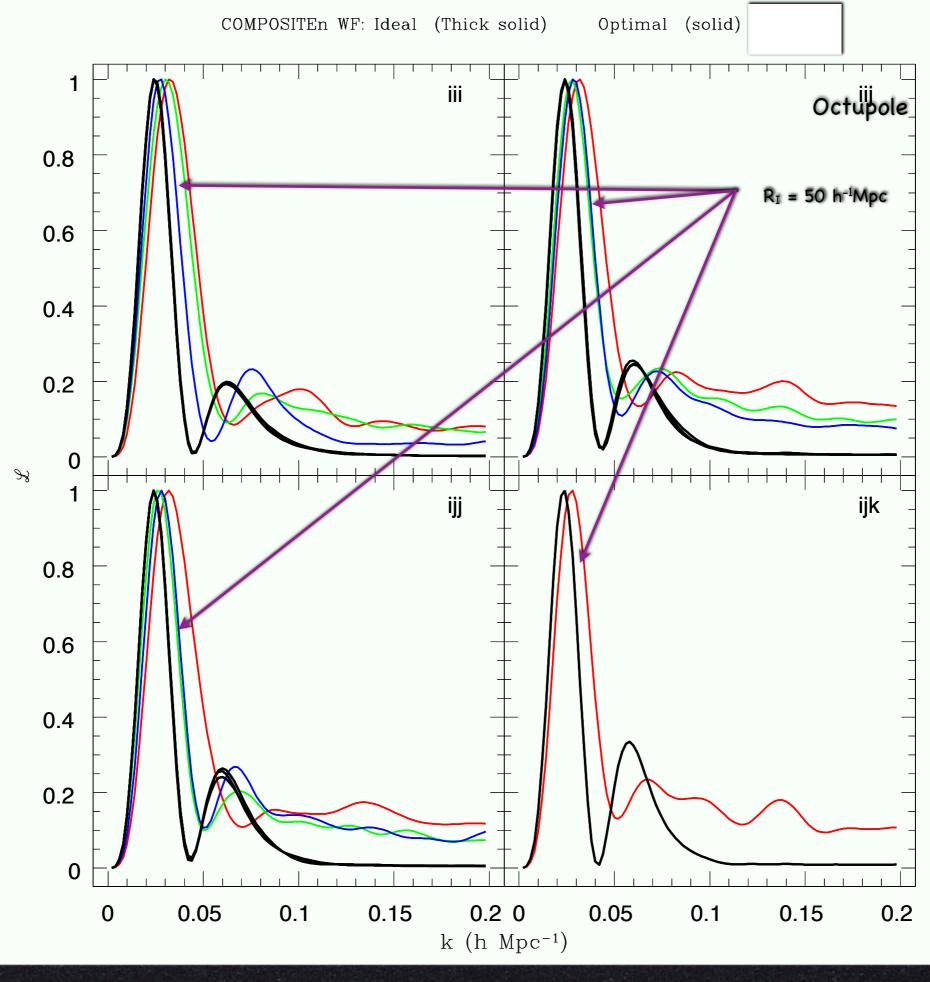


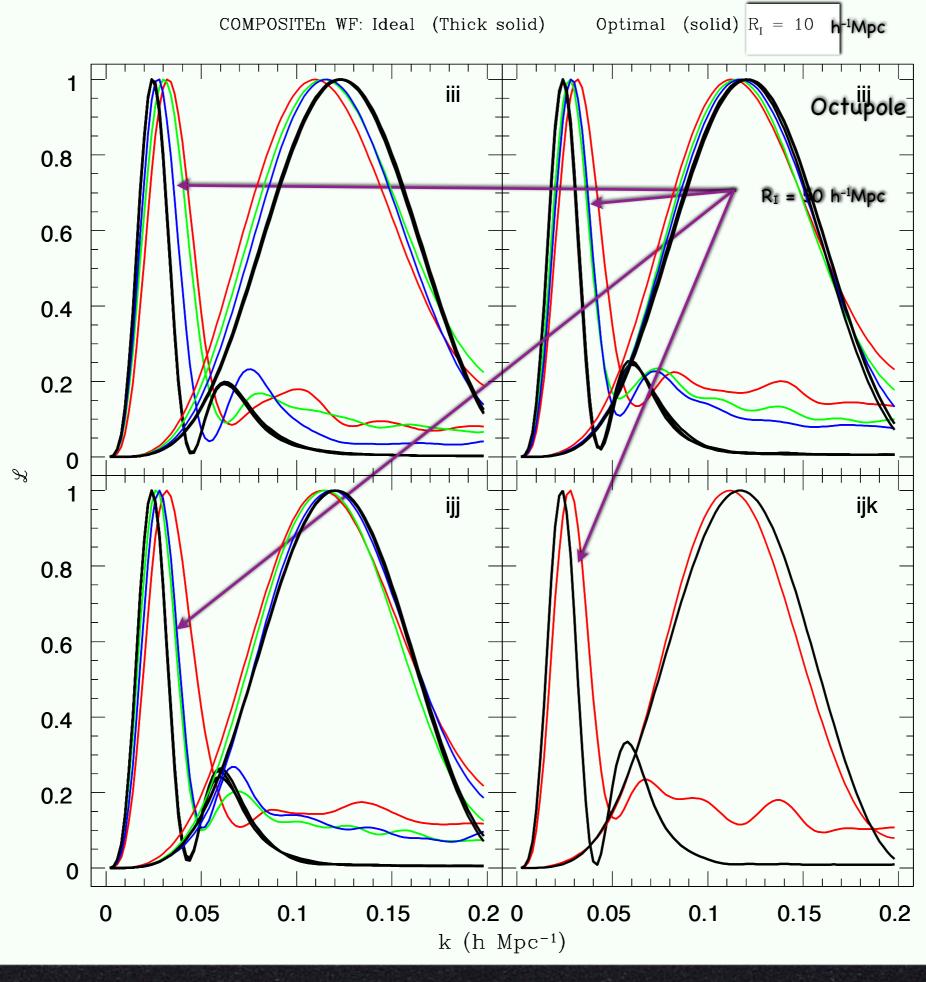
Window Function Design

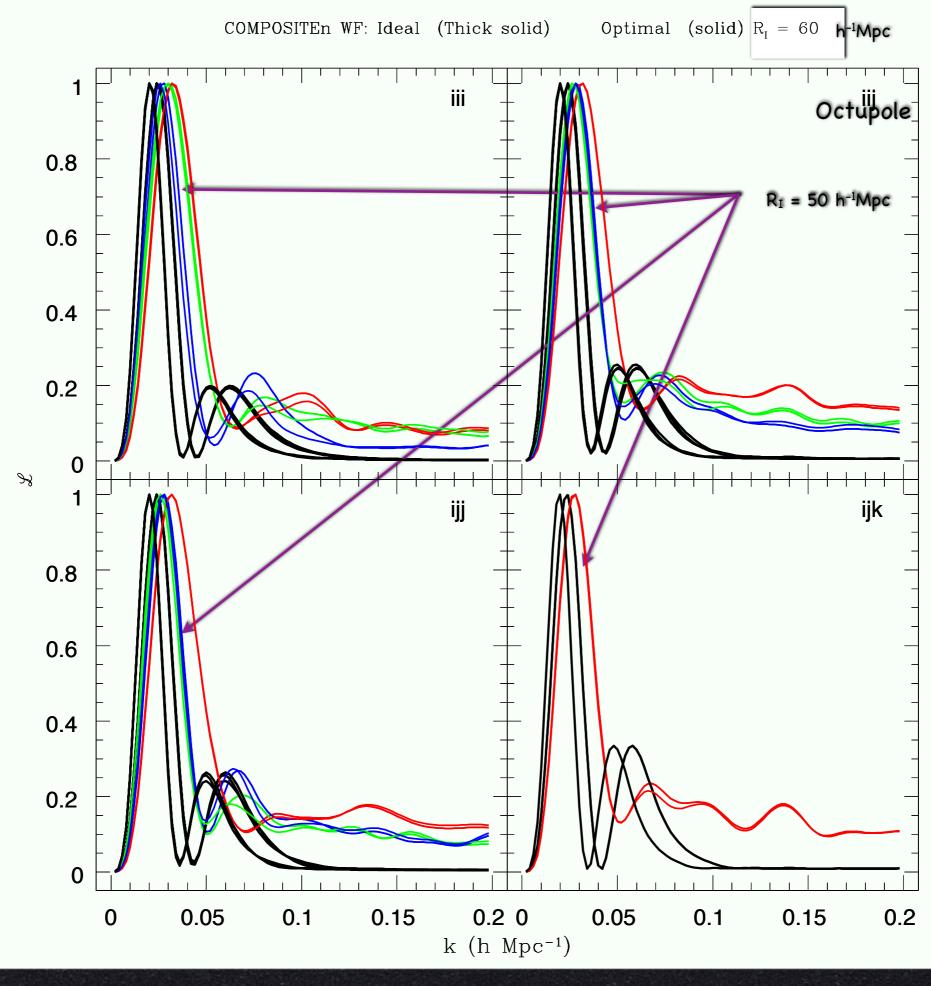


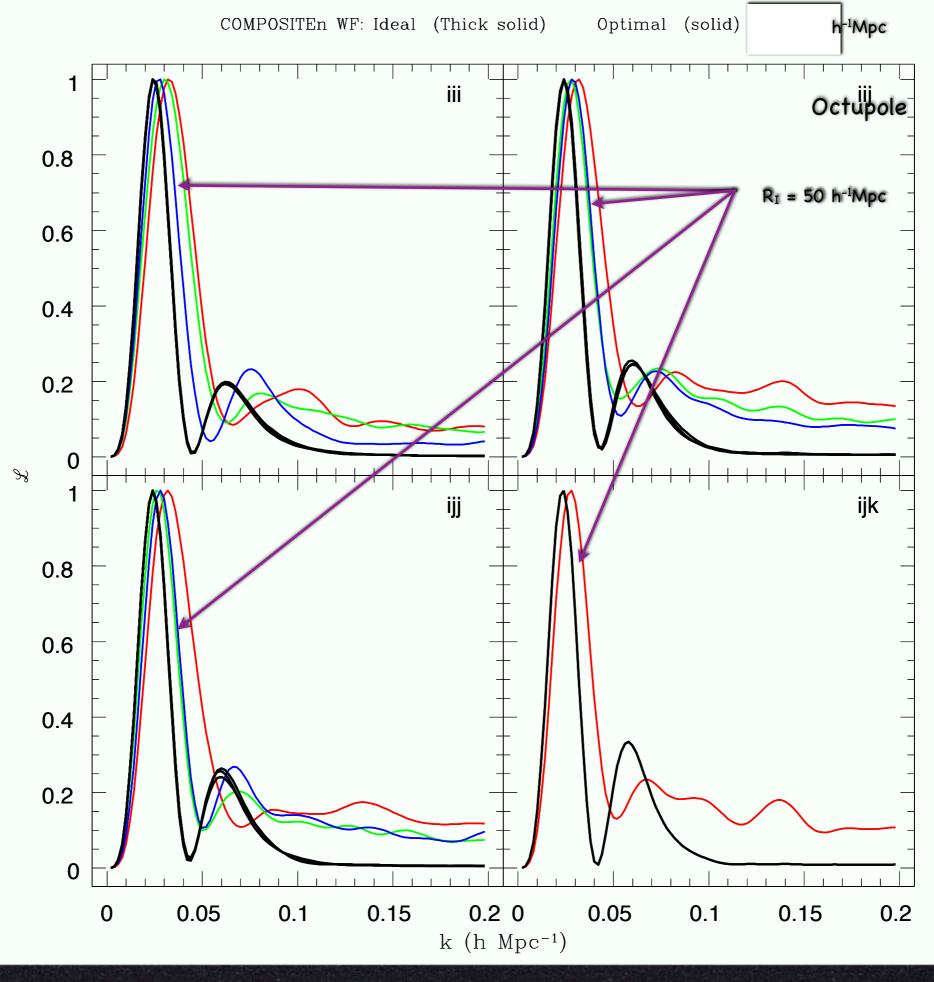




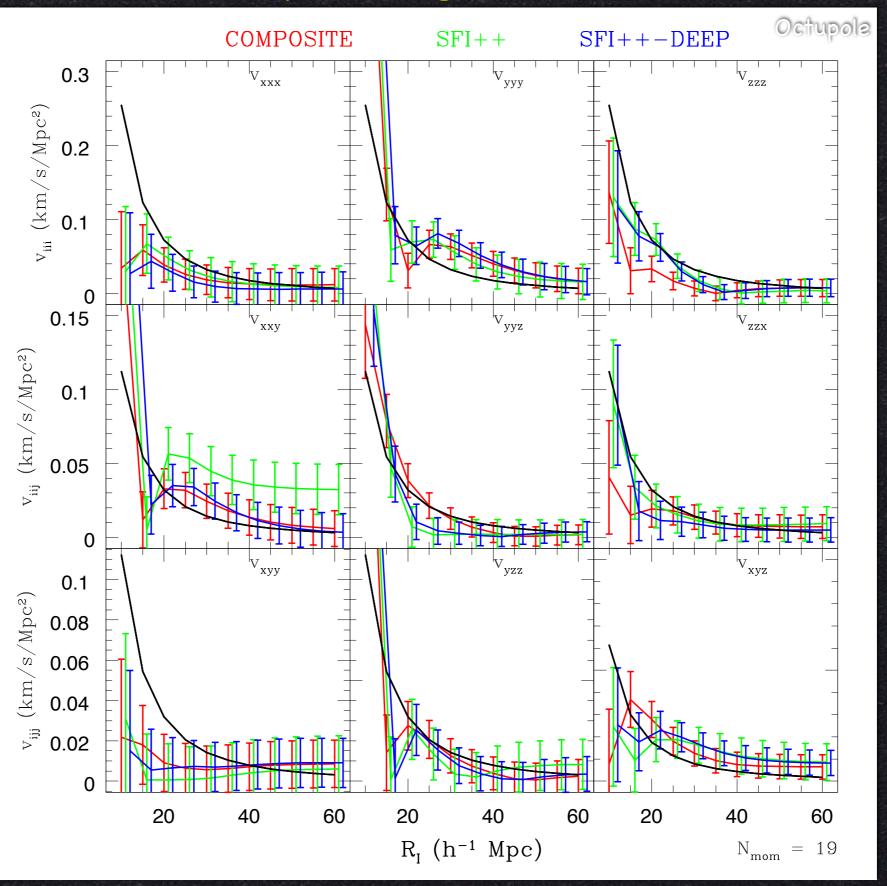








Comparing Surveys



Moments and correlation coefficients

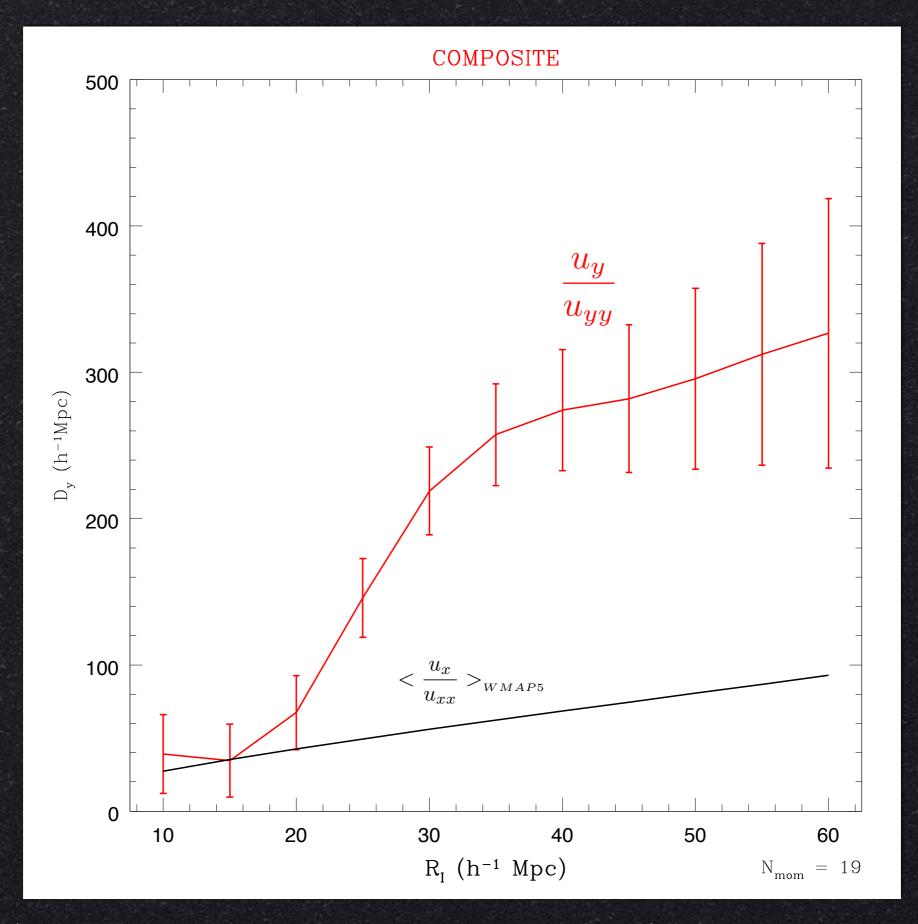
	COMPOSITE		SFI++-DEEP		SFI++		DEEP	
X	86.5 ± 68.8	0.74	104.7 ± 71.0	0.72	69.0 ± 95.7	0.64	192.7 ± 115.6	0.51
\overline{y}	-404.9 ± 61.8	0.77	-430.3 ± 63.8	0.75	-473.6 ± 87.2	0.67	-320.7 ± 106.0	0.51
$\overline{\mathbf{z}}$	42.8 ± 37.7	0.89	64.9 ± 38.7	0.88	57.7 ± 59.3	0.80	62.0 ± 55.8	0.76
XX	2.73 ± 1.01	0.69	2.94 ± 1.05	0.68	3.36 ± 1.29	0.62	2.19 ± 1.76	$\overline{0.47}$
уу	1.37 ± 0.98	0.69	2.07 ± 1.02	0.68	3.72 ± 1.27	0.63	-0.19 ± 1.79	$\overline{0.42}$
$\overline{\mathbf{z}}$	-0.03 ± 0.68	0.80	0.68 ± 0.72	0.79	2.72 ± 0.96	0.71	-0.72 ± 1.04	$\overline{0.67}$
xy	0.13 ± 0.76	0.51	-0.01 ± 0.79	0.50	-0.71 ± 0.98	0.42	0.27 ± 1.29	0.31
