Probing Cluster Masses with Gravitational Lensing

Sanghamitra Deb

Collaborators: Prof. David M. Goldberg (Drexel University), Prof. Kristian Pedersen (DARK, Copenhagen), Dr. Andrea Morandi (DARK, Copenhagen & Univ. of Tel Aviv.), Dr. Marceau Limousin (LAM Marseille), Dr. Hakon Dahle (Univ. of Oslo), Dr. Signe Riemer-Sørensen (DARK, Copenhagen), Dr. Catherine Heymans (University of Edinburgh, IfA Royal Observatory), Dr. Reiko Nakajima (UC Berkeley), Dr. Rachel Mandelbaum (Princeton University), Prof. Gary Bernstein (University of Pennsylvania)

Looking Back ...

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

Galaxy Clusters: Formation

43 Mpc

4.3 Mpc

Andrey Kravtsov

Galaxy Clusters: Formation

43 Mpc

Andrey Kravtsov

4.3 Mpc

Observing Clusters

galaxies: HST, optical observations

gas: Xray observations

gas: Sunyaev Zeldovich Effect

Galaxy Cluster RXJ1347-1145

http://chile1.physics.upenn.edu/gbtpublic/

<mark>itroduction</mark> Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

What do we want to measure?

- Mass
- Substructure
- Morphology

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

What do we want to measure?

- Mass
- Substructure
- Morphology

Why?

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

What do we want to measure?

- Mass
- Substructure
- Morphology

Why?

Test Predictions of LCDM cosmology in the local Universe.

Compare with the morphologies of gas and light.

<mark>ntroduction</mark> Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

Substructure: Elliptical Halos

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

Prediction from Simulations

Ho et al. 2006

Observations: Lensing

$$M_{200} = 200\rho_c$$

Corless & King 2008,2009

$$C = \frac{R_{200}}{R_s}$$

Gravitational Lensing

Dimension less surface mass density

$$\kappa = rac{\Sigma}{\Sigma_{cr}}$$

Gravitational Lensing is co-ordinate transformation between the foreground (θ) , and background positions(β)

Shape Distortions

Critical Curves: det(A)=0

Distortion Observables are Measured Ellipticities. For semi-strong regime: $g = \gamma/(1-\kappa)$

$$\kappa = (\psi,_{11} + \psi,_{22})/2$$
 $\gamma_1 = (\psi,_{11} - \psi,_{22})/2$
 $\gamma_2 = \psi,_{12}$

Weak Lensing

Weak lensing is a statistical measure of the distortion of background galaxies due to the intervening mass.

Williamson et al. 2007.

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

The shear signal

Comparison of Space vs Ground: A1689

Recovering the Shear

Strong Lensing

$$\alpha_i = \psi_{,i}$$

$$\alpha_A - \alpha_B = \theta_A - \theta_B$$

Parametric technique

Assumption: Light traces mass

- Place galaxy sized halos at the location of Cluster Members.
- Have one or more dark matter halos with free parameters that are fit from data.

Grid Based Lensing

$$\langle \varepsilon \rangle = \gamma$$
 Convolution

Particle Based Lensing

Particles-> lensed image positions

- **Solution Solution With the same complexity as finite differencing on a regular grid.**
- No empty grid cells.

How does it work?

Taylor Expansion

$$\psi(\boldsymbol{\theta}) = \psi_n + \theta_j \psi_{n,j} + \frac{1}{2} \theta_j \theta_k \psi_{n,jk} + \dots$$

$$\psi_{n,j} = D_{nm}^{(j)} \psi_m$$

$$\psi_{n,jk} = D_{nm}^{(jk)} \psi_m$$

Similar to Finite Differencing on uniform grids

Reconstruction Procedure

Keep Iterating ...

$$\chi^2_{ ext{weak}} = \sum_i rac{\left[arepsilon_i - rac{\gamma_i}{(1-\kappa_i)}
ight]^2}{\sigma_i^2}$$

In case of weak lensing, a $\chi^2_{\rm w}$ like this will fit best to noisy data

Smoothing the ellipticity field before minimization and using the full covariance matrix in the minimization

Choice of smoothing scale

$$\sigma_{\kappa}^{2} = A_{0} \left(\frac{\zeta}{\lambda}\right)^{4} + B_{0} \frac{\sigma_{\varepsilon}^{2}/\langle \kappa^{2} \rangle}{(\zeta)^{2}n} + C_{0}$$

Heterogeneous Datasets

HST: 50-60 galaxies per square arcminute

Abell 901/902

0.5 degree^2 fov STAGES HST survey 60,000 background images.

Heymans et. al. 2008.

A901a

From Deb et al. 2009

A901b

Non-**Parametric:**

Axis Ratio

Position angle

Parametric:

Axis Ratio

Position angle

A902

From Deb et al. 2009

Southwest Group

Non-Parametric:

 $0.54^{+0.08}_{-0.09}$

Axis Ratio

Position angle

 $120.0^{+4.8}_{-4.8}$

Parametric:

Axis Ratio

Position angle $180.0^{+7.73}_{-5.15}$

Dark Matter vs Light

From Deb et al. 2009

Alignment between Light and Dark Matter

From Deb et al. 2009

Radial dependence

Ellipticity

From Deb et al. 2009

Alignment

Alignment

0.10

148.88

From Deb et al. 2009

Reconstruction Methods

Parametric: Strong Lensing

GRAVLENS - Keeton et al., 2001

LENSTOOL - Julio et al., 2007

Galaxy-Galaxy Lensing

Natarajan et al. 2005

Hybrid

LENSTOOL -Julio et al., 2009

Non-Parametric Strong Lensing

Jullo & Kneib 2009, LENSPERFECT -Coe et al, 2008,2010 (Mesh Free)

