Impact of tidal forces on subhalo distributions

Andreas Faltenbacher

UCSC

April 25, 2006 Berkeley

<u>Contents:</u>

- Introduction/motivation spatial bias velocity bias
- subhalo selection and bias simulation subhalo selection spatial and velocity biases
- moments of the velocity distribution dispersion kurtosis
- Summary

What is meant by bias ?

• Subhalos

CDM simulation of a galaxy cluster = host halo the surviving bound substructures = subhalos

• Spatial bias

differences in the number density profiles of a subhalo sample compared to the overall density distribution

• Velocity bias

differences in the velocity dispersion profile of a subhalo sample compared to the overall velocity dispersion profile

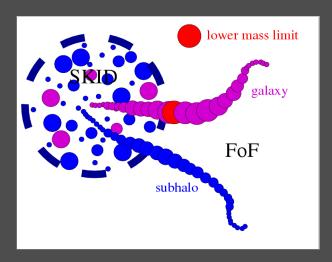
Spatial bias: How to associate subhalos with galaxies?

- Overmerging, a problem related to resolution White (1976), van Kampen (1995)
- Abundance of CDM structure seems to match galaxy abundance in clusters (but not L.G. satellites) Moore at al. (1999)
- Are the subhalos too far from the center ? Diemand (2004)
- Improvement by selection of subhalos according to mass (or circular velocity) before accretion: Nagai & Kravtsov (2005), Conroy at al. (2006)

Velocity bias: How does it affect mass measurements?

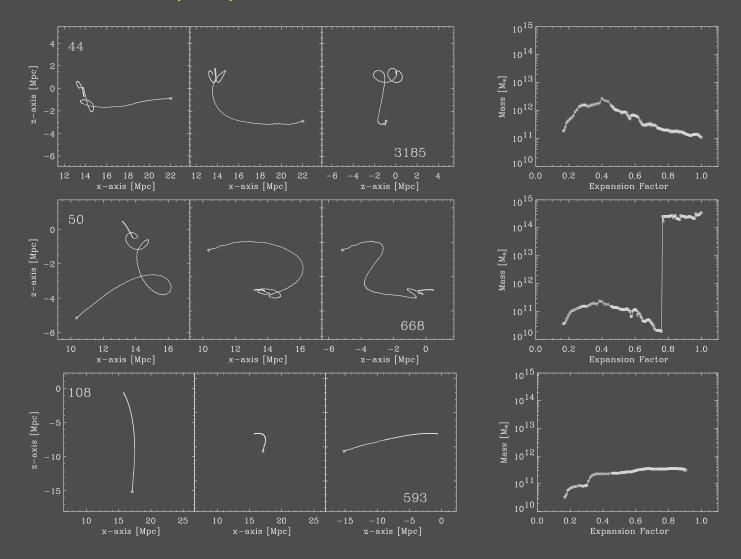
- Subhalos (selected by current mass) are hotter than the diffuse CDM component e.g. Colin et al. (2000)
- The velocity bias in semianalytical galaxy cluster models is substantially reduced Gao at al. (2004)
- High resolution simulation with simple subhalo/galaxy selection criteria to investigate velocity distributions of galaxy clusters

CDM simulation of a galaxy cluster

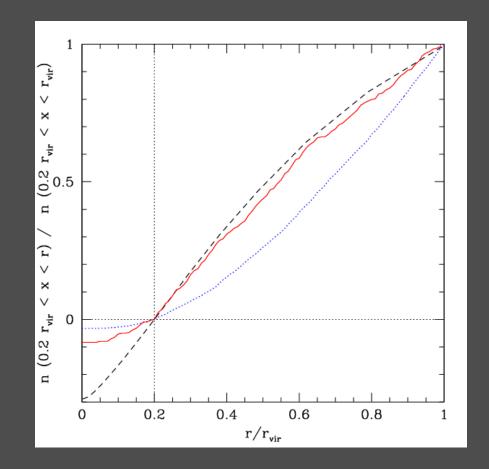


Diemand et al. (2004)

- $3.1 \times 10^{14} \,\mathrm{M_{\odot}}$ host halo (at z = 0)
- 14×10^6 particles
- $2.2 \times 10^7 \, M_\odot$ per particle
- 1.8 kpc softening length

