Edge of darkness: The splashback radius as a physical halo boundary

Benedikt Diemer

ITC Fellow, Harvard-Smithsonian Center for Astrophysics

In collaboration with: Andrey Kravtsov, Surhud More, and Philip Mansfield

Cosmology Seminar • UC Berkeley • 04/17/2018

89 Mpc

Visualization code: Phil Mansfield Algorithm: Tom Abel, Oliver Hahn, Ralf Kaehler

11 Mpc

R_{500c}

 $\mathsf{R}_{\mathsf{vir}}$

Navarro et al.1995/1996/1997/2004

Navarro-Frenk-White profile

Navarro et al. 1995/1996/1997

The "virial" radius

Peebles 1980 • Lacey & Cole 1993

The "virial" radius

Peebles 1980 • Lacey & Cole 1993

Diemer et al. 2013 • More et al. 2015 • Cuesta et al. 2008 • Zemp 2014

"Ejected" satellites

Quenched satellites out to ~2.5 Rvir

Balogh et al. 2000 • Mamon et al. 2004 • Wetzel et al. 2014

Sphere of influence

The Splashback Radius

Fillmore & Goldreich 1984 • Bertschinger 1985 • Diemand & Kuhlen 2008 Vogelsberger et al. 2011 • Lithwick & Dalal 2011 • Adhikari et al. 2014 • Diemer & Kravtsov 2014

Phase space (stacked halos)

Adhikari, Dalal & Chamberlain 2014

Low accretion rate

High accretion rate

Diemer & Kravtsov 2014 • More, Diemer & Kravtsov 2015 • Adhikari et al. 2014

The Γ-R_{sp}**relation**

Do the Milky Way and Andromeda halos overlap?

More, Diemer & Kravtsov 2015 • Diaz et al. 2014

55 kpc

Abell 2744 / HST Frontier Fields • Koekemoer et al. 2017 • Lotz et al. 2017

Abell 2744 / HST Frontier Fields • Koekemoer et al. 2017 • Lotz et al. 2017

Abell 2744 / HST Frontier Fields • Koekemoer et al. 2017 • Lotz et al. 2017

R_{sp} in cluster member profiles (SDSS)

Assume $\Sigma_{galaxies} \sim \Sigma_{subhalos} \sim \Sigma_{DM}$

Baxter et al. 2017 • Rykoff et al. 2014 • More et al. 2016 • see, however, Zu et al. 2016 • Busch & White 2017

R_{sp} in cluster member profiles (DES)

DES / RedMapper • Chang et al. 2017 • Rykoff et al. 2014

R_{sp} in cluster member profiles (DES)

Diemer & Kravtsov 2014 • Chang et al. 2017

Summary of R_{sp} observations

More et al. 2015 • Diemer et al. 2017 • More et al. 2016 • Baxter et al. 2017 • Chang et al. 2017 Zu et al. 2017 • Busch & White 2017

R_{sp} of individual halos in simulations

1) Find drop in spherical density profiles

Too much sub-structure and noise

2) Consider the full 3D density information Non-trivial, but can explore non-spherical effects

3) Measure the splashback in particle orbits Sounds like a lot of work?

Option 2): Shell finding with SHELLFISH

Mansfield, Kravtsov & Diemer 2017

SPARTA

- Subhalo and PARticle Trajectory Analysis
- Framework for tracking orbits in particlebased simulations
- MPI-parallelized, pure C

What do the orbits look like?

Splashback in an individual halo

Diemer 2017

Subhalo disruption

Splashback in an individual halo

Diemer 2017

The Γ-R_{sp}**relation**

Diemer et al. 2017

COLOSSUS

Cosmology, halos, and large-scale structure benediktdiemer.com/code/colossus

Modules:

- Cosmology
- Power spectrum
- Gaussian random peaks
- Halo mass function
- Bias

. . .

- Density profiles
- Halo mass definitions
- Concentration
- Splashback

Subhalo fraction

Scaling relations

A splashback-accretion shock relation?

Keshet et al. 2017ab • Hurier et al. 2017 • Schaal & Springel 2015 • Shi 2016

Diemer & Facio 2017 • The Fabric of the Universe

with .

Conclusions

- The **structure of CDM halos** is not a solved problem
- The **splashback radius** provides a physical halo boundary
- **SPARTA** and **SHELLFISH** provide entirely new ways of analyzing N-body simulations

- Diemer & Kravtsov 2014 ApJ 789, 1 arXiv 1401.01216
- More, Diemer & Kravtsov 2015 ApJ 810, 36 arXiv 1504.05591
 - Mansfield, Kravtsov & Diemer 2017 arXiv 1612.01531
 - Diemer 2017 arXiv 1703.09712
 - Diemer et al. 2017 arXiv 1703.09716