\overline{yz}	-0.95 ± 0.57	0.63	-1.14 ± 0.59	0.62	-1.05 ± 0.78	0.52	-0.71 ± 0.94	$\overline{0.40}$
\overline{z}	1.22 ± 0.54	0.66	1.14 ± 0.56	0.65	1.50 ± 0.74	0.56	0.98 ± 0.84	$\overline{0.47}$
XXX	$-1.2e-2 \pm 2.2e-2$	0.38	$-5.8e-3 \pm 2.3e-2$	0.37	$-9.3e-3 \pm 2.9e-2$	0.31	$1.0e-2 \pm 3.6e-2$	$\overline{0.25}$
ууу	$-2.4e-2 \pm 1.7e-2$	0.41	$-2.3e-2 \pm 1.8e-2$	0.40	$-1.9e-2 \pm 2.4e-2$	0.34	$-2.2e-2 \pm 2.7e-2$	$\overline{0.24}$
ZZZ	$-7.2e-3 \pm 1.1e-2$	0.61	$-7.7e-3 \pm 1.1e-2$	0.60	$-3.3e-3 \pm 1.6e-2$	0.48	$-2.5e-3 \pm 1.6e-2$	$\overline{0.47}$
\overline{xyy}	$-8.2e-3 \pm 1.2e-2$	0.30	$-5.7e-3 \pm 1.3e-2$	0.30	$-3.3e-2 \pm 1.7e-2$	0.23	$2.0e-2 \pm 1.9e-2$	0.20
\overline{yzz}	$5.8e-4 \pm 6.6e-3$	0.44	$2.8e-3 \pm 6.7e-3$	0.44	$-1.8e-3 \pm 1.0e-2$	0.33	$8.9e-3 \pm 9.6e-3$	0.30
\overline{ZXX}	$7.3e-3 \pm 7.8e-3$	0.45	$4.9e-3 \pm 8.1e-3$	0.45	$8.7e-3 \pm 1.1e-2$	0.34	$-2.1e-3 \pm 1.2e-2$	$\overline{0.34}$
