Small Galaxies, Big Science: The Booming Industry of Milky Way Satellite Galaxies

Alex Drlica-Wagner David N. Schramm Fellow

Fermilab

Berkeley Cosmology Seminar January 30, 2018

Outline

Dark Matter and Dwarf Galaxies

Search for the Darkest Galaxies

Search for Dark Matter Annihilation

Future Prospects

Outline

Dark Matter and Dwarf Galaxies

Search for the Darkest Galaxies

Search for Dark Matter Annihilation

• Future Prospects

The Cosmic Frontier

Fundamental Physics Precision Measurements

Dark Matter Dark Energy Inflation **Baryon Asymmetry Neutrino Mass**

Planck Collaboration (2016)

Composition of the Universe

Individual Galaxies

Alex Drlica-Wagner

Simulation of the Dark Matter Halo

The Milky Way

Jargon: A dark matter "halo" is a gravitationally bound clump of dark matter

Large Magellanic Cloud (LMC)

Small Magellanic Cloud (SMC)

Naked Eye Visible

Astrophysics provides the only robust, positive measurement of dark matter.

Dar

atter

Alex Drlica-Wagner

Beware of Baryons!

Baryons can also disrupt the smallest structures

Dark Matter

Dark Matter (Dark Matter + Baryon Sims)

Stars (Dark Matter + Baryon Sims.)

Wetzel et al. (2016)

Jargon: Astrophysicists use "baryons" to refer to all standard model components. Recent simulations have begun to robustly include baryonic physics (i.e., FIRE, APOSTLE, EAGLE)

The Missing Satellites "Problem"

Simulations predict more dark matter subhalos than the galaxies we see

Where are the smallest galaxies?

Is this dark matter physics or astrophysics?

Alex Drlica-Wagner

Primary Research Goal

Understand the fundamental nature of dark matter by studying the smallest and most dark-matter-dominated galaxies.

Avenues of Attack

Astrophysical Probes Test the cold, collisionless

dark matter paradigm directly using gravity at the smallest cosmic scales

Indirect Detection

Search for the products of dark matter **annihilation** or **decay** in nearby regions of high dark matter density

Outline

Dark Matter and Dwarf Galaxies

Search for the Darkest Galaxies

Search for Dark Matter Annihilation

• Future Prospects

Milky Way M★ ~ 6 x 10¹⁰ M⊙ Large Magellanic Cloud M★ ~ 1.5 x 10⁹ M_☉

> Small Magellanic Cloud M_★ ~ 5 x 10⁸ M_☉

Setting the Stage

Simulation of Dark Matter

0

80 kpc

The Era of Precision Observations

Stellar Isochrone

Stellar Color

Credit: NASA, ESA, Anderson & van der Marel (STScI)

https://www.spacetelescope.org/videos/heic1017b/

How to Define of a Galaxy?

Satellite Galaxy Discovery Timeline

The Dark Energy Survey

www.physicstoday.org

April 2014

A publication of the American Institute of Physics

volume 67, number 4

Study the origin of cosmic acceleration

5-years of observation with a collaboration of ~400 scientist

DECam instrument built for precision cosmology

Largest, most sensitive survey instrument in the southern hemisphere

DES Data Release: https://des.ncsa.illinois.edu/releases/dr1

Maximum-Likelihood Searches

Multi-dimensional likelihood analysis

Scan over ~400 million possible locations

SSETMI Gammanay

Satellite Galaxy Discovery Timeline

Satellite Galaxy Discovery Timeline

Galaxies or Star Clusters?

