

Dark Energy and H₀ with standard candles and clocks (+sirens)

Suhail Dhawan

The Oskar Klein Centre Department of Physics Stockholm University

In Collaboration with: Ariel Goobar, Edvard Mortsell, Rahman Amanullah, Ulrich Feindt (OKC), Joel Johansson (Uppsala) and the iPTF collaboration Saurabh Jha (Rutgers) Bruno Leibungut (ESO)

LBL, INPA Seminar, September 13, 2019

Outline

Candles: Dark energy:

• Comparing models of acceleration

H_o:

- Near Infrared Hubble Diagram \Rightarrow what is H₀?
- H_0 tension \Rightarrow new physics??

Clocks:

- Time-delay cosmography: lensed supernovae
 - First resolved strongly lensed SN Ia

Sirens:

• Kilonova constraints on inclination -> H_o?

Standard Cosmological Model

Motivation

While the standard model is established, do alternatives fare better?

Local H₀

Verde et al. 2019

Independent estimates of H₀

Systematics checks: local H_0

- Cepheid systematics (Follin & Knox 2017)
- Bayesian hierarchical model (Feeney et al. 2017)
- Blind analysis (Zhang et al. 2017)
- SN Ia in the NIR (this talk; Dhawan et al. 2018a)

Systematics checks: Early Universe

- Primordial Deuterium + BAO (Addison et al. 2017)
- Primordial Deuterium + Clustering + BAO (DES Collaboration 2017)

Figure:(Top) Systematics checks on H_0 inferred from the early universe and the local measurement (adapted from Riess et al. 2019). (Bottom) The constraints on matter density and h from DES without the CMB anchor in the early universe

Dark Energy with SNe

- NOT an absolute distance
- NOT a standard candle

Constraining dark energy: Model Comparison

Several explanations for accelerated expansion

- Motivated by Scalar Fields and Modified Gravity
- Following "Beyond Lambda": Rubin et al. 2009
- Thawing Quintessence (e.g. Linder 2015)
 - Algebraic
 - Linear Potential (Doomsday)
 - Pseudo-Nambu-Goldstone Boson (PNGB)
- Slow-roll dark energy (Slepian & Gott 2014)
- Growing Neutrino Mass (Wetterich 2007; Amendola et al. 2008)
- Vacuum Phase Transition (Caldwell et al. 2006)
- Bimetric Gravity (von Strauss et al. 2012; Comelli et al. 2012)
 - Linear Interaction
 - Linear and Quadratic Interaction

Combining probes is key!

- Bimetric gravity: Linear interaction
- Same number of parameters as LCDM
- CMB/BAO and SNe fit data well
 - Resulting parameter values do not match
 - Start to exclude model at ~ 2-2.5
 - Improvements in SNe Ia increase tension to ~ 4.5

$$rac{H^2}{H_0^2} = rac{\Omega_M (1+z)^3}{2} + \sqrt{\left(rac{(\Omega_M (1+z)^3)^2}{2}
ight)^2 + 1 - \Omega_M}$$

Dhawan et al. 2017b, JCAP; 2019, JCAP, to be submitted

Bayesian Model Selection

- Some complicated models moderately excluded
- However, models like vacuum phase transition still viable
- Simple modified gravity models don't fit

Dhawan et al. 2017b, JCAP

Future missions

Algebraic thawing from flat Λ

- For w_o = -0.92 and higher: decisively discriminate
- For w_o = -0.94 and higher: moderately
- Current 95 % C.L. w_o < -0.77

Dhawan et al. 2017b, JCAP

Investigations of H₀: Testing Supernova systematics

Local distance ladder

- Calibrate SN luminosity
 - Cepheid distances to SN hosts
 - Cepheids calibrated with anchors
- Optical peak luminosity needs to be corrected
 - Width-luminosity relation
 - Colour-luminosity relation
 - Correlate with properties of hosts

Why the NIR?

- Reduced extinction from host galaxy dust
- Lower luminosity scatter

Mandel et al. 2011, CfA SN program

Testing the standard candle hypothesis

- Using Cepheid distances from R16
- J-band: single filter fits
- Direct fits to data: No templates
- Applying standard candle hypothesis (no corrections)

Figure: The calibrator and Hubble flow samples. The low intrinsic scatter validates the standard candle hypothesis (Dhawan et al 2018a)

H₀ from the NIR

- Combine the calibrators and Hubble flow
 - Calibrators: Absolute M_J
 - Hubble flow: $M_{\rm J}$ and $H_{\rm o}$
 - Combination breaks degeneracy
- $H_0 = 72.8 \pm 1.6$ (statistical) ± 2.7 (systematic) km/s/Mpc
- $\sigma_{int} \sim 0.1 \text{ mag}$
- Consistent with optical H_0 (see also Burns et al. 2018 with complete CSP sample)

Investigations of H₀: Cosmological resolutions of Hubble tension

Is it an early universe solution?

- Late universe cosmologies converge to LCDM limit
- Early universe modification (see also Bernal et al. 2016, Lemos et al. 2018): e.g. radiation-like term
 - Alters sound horizon, gives larger inferred $\ensuremath{H_{\text{o}}}$

Mortsell & Dhawan, 2018, JCAP

Cosmography with time-delays: Strongly lensed supernovae

H₀ + q₀: Independent probes Time-delay distances

- Along with systematics checks, independent probes of H_{o} and q_{o}
- Time-delays between multiple images of transients (Refsdal 1964)
 - Has been used with quasars; lensed SNe rarer, but now found!

$$\triangle t \sim (\triangle \theta)^2 (H_0)^{-1}$$

iPTF16geu: Discovery

Oct 2

"Typical" SNIa redshifted to z=0.409

Absorption lines from host galaxy and another galaxy in the line of sight

Perfect match to z=0.409 SN Ia + intervening galaxy at z=0.216

>50 times brighter than normal SNIa at $z \sim 0.4$: a 30 σ outlier!