xxy	$8.3e-3 \pm 1.2e-2$	0.29	$9.0e-3 \pm 1.2e-2$	0.28	$5.7e-3 \pm 1.6e-2$	0.24	$2.2e-2 \pm 1.9e-2$	0.16
\overline{yyz}	$6.3e-4 \pm 8.3e-3$	0.40	$2.2e-3 \pm 8.5e-3$	0.40	$7.7e-3 \pm 1.2e-2$	0.28	$-2.5e-3 \pm 1.2e-2$	0.30
ZZX	$1.2e-2 \pm 7.6e-3$	0.46	$9.9e-3 \pm 7.8e-3$	0.46	$-2.5e-3 \pm 1.1e-2$	0.35	$1.6e-2 \pm 1.1e-2$	0.34
XyZ	$6.6e-3 \pm 5.5e-3$	0.34	$8.7e-3 \pm 5.6e-3$	0.34	$9.3e-3 \pm 8.2e-3$	0.25	$4.9e-3 \pm 8.2e-3$	0.22

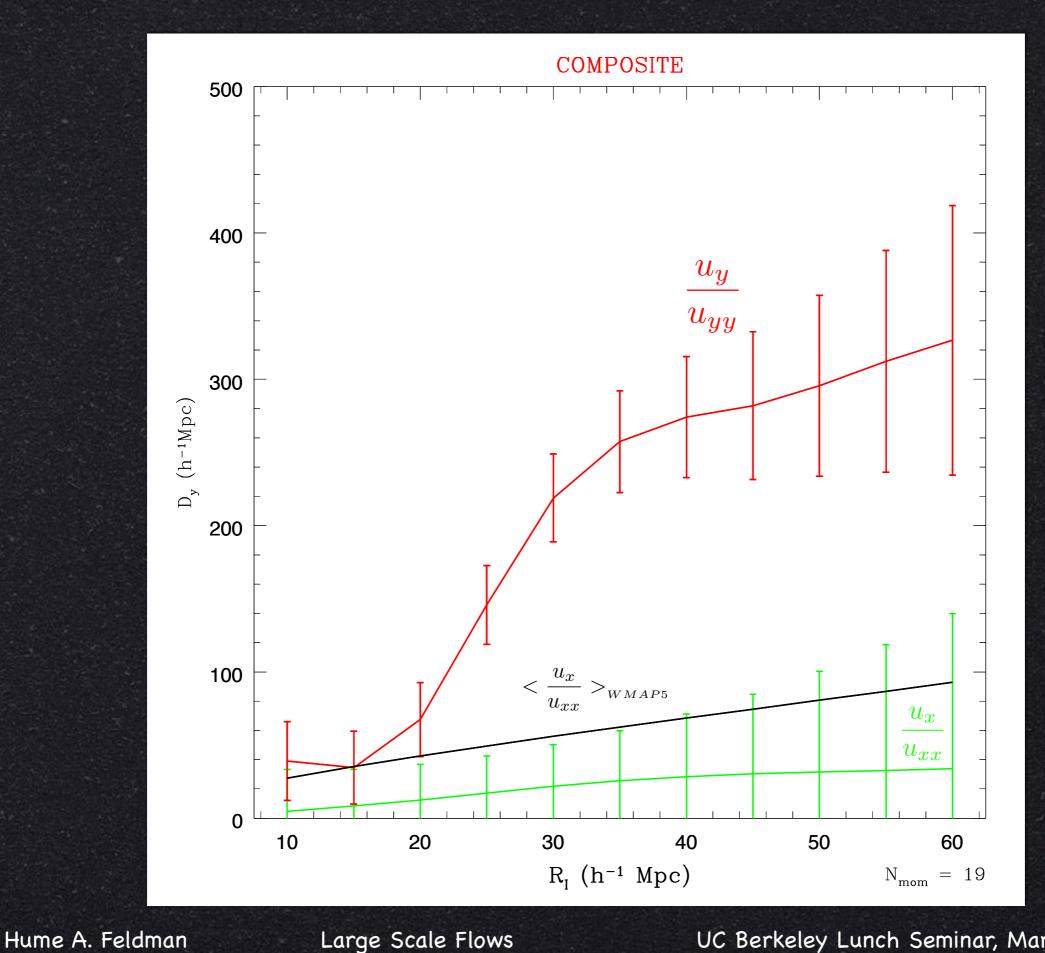
The total observed P(> χ^2) in percent for N_{MOM} = 3, 9 and 19 for R_I =50 h⁻¹ Mpc, and the WMAP5 central parameters Ω_m = 0.258 and σ_8 = 0.796.

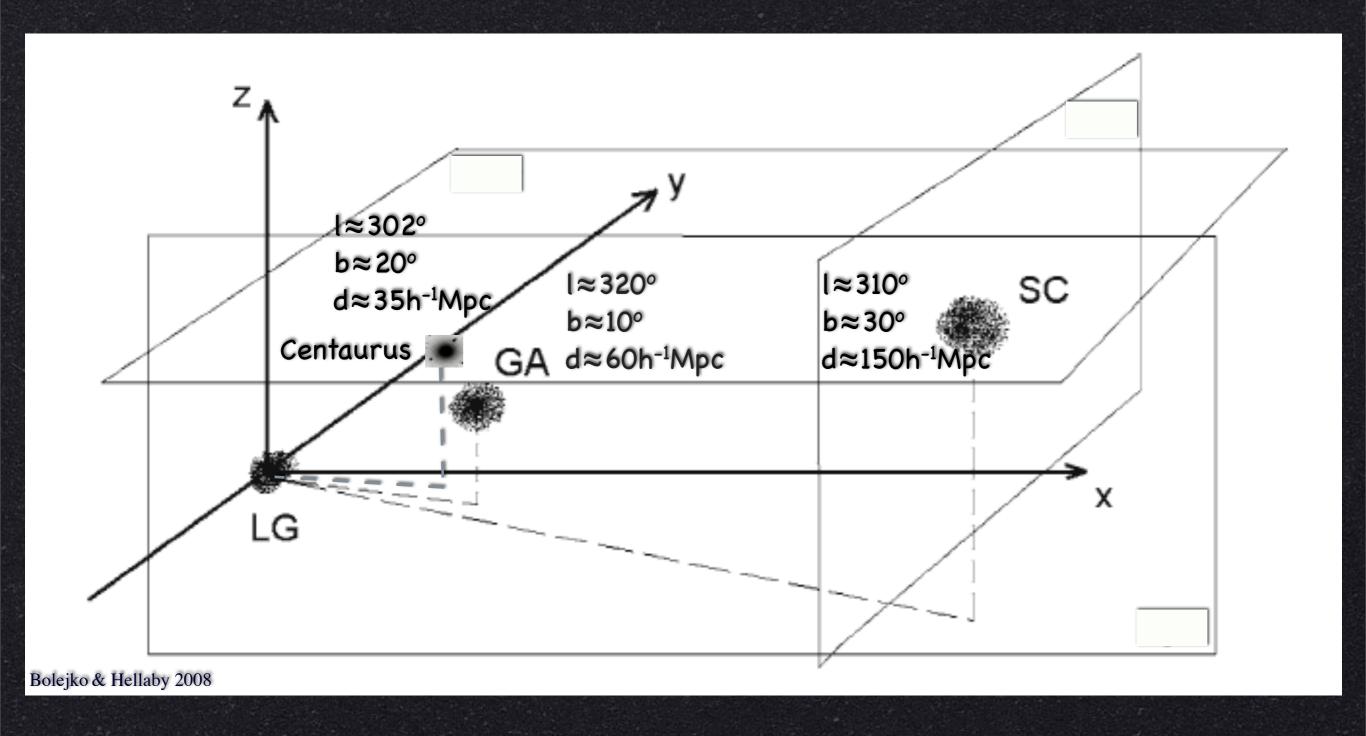
	$N_{MOM} = 3$ $N_{MOM} = 9$			$N_{ m MOM} = 19$				
	BF	Total	BF	shear	Total	BF	shear	octupole
COMPOSITE	1.89	6.01	1.81	41.76	17.00	0.50	52.60	78.33
SFI++-DEEP	0.92	2.80	0.85	33.21	13.67	0.20	39.47	86.37
SFI++	3.11	1.73	3.22	7.70	16.19	0.22	11.22	89.38
DEEP	6.02	30.41	6.29	82.62	55.54	3.18	91.22	81.61