ADW, Bechtol, Rykoff et al. (2015)

Outline

Dark Matter and Dwarf Galaxies

- Search for the Darkest Galaxies
 Aside: The Voracious Milky Way
- Search for Dark Matter Annihilation

Future Prospects

Milky Way Stellar Halo

Surface Brightness of Stars

	38.0	35.5	33.0	30.5	28.0	25.5	23.0	
Simula stellar h	ted nalo							d
								di n

The Milky Way grows by devouring smaller systems

Stellar streams trace the distribution of dark matter around the Milky Way

Bullock & Johnston (2005)

New Stellar Streams

11 new stellar streams discovered with DES Increases the known population by ~ 50%

DES Collaboration: Shipp, ADW, et al. (2018)

Alex Drlica-Wagner

Pushing to Lower Mass

Strong prediction of cold dark matter

> How can we detect dark subhalos?

Gaps in Stellar Streams

Image: Belokurov+

Erkal et al. (2017); Carlberg et al. (2012); Bovy (2016); etc.

Alex Drlica-Wagner

Gaia

DESI

Outline

Dark Matter and Dwarf Galaxies

Search for the Darkest Galaxies

Search for Dark Matter Annihilation

• Future Prospects

Indirect Detection

Dark Matter Annihilation

Hooper & Goodenough (2009); Hooper & Linden (2011); Boyarski et al. (2011); Abazajian & Kaplinghat (2012); Gordon & Macias (2013); Huang et al. (2013); Abazajian et al. (2014); Calore et al. (2014); Lee et al. (2015); Bartels et al. (2015); Daylan et al. (2016); Ajello et al. (2016); etc.

Daylan et al. (2016)

Dwarf Galaxy Observations

Multiple dwarf galaxies can be analyzed together

Alex Drlica-Wagner

Outline

Dark Matter and Dwarf Galaxies

Search for the Darkest Galaxies

Search for Dark Matter Annihilation

Future Prospects

Current Sky Coverage

Magellanic Satellites Survey (MagLiteS)

Blanco Imaging of the Southern Sky (BLISS)

ADW (MagLiteS & BLISS Collaborations)

Progression of Wide-Field Optical Surveys

r ~ 22 mag D ~ 50 kpc

> r ~ 24 mag D ~ 125 kpc

> > r ~ 26 mag D ~ 315 kpc

Stage III e.g. DES, PanSTARRS, HSC, Skymapper

> Stage IV e.g. LSST

120

Alex Drlica-Wagner

Stage II

e.g. SDSS

Large Synoptic Survey Telescope (LSST) is Coming!

New CCDs for New Discoveries

Alex Drlica-Wagner

Summary

Dark matter is one of the major open questions in fundamental physics.

Cosmic surveys have entered the era of precision measurement.

Astrophysics provides the only robust, positive measurement of dark matter.

Dwarf galaxy are an important target class for gravitational probes and indirect dark matter searches.

Cosmic surveys will continue to guide particle dark matter searches in the decades to come.

Backup Slides

Outline

Dark Matter and Dwarf Galaxies

- Search for the Darkest Galaxies
 Aside: Origin of the Heavy Elements
- Search for Dark Matter Annihilation

Future Prospects

Origin of Heavy Elements

1 H		big	bang	fusion			cosr	nic ray	/ fissio	n [,]							2 He
3 Li	4 Be	r-process elements ?					exploding massive stars 🔯					5 B	ဖပ	7 Z	© 0	о н	10 Ne
11 Na	12 Mg	dying low mass stars					exploding white dwarfs 🙍					13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	- 77 - Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

Origin of Heavy Elements

Supernova

High Rate ~ 0.03 per year Low Yield ~ 10^{-7.5} M_{sun} of Eu

Neutron Star Mergers

Low Rate ~ 10⁻³ SN Rate High Yield ~ 10^{-4.5} M_{sun} of Eu

Reticulum II Dwarf Galaxy

Alex Drlica-Wagner

Reticulum II Dwarf Galaxy: r-process abundances

High resolution spectroscopy of individual stars $^{-1}$ s-process elemental abundances consistent with other dwarf galaxies Eu/H] r-process elemental abundances enhanced by factor of >100! -4Supernova would disrupt the galaxy; suggests rare event -5(neutron star merger) as the site of r-process

Ji et al. (2016)

Neut

58