Goobar+ 2017

iPTF16geu: Follow-up and resolved photometry

Multi-band light curves fitted allowing for differential extinction in the lens and same extinction in the host

Very small time-delays: highly symmetric system (matches models; More et al. 2017, Mortsell et al. in prep) Not ideal for H_o Ongoing surveys will find larger time-delay systems

Also: surprisingly high magnification (μ), if coming from galaxy lens alone! In general, P(μ) $\propto \mu^{-3}$ +selection effects. (E.g., μ =5 happens 1000 more often, yet not seen)

RGB image of iPTF16geu from HST WFC3 (bottom) and individual light curves for the resolved images (top; **Dhawan** et al.2019, MNRAS, submitted)

Finding glSNe with ZTF: Year 1 end of operations

Image Stacking: ZTF Co-adds

The ZTF Coadd Facility Danny Goldstein with P. E. Nugent, Y. Yao, A. Goobar, S. R. Kulkarni Hubble Fellow (Caltech)

- ZTF co-add facility
- Gemini/VLT follow-up with AO

H₀ from standard sirens: Impact of kilonova constraints

Fitting GW170817/ AT2017gfo

- Fitting 3-D models to data
 - UV to NIR coverage
 - Largest sensitivity in the redder filters

Dhawan et al. 2019, ApJL, to be submitted

Combined EMGW H₀

- EMGW sources: Distance ladder independent Ho
 - Degeneracy with inclination
 - Independent EM constraints
 - Improvement of 25%

Future kN observations

- Different wavelength ranges
 - NIR is most constraining
- Restricting phase ranges
 t < +2 d crucial
 - Improvement drops by factor 2

Dhawan et al. 2019, ApJL, to be submitted

Summary + Outlook

- Local distance ladder H_{0} insensitive to SN systematics, e.g. dust, intrinsic scatter
 - Likely resolution of Hubble tension from early universe physics
- Moderate evidence against non-standard dark energy models
- First multiply imaged, resolved lensed SN Ia
 - Magnification insensitive to assumptions on extinction
 - Can measure extinction in each line-of-sight
 - Time-delays too small for H_{o} inference
- ZTF should find more (and larger time-delay) lensed SNe
- kN constraints on inclination
 - Improve the luminosity distance inference
 - Require early-time data
 - NIR follow-up is crucial

Diagnostics

Impact of inhomogeneities

$$QD'' + (rac{2Q}{1+z} + rac{Q'}{2})D' + rac{3}{2}\eta\,\Omega_{\mathrm{M}}\,(1+z)\,D = 0,$$

$$Q(z) = \Omega_{\rm M} (1+z)^3 + \Omega_{\rm K} (1+z)^2 + \Omega_{\rm DE} (z, w)$$

- > FRW metric assumes homogeneity
 - Accounting for focussing from compact objects
 - No bias in DE inference
 - Future SNe can constrain f_p

-0.6

-0.5

What's coming!

- VIRCAM follow-up: Single system in the Hubble flow
- Is there an NIR host mass step?

Impact of inhomogeneities

Figure: The impact of impact of departures from homogeneity on dark energy inference (Dhawan et al. 2018c)

 R_{ν}

Einstein radius:

$$=\sqrt{\frac{4GM_{lot}D_{LS}}{c^2D_LD_S}}$$

Gravity in action: *micro lensing*

If lens mass is small, e.g., a stellar object, image separation is too small (micro arcseconds) to be spatially resolved by astronomical instruments. Looks like one object, just brighter as long as lens is in front!

Summary & Outlook

• SNIa Hubble diagram disfavors PBHs as major DM contributor over wide mass range

- Gravitational telescopes (I): can greatly enhance the depth of SN surveys. Pilot NIR survey detected 6 CC SNe up to z=1.7 (photometric typing). With sustained surveys (from space?) may be able to find first generation of SNe @z>10?
- Gravitational telescopes (II): ZTF and LSST discoveries of lensed SNIa will provide great targets for spectroscopic tests for potential evolution of "standard candle"
- Three strongly lensed SNe discovered in last few years: PS1-10afx, iPTF16geu (SN Zwicky!!) and SN Refsdal
- iPTF16geu/SN Zwicky first/only resolved Type Ia SNe, amplification measured, without model assumptions on the lens:
- The 0.3" radius from lens among smallest systems known. Unlike all QSO/galaxy strong lensing systems, found with low resolution imaging, thanks to standard candle nature of SNe Ia
- The large amplification and symmetry of the event + different brightness of images suggests that the SN may be further lensed by substructures in the lensing galaxy, although differences for 3 images likely due to extinction in lens! Stay tuned!
- How rare? We also have PS1-10fx with large amplification. Why no smaller amplification events yet?
- > ZTF + LSST will tell. *If <u>not</u>* as rare as predicted, does this have deep implications?

Multiband lightcurves fitted *allowing for differential extinction in lens* + common extinction in host galaxy.

Very small timedelays between images: poor constraints on H_o from this particular event!

 $\triangle t \sim (\triangle \theta)^2 (H_0)^{-1}$

88

Η

S

Т