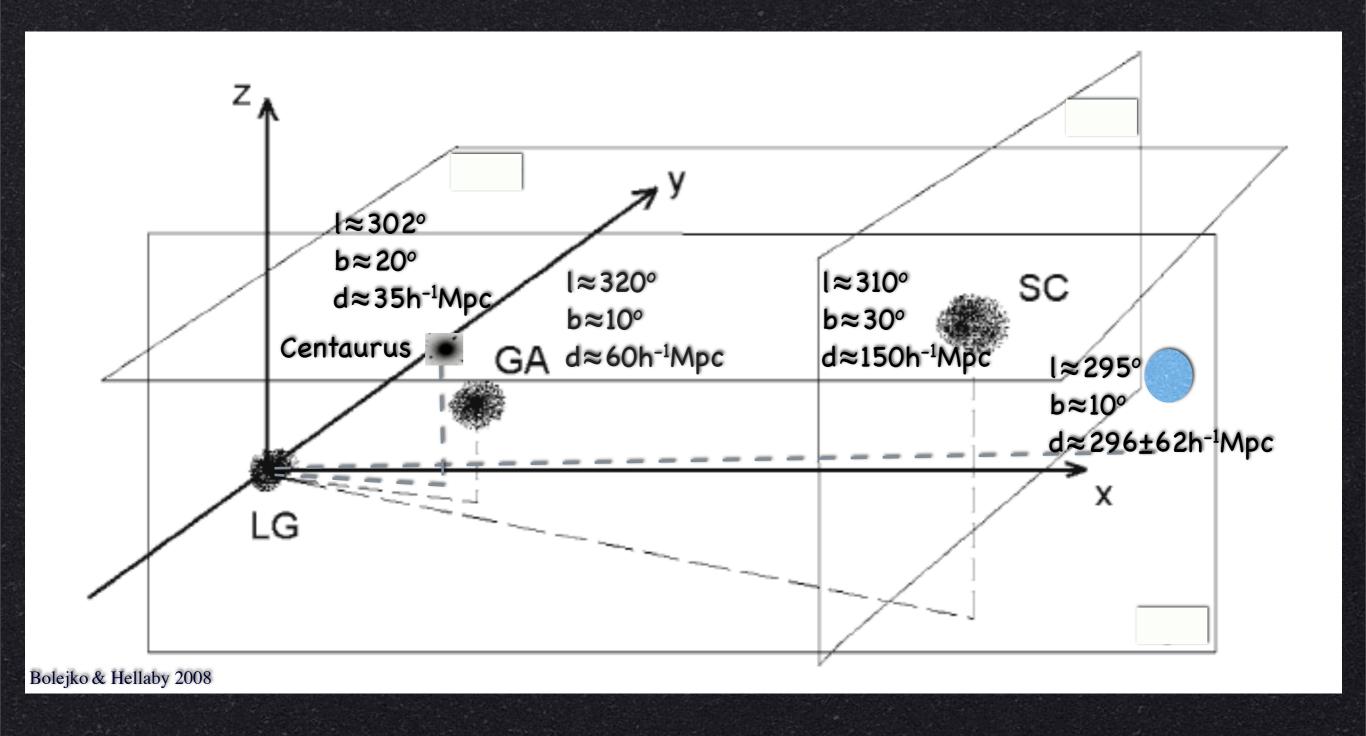
Hume A. Feldman

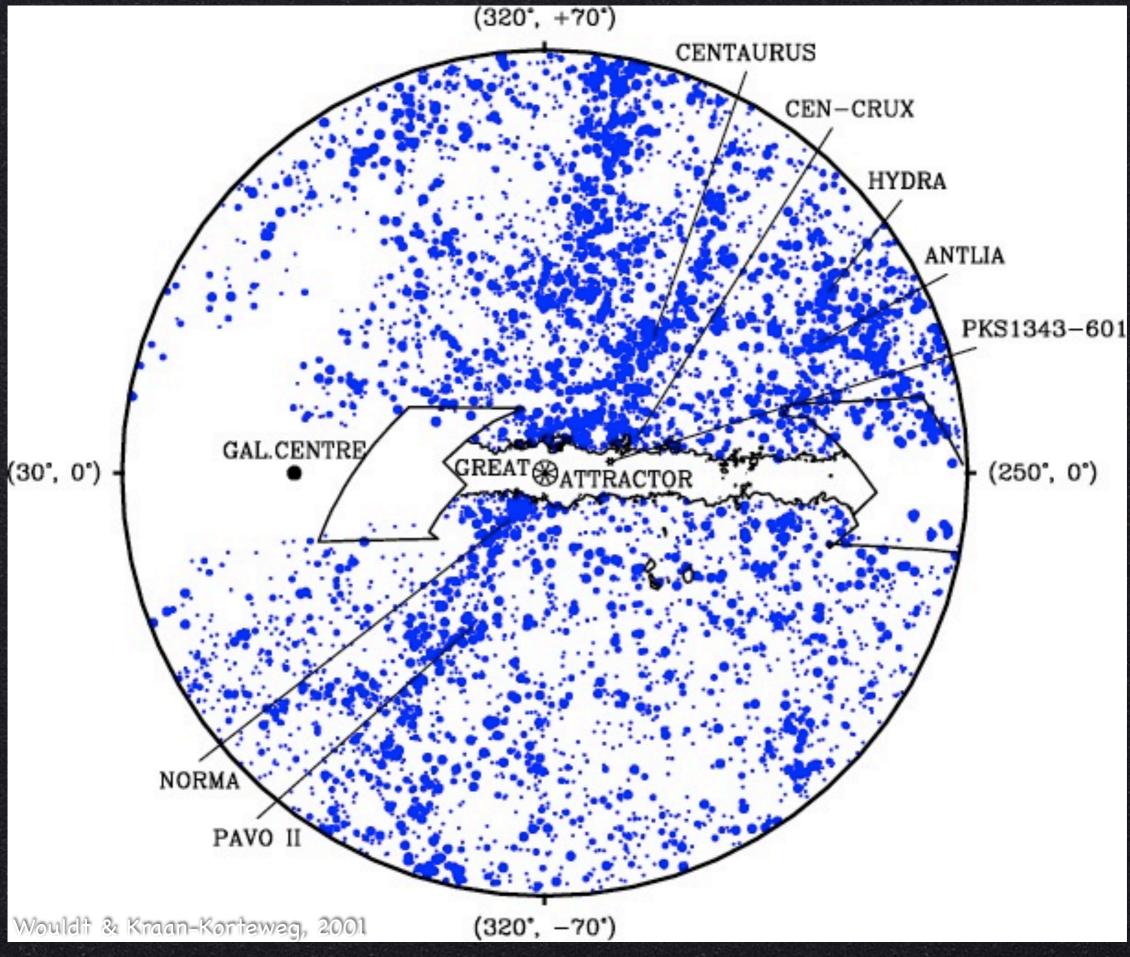
Sources of the Flow

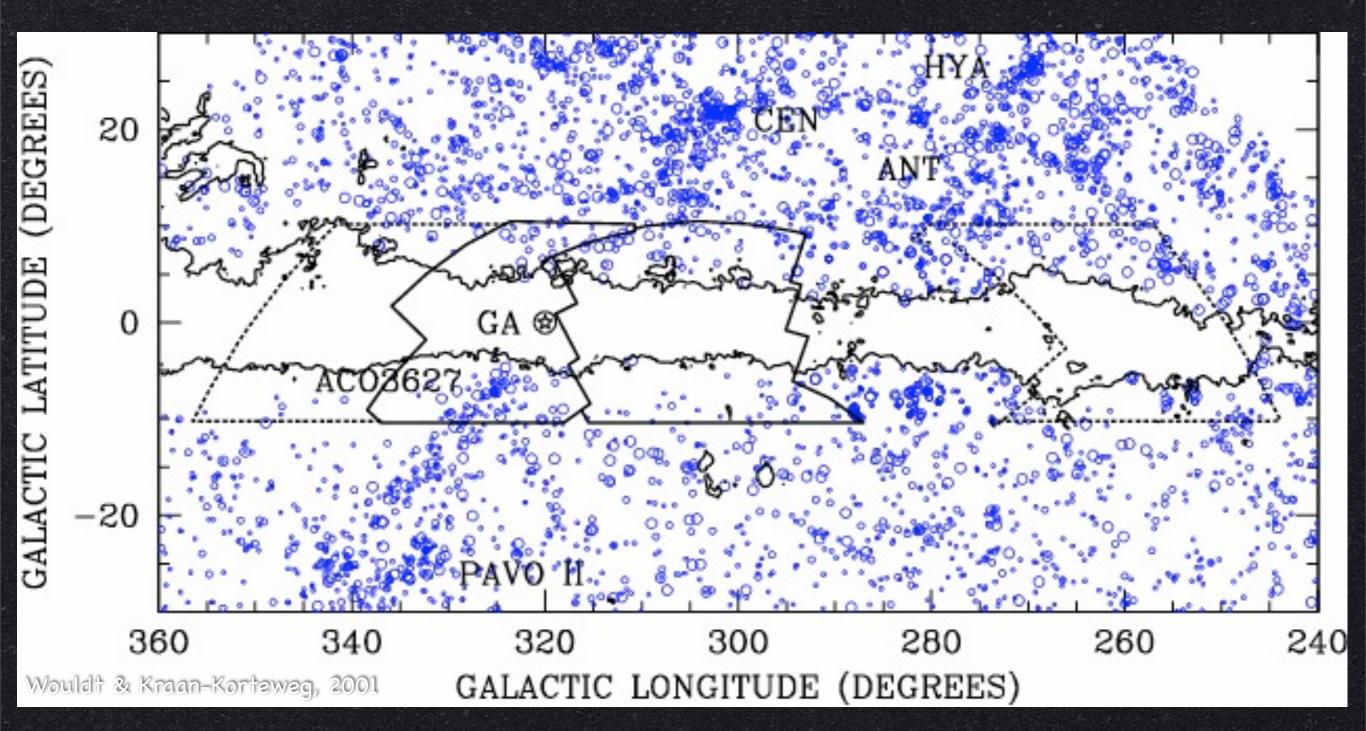