Weak Lensing

Kaiser 1995, Seitz & Schneider 1995-2001

Strong+Weak Lensing Finite Differencing Based

Bradac et al. 2004, (ADAPTIVE) - Diego et al. , Cacciato et al. Merten et al., Saha et. al. Pixelens and more

Mesh-Free Technique Particle Based Lensing (PBL)

Deb et al. ,2008, 2009

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

Strong+Weak Lensing: Challenges

Difference of Scales: Bullet Cluster

Strong+Weak Lensing

Summary

$$\chi^2 =$$

$$\sum_{mn} \left(\varepsilon_m^i - \frac{\gamma_m^i(\psi_m)}{1 - \kappa_m(\psi_m)} \right) C_{mn}^{-1} \left(\varepsilon_n^i - \frac{\gamma_n^i(\psi_n)}{1 - \kappa_n(\psi_n)} \right) + \sum_{i, pairs} \frac{\left((\boldsymbol{\alpha}^A(\{\psi\}) - \boldsymbol{\alpha}^B(\{\psi\}))Z(z_i) - (\boldsymbol{\theta}^A - \boldsymbol{\theta}^B) \right)^2}{\sigma_i^2}$$

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

A1689

http://chandra.harvard.edu/photo/2008/a1689/

A1689: ACS+SUBARU

Mass Map

X-ray vs Weak Lensing

Sorensen et al. 2009

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

X-ray vs S+W Lensing

Introduction Particle Based Lensing Abell 901/902 S+W Abell 1689 Current Research Future Work Summary

Recent Observations

Hershel
Observations reveal
an excess of 100
micron-selected
galaxies extending
~6 Mpc in length
along an axis that
runs NE-SW through
the cluster centre

Haines et al. arXiv:1005.3811

Power Ratios

Moments of the mass distribution characterize the morphology and substructure in dark matter distribution.

$$a_m(r) = \int_{r' < r} \Sigma(\vec{r}') (r')^m \cos(m\phi') d^2 \vec{r}',$$

$$b_m(r) = \int_{r' < r} \Sigma(\vec{r}') (r')^m \sin(m\phi') d^2 \vec{r}'.$$

$$P_0 = [a_0 ln(R)]^2,$$

$$P_m = \frac{1}{2m^2 r^{2m}} (a_m^2 + b_m^2).$$

Power	X-ray	Lensing
P_2/P_0	$(6.68 \pm 0.27) \times 10^{-06}$	$(1.6 \pm 0.25) \times 10^{-5}$
P_3/P_0	$(3.71 \pm 1.12) \times 10^{-07}$	$(0.9 \pm 0.14) \times 10^{-5}$
P_4/P_0	$(6.42 \pm 2.65) \times 10^{-08}$	$(8.6 \pm 0.3) \times 10^{-5}$

Current Research

A2219: Optical vs Lensing mass reconstruction

PRELIMINARY

Current Research

A2261: X-ray vs Lensing mass reconstruction

Current Research

A1914: X-ray vs Lensing mass reconstruction

Chandra data

http://chandra.harvard.edu/photo/2006/clusters/

PRELIMINARY

Abell 1689

Application: Studying high redshift galaxies

$$z=1.034$$
 Lensed $z=0.1$

Sumilimeter Imaging

Cluster field images at 850 microns

Multiwavelength analysis

Multiwavelength shape analysis of galaxy clusters for the current sample of 20 clusters.

X-ray data: Chandra & XMM archival data
SZ data: Future plans of writing
CARMA proposals with Dr. Morandi for some of these clusters.

Clusters are being discovered as we speak with SZ experiments like ACT/SPT. Lensing observations of these clusters will also increase this data set.

Summary

METHOD

Developed a non-parametric mass reconstruction technique "Particle Based Lensing" (PBL).

PBL is applied to compute mass maps of variable resolution and signal-to-noise.

RESULTS

- * The ellipticity for the light distribution is smaller than the ellipticity of the dark matter distribution for A901b and the Southwest Group.
- * A901a, A901b and A902 have strong alignment whereas the Southwest group is not aligned with the rest of the peaks.
- * The gas distribution of A1689 is smoother than the dark matter distribution.

Future Research

Mutiwavelength analysis for a sample of 20 Supermassive Clusters.

Smoothing Ellipticities: Error Covariance

$$\varepsilon_{sm,p}^i = Q_{pq}\varepsilon_q^i$$
 ———

$$C_{pq}^{\text{MIN}} = Q_{kp} Q_{kq} \sigma_q^2$$

Smoothing Ellipticities: Error Covariance

$$arepsilon_{sm,p}^i = Q_{pq} arepsilon_q^i \qquad \qquad \qquad C_{pq}^{ ext{MIN}} = Q_{kp} Q_{kq} \sigma_q^2$$
 $\qquad \qquad \qquad \qquad$ singular

Smoothing Ellipticities: Error Covariance

$$\varepsilon_{sm,p}^i = Q_{pq}\varepsilon_q^i$$

singular

Number of particles (background images) larger than the number of resolution units.

0.5

-0.5

Ellipticity Observations: Triaxial NFW

$$\rho(R) = \frac{\delta_c \rho_c(z)}{\frac{R}{R_s} (1 + R/R_s)^2}$$

 $ho_c(z)$:critical density of the Universe

:characteristic overdensity of the halo

: scale radius

$$R^2 = \frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2}$$

Del Popolo et al. 2009

log (r/r,)

-0.5