
9/4/18 — UC Berkeley

Modeling the Non-Linear Universe 
using Cosmological Simulations

Joe DeRose



The Standard Model of Cosmology

explains current observations to exquisite precisionΛCDM

Planck Collaboration 2018



Late-time Universe Tests
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example statistics:

halo mass function

matter power 
spectrum

movie, simulation, statistics: Matt Becker, Ralf Kaehler, Yao-Yuan Mao, Rachel Reddick, Risa Wechsler (Stanford/SLAC)

matter distribution (180 Mpc) 

How does structure form?



Role of Cosmological Simulations 
in Modern Surveys

Part I: The Mock as the Test
Systematics estimation and marginalization
Pipeline and algorithm development
Case study - the Dark Energy Survey

Part II: The Mock as the Model
Accurate predictions for non-linear and highly complex 
observables 
Covariances (not in this talk)



The Dark Energy Survey
Imaging survey of the southern sky

~5000 sq. degrees
4m Blanco Telescope on Cerro Tololo, Chile
5 bands: grizy

Done taking 5 years of data, results published for first year (Y1) and 
working on analyzing first 3 years (Y3)



DES Year 1 Cosmology: 3x2pt

galaxies x galaxies
angular clustering

lensing x lensing
cosmic shear

galaxies x shear
galaxy-galaxy lensing



Pipeline Testing

Is my pipeline accurate enough for the statistical precision of my data?
Robustness to modeling assumptions

galaxy bias, photo-zs, intrinsic alignments, baryons, shear 
calibration, etc.

Blind challenges: can I recover a range of possible cosmologies
Requirements

Models all probes accurately (e.g. clustering and lensing)
Many times the volume of the survey (must be inexpensive)
Variety of galaxy models at each cosmology 



Our Solution: The Buzzard Flock

 
 

 

Low Resolution 
Lightcones 

1050, 2600, 4000 
Mpc/h

Source Galaxy Catalog
(Metacalibration)

Error Model

Photo-z

Sample Selection

Lens Galaxy Catalog
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Cluster Catalog
(RedMaPPer)

CALCLENS

ADDGALS

High Resolution Tuning 
Box

SHAM

p(delta|L,z)

Input
 Cosmology

Luminosity
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f_red(L,z)
Color Model
Training Set

L_cen(M,z)

JDR in prep.



ADDGALS

Adding Density Determined Galaxies to Lightcone Simulations
Assign galaxies to particles in lightcone with using                                   
tuned from Abundance Matching

p(δ |L, z)

Colors assigned using SED-density
 relation in SDSS

Wechsler, JDR in prep.



CALCLENS

Ray-tracing on nside=8192 
healpix grid
Spherical harmonic transform 
Poisson solver
Calculates shear, convergence 
for all galaxies

Becker 2013



Realistic Observables: Lens 
Galaxies
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Realistic Observables: Source 
Galaxies
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Buzzard sims used in a 11/14 of  
“DES Y1 Results”

Gatti, Vielzeuf et al.
Hoyle et al.

Chang et al. 2018

MacCrann, JDR et al. 2018

Gruen, Friedrich, Krause, JDR et al.
Friedrich, Gruen, JDR, Krause et al.

Density Split Statistics

Redshift Estimation 3x2pt Parameter Inference

Mass Mapping



Highlight: Validating the 3x2pt 
Pipeline

MacCrann, JDR et al. 2018

Constrained biases on inference to <1 sigma with high confidence



Highlight: Validating the 3x2pt 
Pipeline

MacCrann, JDR et al.

Results corroborated from an independent simulation.



Modeling Photo-zs

We weren’t quite able to draw 
conclusions about photo-z 

marginalization



Modeling Photo-zs

We weren’t quite able to draw 
conclusions about photo-z 

marginalization
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SED Modeling
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Compared to cosmos, simulations are off by a shift in the mean color of the 
blue-sequence, broadening of red-sequence



SED Modeling
Leistedt, Hogg, Wechsler & JDR 2018

Can fit for SED template corrections, population statistics simultaneously!
Apply to sims to recover more realistic colors. 



Pushing to Smaller Scales
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Perturbative Bias Modeling

How much extra constraining power is actually available at 
small scales?

Benefits - “complete” description of bias allowed by symmetries of GR

Work with Shivam Pandey, Jonathan Blazek, Niall MacCrann, Bhuv Jain

Y3 approach: Perturbative Bias Models
Schematically:



Choosing Bias Model Priors

Well known relations exist between bias parameters for halos.
Investigating whether these hold up for galaxies.