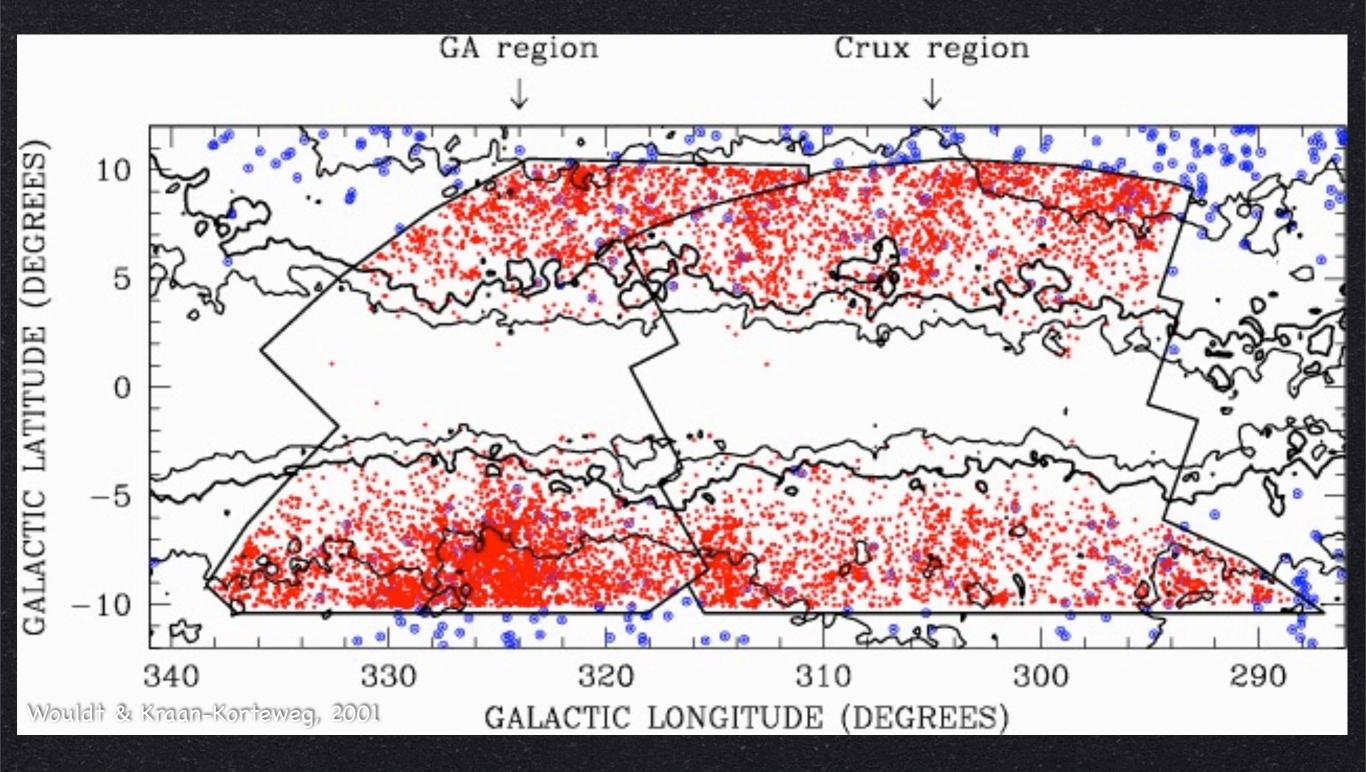


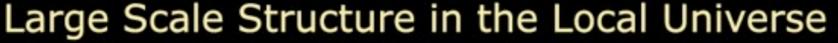


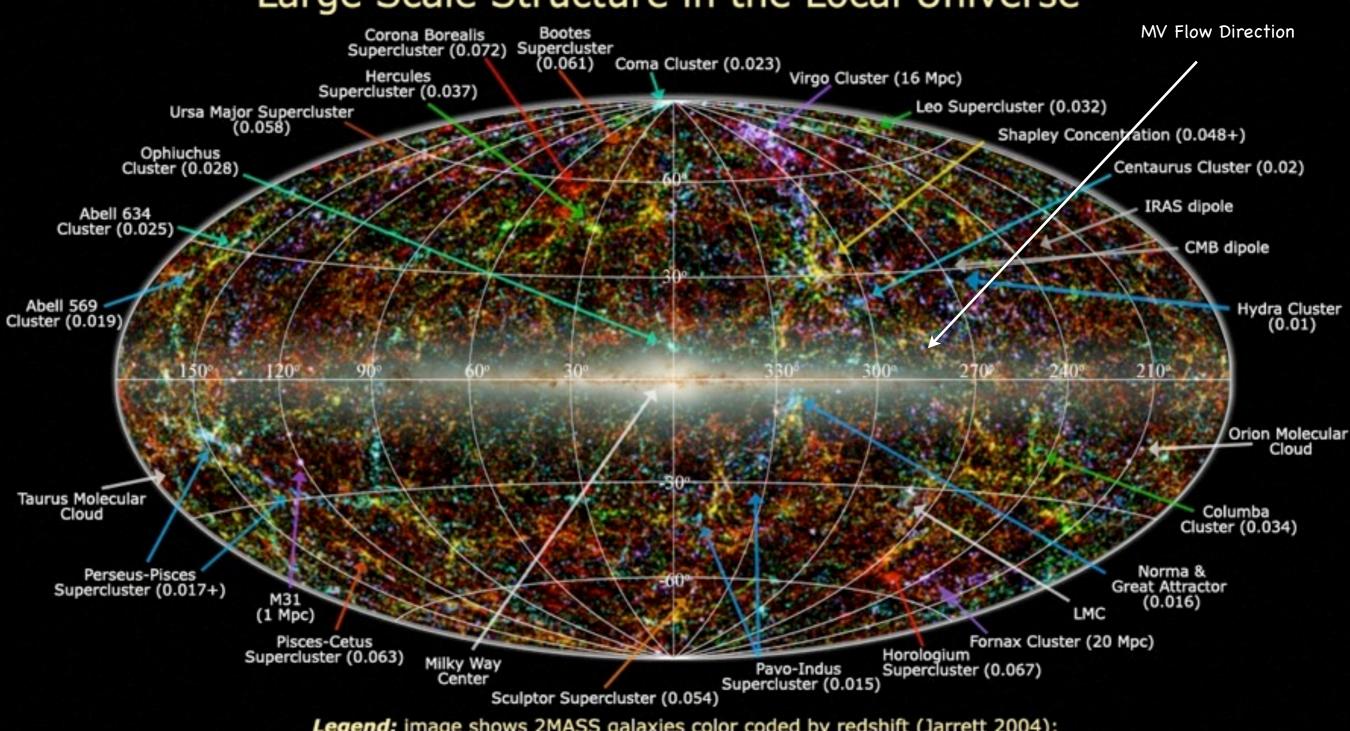




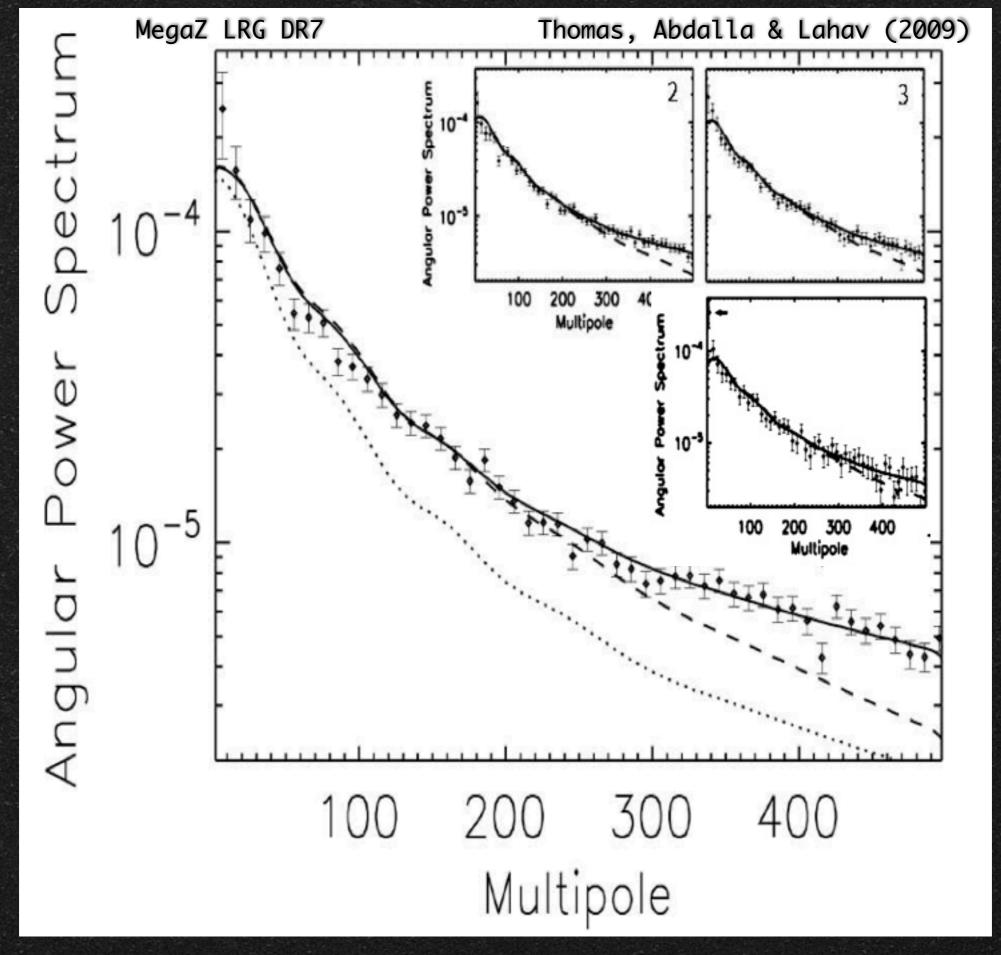


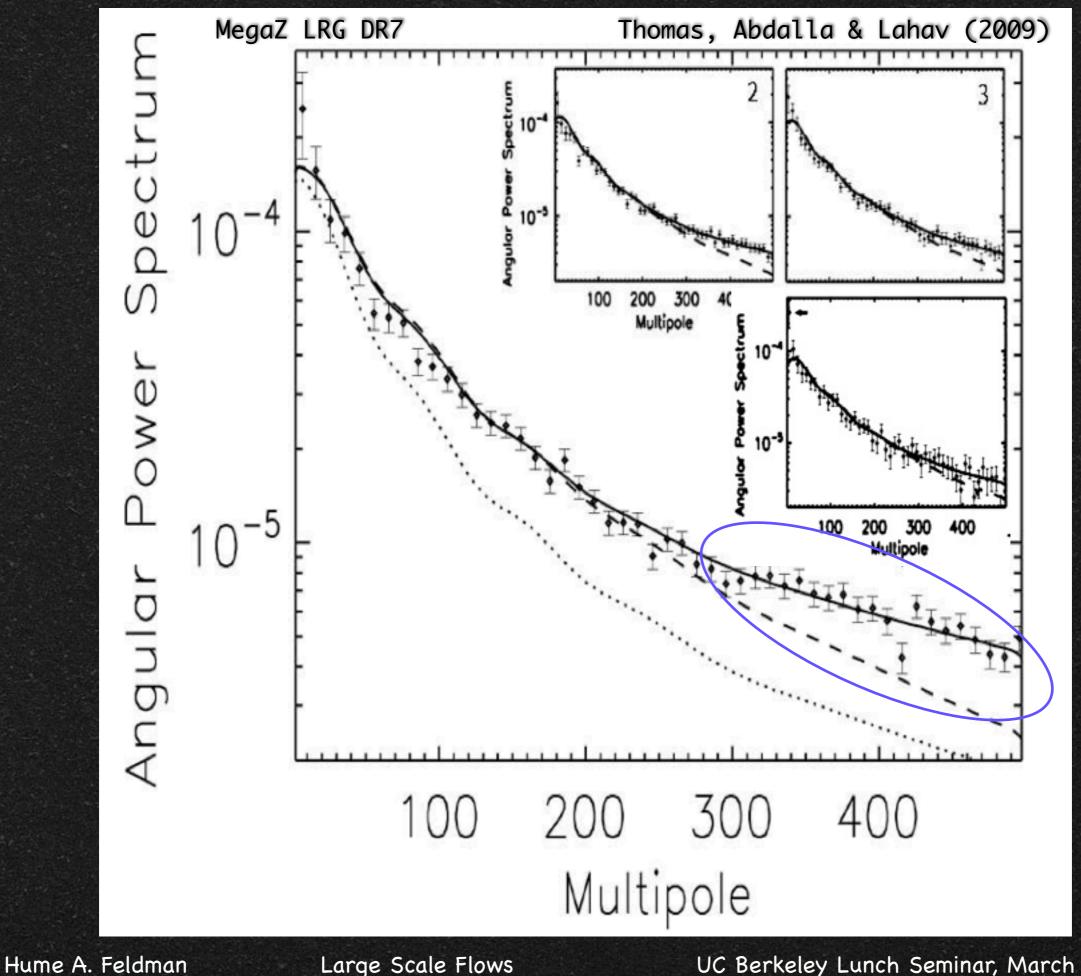