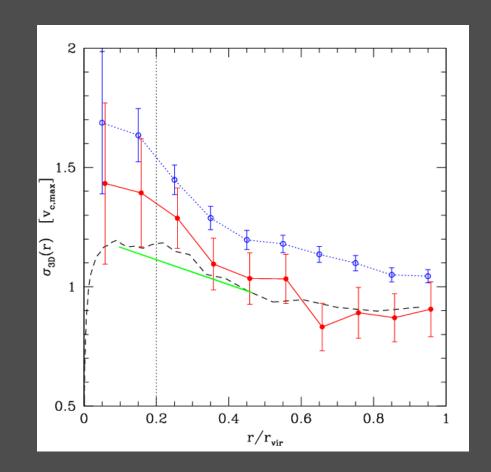

subhalos and galaxy halos

- Lower mass limit applied at at z=010 particles $(2.2 \times 10^8 M_{\odot})$
- Lower mass limit applied when entering R_{vir} 200 particles (4.4 \times 10⁹ M_{\odot})



further on: galaxy halo sample , subhalo sample

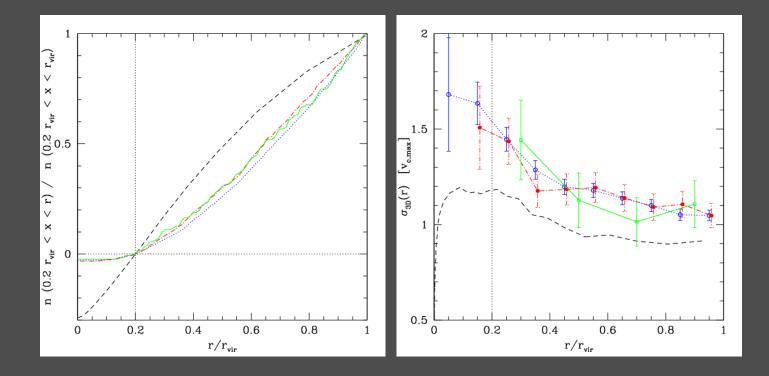
3 examples of (sub)halo orbits and mass accretion histories



Spatial biases

galaxies (solid), subhalos (dotted), dark matter (dashed)

Velocity biases

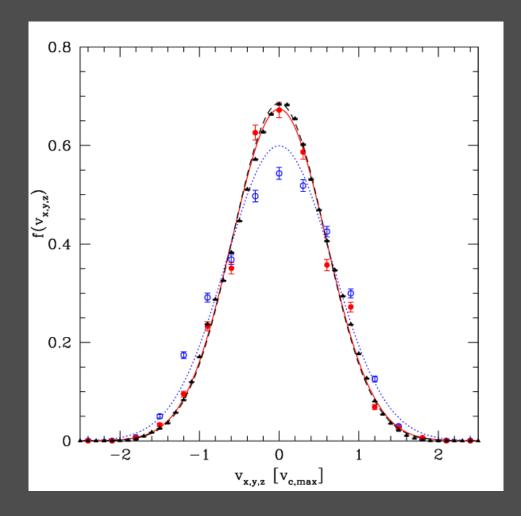

galaxies (solid), subhalos (dotted), dark matter (dashed)

Is dynamical friction responsible for subhalo biases?

$$\left[\left(\frac{du}{dt} \right)_{df} \propto -\rho \ m \ u^{-2} \ \left[\text{erf}(X) - \frac{2}{\pi^{1/2}} X e^{-X^2} \right] \right]$$

 $X = u/(\sqrt{2}\sigma)$

Higher mass limits for subhalo sample


minimum number of particles: 10, 100, 1000 minimum number of objects in a bin: 16

no mass dependence

Is tidal destruction responsible for subhalo biases?

- the mass function of subhalos is steep $\propto -2$ e.g. Reed et al. (2005)
- subhalos suffer substantial mass loss due to tidal stripping
- applying a lower mass limit (10 particles) results in a young, i.e. more recently accreted sample
- whereas the selection of the galaxy halos results in a long-lived sample
- dark matter particles are by definition long-lived

Velocity distributions

galaxies, subhalos, dark matter

$$kurtosis = \frac{\langle v^4 \rangle}{\sigma^4} - 3$$

	subhalos	galaxies	dark matter
$\sigma/v_{\rm c,max}$	0.665 ± 0.007	0.592 ± 0.023	0.5816 ± 0.0001
kurtosis	-0.61 ± 0.16	-0.16 ± 0.44	-0.241 ± 0.003
eta	-0.073 ± 0.031	0.17 ± 0.11	0.1103 ± 0.0005
N	4115	339	$10.9 imes10^{6}$

kurtosis \leq -0.2 indicator for positive velocity bias ?

Summary

- Selection has impact on lifetime subhalo sample → short lifetimes galaxy sample → long lifetimes (particles → infinite lifetimes)
- Bias occurs if lifetimes are different particles ↔ subhalos galaxies ↔ subhalos
- No bias occurs if lifetimes are similar particles ↔ galaxies
- Flat topped velocity profile of the subhalo sample is caused by tidal destruction