Lazeyras et al. 2016



Taking Joint Probes to the Next Level
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Full joint analysis validation on 
simulations forthcoming
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Buzzard sims now have robust cluster observables, which 
we are using to perform similar validations for Y3 3x2pt + 

cluster cosmology analyses 



Part II: Mock as the Model

The Aemulus Project

/ˈae.̯mu.lus/, [ˈae.̯mʊ.ɫʊs] : (Latin) Striving to equal or exceed.



The Aemulus Project

Goals: Precision emulation of statistics of dark matter halos and 
galaxies
Methods: 

Suites of high resolution N-body simulations spanning currently-
allowed cosmological space. 
Interpolating statistics within cosmological + galaxy-halo 
connection models using Gaussian Processes

Results in percent-level estimates of the halo mass function and 
redshift-space galaxy clustering.



Risa Wechsler
(Stanford/KIPAC)

Jeremy Tinker
(NYU/CCPP)

Eduardo Rozo
(Arizona)

JDR Matt Becker (Argonne), Yao-Yuan Mao (PITT-PACC) 

Sean McLaughlin
(Stanford)

Tom McClintock
(Brookhaven)

Zhongxu Zhai
(Caltech)

Aemulus Project: People



First Set of Aemulus Papers:

Aemulus I - JDR, Wechsler et al.
Parameter Space and Convergence Testing

Aemulus II: Tom McClintock, Rozo et al.
Emulation the Halo Mass Function

Aemulus III: Zhongxu Zhai, Tinker et al.
Emulating Galaxy RSD Clustering



Suite of 75+ Simulations

• All simulations: 1050 Mpc/h, 14003 particles, resolving 
halos down to ~6x1012 Msol/h (200 particles) 

• 40 Training Sample Simulations, all different 
cosmologies and independent phases. 

• 7x5=35 Test Sample Simulations: 7 cosmologies, with 5 
realizations per cosmology. 

• Additional “convergence” simulations testing box size, 
particle resolution, starting redshift, etc.



Sampling the Cosmological 
Parameter Space

N=2, M=4 
“hypercube”7 Parameter wCDM 

Sampling using a latin hypercube 
method based on Coyote 
Universe strategy (Heitmann et 
al. 2009)
LH: Think of N-dimensional 
chessboard filled with M rooks 
that are unable to attack one 
another

Aemulus I: JDR et al, arXiv:1804.05865 



Sampling the Cosmological 
Parameter Space

4 DEROSE ET AL.

Figure 1. Optimization of the Latin Hypercube
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Figure 2. Allowed CMB parameter space with the cosmologies of our 40 building boxes (black) and 7 test cosmologies (red) overplotted.
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Figure 2. The CMB allowed parameter space(contours) for �8 and
⌦M , which is a union of BAO from BOSS DR11, the Union SNIa
catalog, and Planck/WMAP9. Contour levels are the 1, 2, and 3�
confidence contours. Points are the locations of the AEMULUS sim-
ulations used to construct the emulator. The red stars mark the lo-
cations of the test suite.

None of the test suite simulations were used in the construc-
tion of the emulator.

2.1. Cosmological Models

Cluster abundance is most sensitive to the matter power
spectrum normalization �8 and matter content ⌦M . The
AEMULUS simulations exist in the parameter space p 2
[⌦bh

2,⌦ch
2,w,ns,H0,Neff,�8] where ⌦b is the baryonic mat-

ter fraction, ⌦c is the cold dark matter fraction, ns is the
power spectrum index, h = H0/100km/s/Mpc is the Hub-
ble constant, and Neff is the effective number of relativistic
species.

2.2. Halo Identification

Halos were identified using the ROCKSTAR halo finder
(Behroozi et al. 2013), which identifies halos across simu-
lation snapshots. We use the M200b mass definition, where
the halo is defined as a spherical overdensity (SO) � = 200
times more dense than the background. We conservatively
only consider halos with 200 or more particles. The mass
and abundance of the lightest halos were found to depend on
the mass resolution of the simulations. To account for this
systematic, we applied a correction to the recovered abun-
dances as described in Section 4.2.5 in DeRose 2018.

Halos in each snapshot were split into mass bins begin-
ning at the minimum halo mass resolved in each simulation.