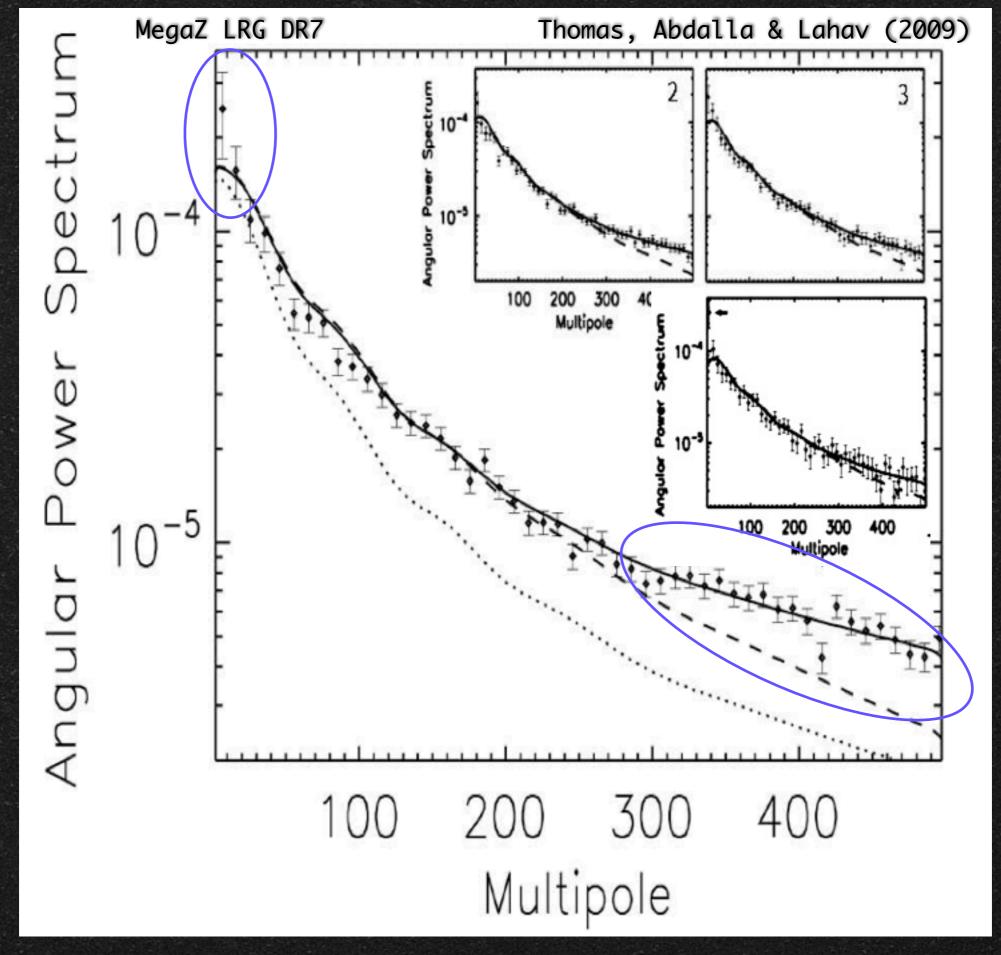


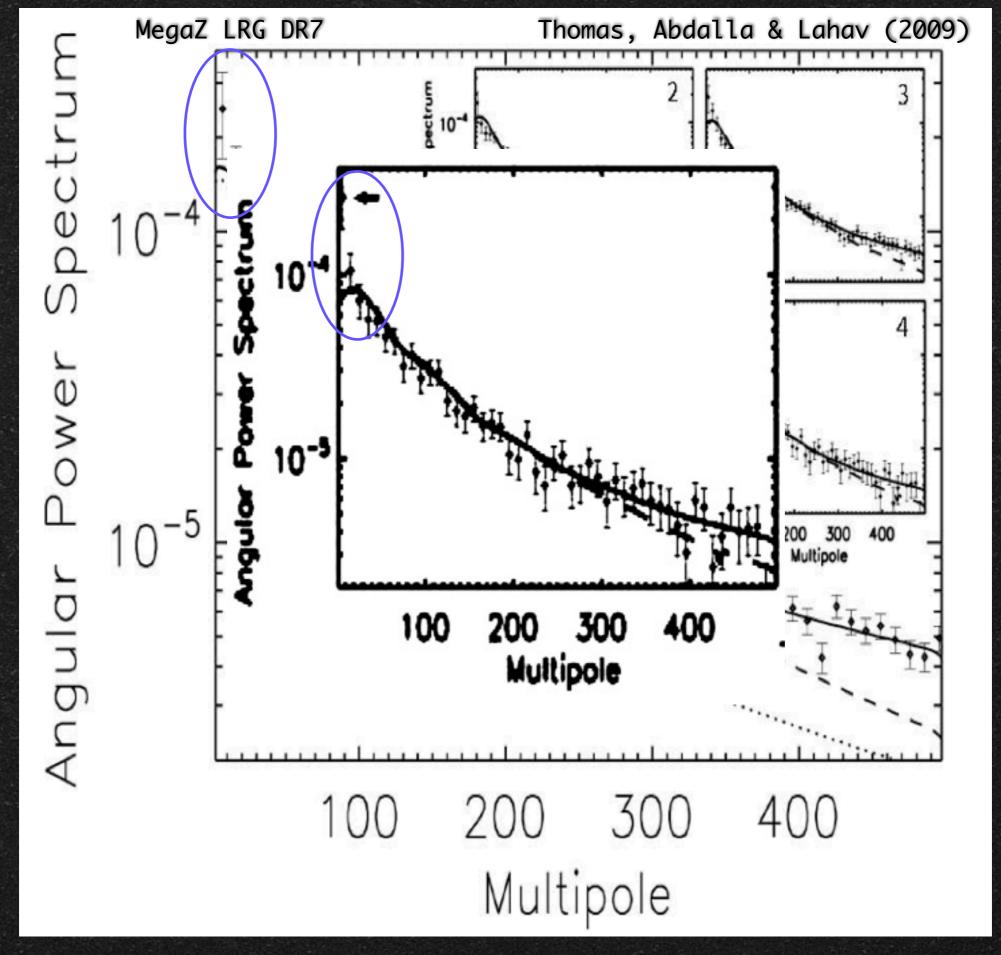


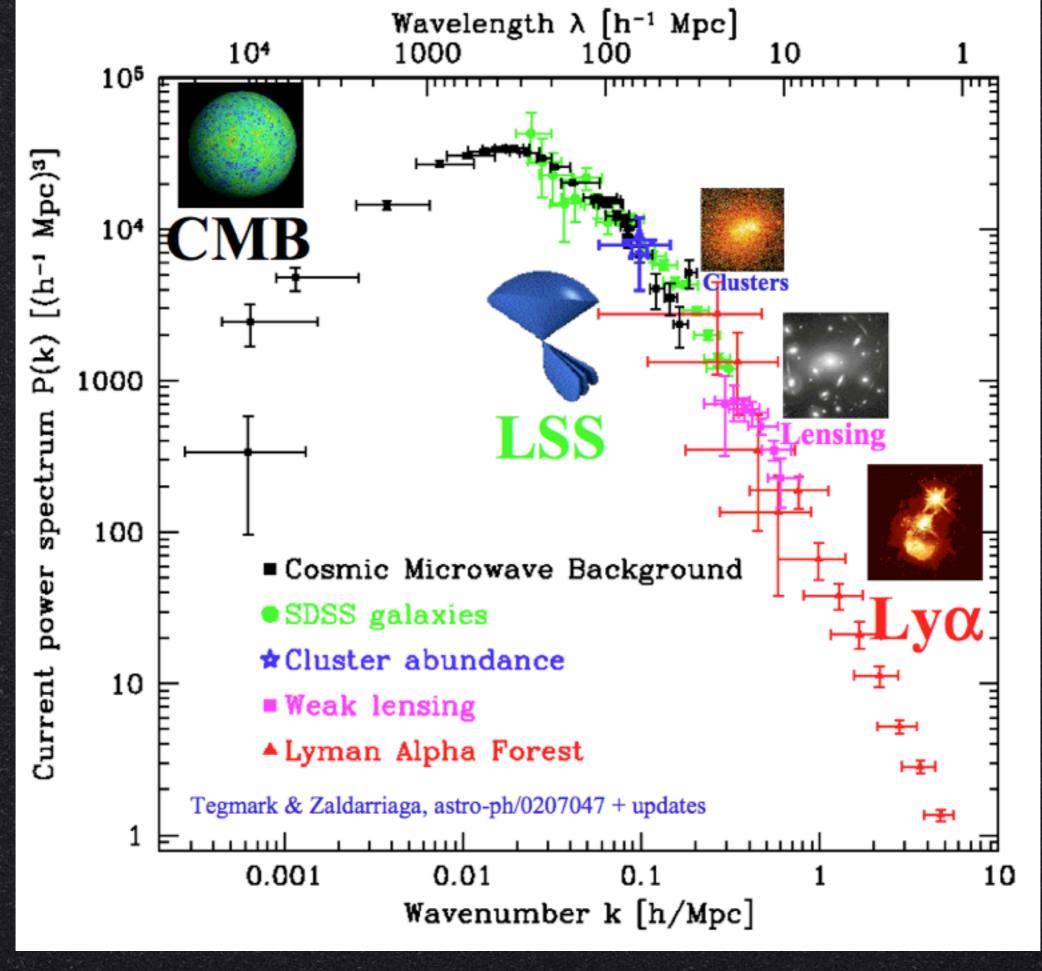
Legend: image shows 2MASS galaxies color coded by redshift (Jarrett 2004); familiar galaxy clusters/superclusters are labeled (numbers in parenthesis represent redshift). Graphic created by T. Jarrett (IPAC/Caltech)

