KiDS and biases

Andrej Dvornik UC Berkeley/LBL, INPA, 19. 11. 2018

+ Marcello Cacciato, Massimo Viola, Konrad Kuijken, Henk Hoekstra & other KiDS

Picture credit: KiDS & Alex Tudorica

KiDS

- 2.6m f/5.5 VST telescope, Paranal, Chile
- OmegaCAM: 32 CCD, 268 Mpix
- $\sim 1350 \text{ deg}^2$ at the end
- u, g, r, i photometric bands
- Overlap with VIKING, SDSS, 2dF, COSMOS, GAMA, DEEP2

Designed with weak lensing in mind

2 magnitudes deeper than SDSS (24.3, 25.1, 24.9, 23.8 in *ugri*), with sharper images

- Currently: 450 deg² (published, public), 1000+ deg²
- Redshift (median): ~0.6

- Spectroscopic survey on AAT
- Highly complete down to rband magnitude of 19.8
- 180 deg² of overlap with KiDS
- Group information using FoF

Cosmology!

Observational cosmology

- CMB (WMAP, Planck, Bicep, ...)
- Distance measurements with supernovae
- Baryonic acoustic oscillations (WiggleZ, BOSS, ...)
- Redshift space distortions (WiggleZ, 2dFLenS, ...)
- Weak gravitational lensing (KiDS, CFHTLenS, DES, HSC, SDSS, ...)

Gravitational lensing

• Lensing equation:

$$\vec{\beta} = \vec{\theta} - \frac{D_{LS}}{D_S} \hat{\vec{\alpha}} \equiv \vec{\theta} - \vec{\alpha}$$

- Non-linear: Strong lensing
- Linear: Weak lensing

Gravitational lensing

$$\mathcal{A} = \begin{pmatrix} 1 & \overbrace{-\gamma_2} & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

• Shear

$$\gamma \equiv \gamma_1 + i\gamma_2 = \frac{1}{2} \left(\frac{\partial^2 \Psi}{\partial x_1^2} - \frac{\partial^2 \Psi}{\partial x_2^2} \right) + i \frac{\partial^2 \Psi}{\partial x_1 \partial x_2}$$

Gravitational lensing

• Dimensionless surface density (convergence):

Shear measurements

 $\gamma \approx \langle \epsilon \rangle$

$$\gamma_i^{\rm obs} = (1+m)\gamma_i^{\rm true} + c$$

+ additional complications

Galaxy-galaxy lensing

This allows us to

- Directly measure the mass of dark matter (all the matter in fact)
- Test the non-linear structure formation in the Universe (time dependent clustering, effect of baryons and neutrinos, ...)
- Test the theory of gravity and it's modifications

Scaling relations of GAMA groups

Probing the stellar-to-halo mass relation

van Uitert et al. 2016

and many more ...

Halo model

Assumption

All the matter in the Universe is in haloes

Use the halo properties to describe the statistical properties of observed matter distribution

Cooray & Sheth (2002)

Halo Assembly Bias

- Halo mass property of halos that most strongly influences the properties of galaxies within them
- But! as seen in simulations, spatial distribution depends also on other properties (i.e. formation time, concentration, star formation rate, ...)
- Dependence of the spatial distribution of DM halos upon properties beside mass
 Bias

Inspired by the work of Miyatake et al. 2016 ...

Selection of galaxy groups

Dvornik et al. 2017

... and

We still use the standard halo model

Lensing results

Defining it with density contrast is a bit awkward ...

- Wouldn't it be better to used something that we can directly measure, like:
 - Number of galaxies N
 - Halo mass M

Advantage of this:

- Use everything we know about halo occupation distributions (HOD's) to figure out the nature of galaxy bias
- We can use the ever so popular halo model to link it with observations
- Halo model then gives us power spectra
 - And from this also the weak lensing signal and galaxy clustering

$$b(k) = \sqrt{\frac{P_{gg}}{P_{mm}}}$$
 $b(r) = \sqrt{\frac{\Delta \Sigma_{gg}}{\Delta \Sigma_{mm}}}$

To the **C**

 Observationally it is easier to measure Γ, than b or R directly — we only need clustering and galaxy-galaxy lensing

Dvornik et al. 2018

Now, let's see the measurements ...

Dvornik et al. 2018

Back to the **F**

Results

- Given the constrained HOD parameters, galaxy bias is:
 - non-linear (due to presence of central galaxies)
 - stochastic (satellite galaxies are not following Poisson distribution and do not quite follow the DM density profile)

Similar trends are spotted with an EAGLE eye*

Conclusions

Assembly bias

- Halo assembly bias not detected on galaxy group scales
- It still needs to be considered in halo models (due to Euclid, LSST and WFIRST)
- Lensing is not a limiting factor spectroscopic information on galaxy groups/clusters
- Galaxy bias
 - We have measured the Γ bias function for KiDS & GAMA galaxies
 - Constrained the HOD parameters responsible for the scale-dependence of the same Γ bias function and showed that galaxy bias is non-linear and stochastic
 - Results can be used for cosmological analysis that uses galaxies as a main tracer (cosmic shear)