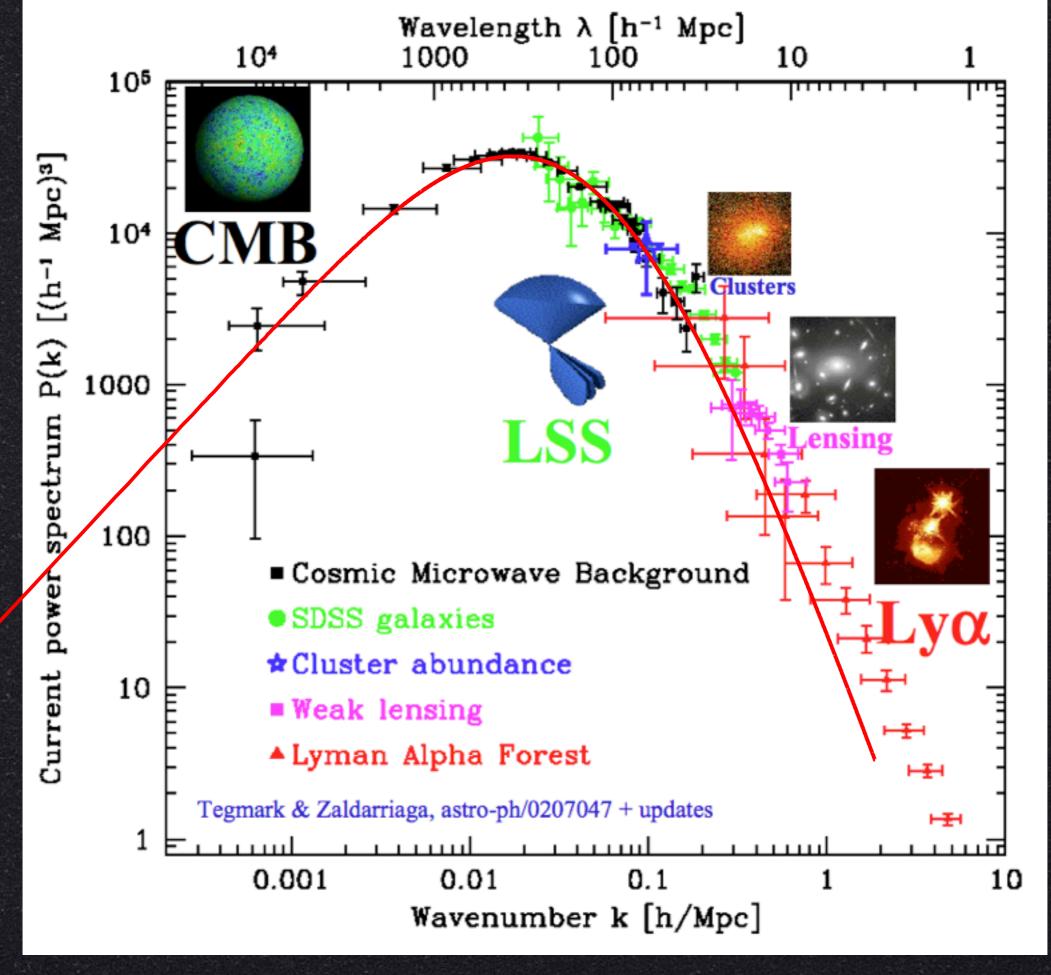


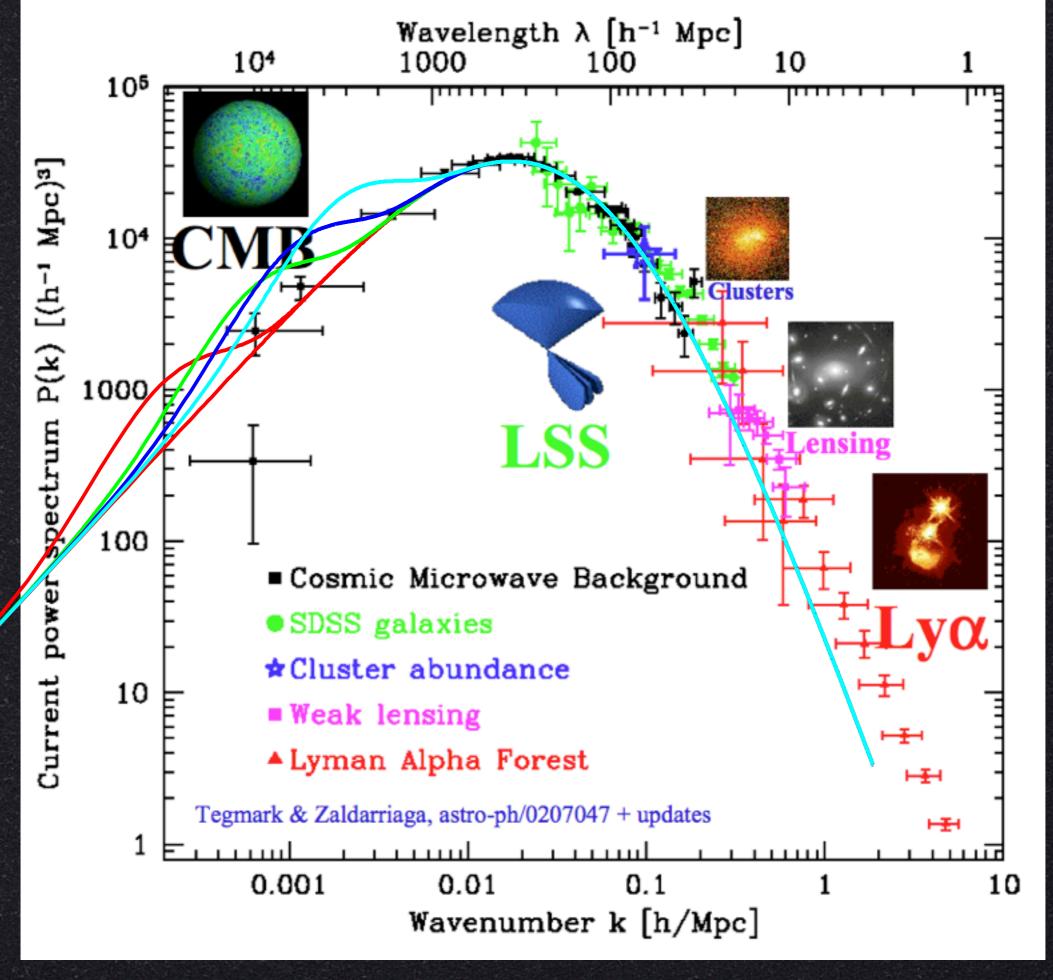


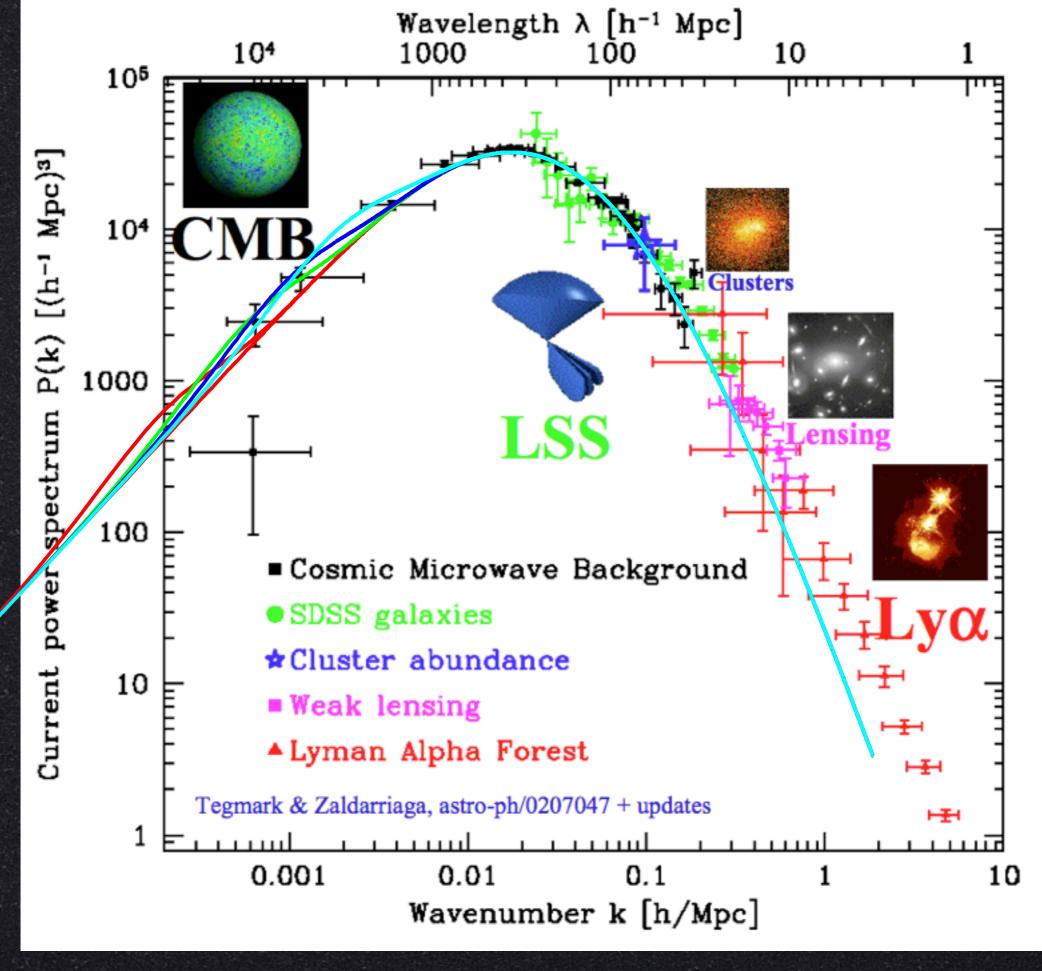


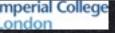












Conclusions

- Given appropriate window functions, velocity field surveys are consistent with each other.
- Maximum Likelihood parameter estimation are robust and mostly agree with other methods.
- There is a minimal sensitivity to small-scale aliasing which biases the results, hiding large-scale flows
- Optimization of window functions removes the bias and shows the flow
- lacksquare Bulk flow disagrees with the Standard Λ CDM parameters (WMAP5) to $\sim 3\sigma$
- More power on k ≤ 0.01 will make these results likely