The maximum edge was fixed arbitrarily at 1017
h

-1M�, and
no simulation had halos at or above 1016. Subhalos were
ignored. Using 83 = 512 spatial jackknife subregions, we es-
timated the covariance matrix between bins in a given snap-
shot. We ignore correlations between mass bins across dif-
ferent snapshots when performing the fits described in Sec-
tion 2.3.

2.3. Mass Function

Our emulators were not trained on the measured mass
functions directly. Instead, we fit the mass function of each
simulation snapshot with a modified version of the mass
function presented in appendix C of Tinker et al. (2008).
Similar fitting functions were presented in Jenkins et al.
(2001) and Warren et al. (2006). In Tinker et al. (2008),
the cosmological parameters altered the mass function in two
ways: 1) changing the contribution of matter to the critical
density ⌦m⇢c and 2) the mapping from mass to the RMS
variance of the linear density field �(M,z). We extend this
approach by allowing the fitting function parameters to have
cosmological dependence as well, which we captured via the
Gaussian Processes that underpin the emulator.

This fitting function has the following form

dn

dM
= G(�)

⇢̄m

M

d ln�-1

dM
(2)

where the halo multiplicity function G(�) is given by

G(�) = B
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e

⌘-d

+�- f

�
exp(-g/�2) (3)

where �2 is the rms variance of the linear density field

�2 =
1

2⇡2

Z
P(k,z)Ŵ (kR)k2

dk. (4)

evaluated at the Lagrangian scale of the halo, i.e. R =
(3M/4⇡⇢̄m)1/3. P(k,z) is the linear matter power spectrum
as a function of wavenumber k and redshift z, and Ŵ is the
Fourier transform of the real-space top-hat window function.
Additionally, we enforce that all dark matter resides in halos,
which means that

Z
G(�)d ln�-1 = 1. (5)

The simulation is unable to sample arbitrarily small modes
of the power spectrum due to the finite size of the box. We
confirmed that our results are insensitive to a cut in k = 2⇡/R

at the scale of our simulation R = 1.05 h
-1Gpc. We use the

publicly available CLASS1 to calculate the power spectrum.

1
http://class-code.net/



Convergence Testing

Convergence Tests: 
Starting redshift 
Force Resolution 

Force Error Tolerance 
Maximum Time Step 

Particle Loading 
Finite Box Effects

Statistics Tested 
Halo Mass Function 

Halo Clustering 
Galaxy Clustering (LRG HOD)  

Matter Clustering 
Correlation Function 

Power Spectrum

Aemulus I: JDR et al, arXiv:1804.05865 



Emulating the Halo Mass Function
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Mass Function: Methods
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Figure 5. Mass function measurements and emulator predictions for the seven test suite simulations at four redshifts. These simulations were
not used to train the Gaussian Processes in the emulator, and span the entire range of cosmological design space. Points are placed at the mean
halo mass of the corresponding bin, and can sometimes scatter left or right when halos are scarce at high masses. These measurements are five
times more precise than the training data. Lines in the lower panel show the modeled accuracy predictions.

and confirmed that it matches a standard normal distribution.
This is true when splitting the data in any way such by mass,
peak height, or redshift. This model uncertainty was used to
make comparisons to the requirements of present and future
cluster abundance analyses as seen in Figure 1 in green.

One key feature enabled by our modeling the residuals is
that we can make random realizations of our model uncer-
tainty. Doing so allows for propagating the scale-dependent
modeling uncertainty forward in an abundance analysis. This
is accomplished by drawing random residuals from the re-
covered model uncertainty. Critically, however, we do not
expect this model uncertainty to oscillate wildly as we vary
the peak height ⌫. Rather, we expect the modeling uncertain-
ties to correspond to large-scale fluctuations, meaning fluc-
tuations in neighboring peak height values and/or neighbor-
ing redshifts must be strongly correlated. Given two peaks

heights ⌫1 and ⌫2 at two different redshifts z1 and z2, we
model the correlation coefficient of the model uncertainties
with a simple exponential. That is, we set the covariance ma-
trix of the model uncertainties to be:

C(⌫1,z1,⌫2,z2) = e
-�⌫2-�z

2
�model(⌫1,z1)�model(⌫2,z2) , (19)

where �⌫ = ⌫1 - ⌫2 and �z = z1 - z2 and we have assumed a
correlation length of 1 for ⌫ and z. We calculated the mean
correlation length in ⌫ of the jackknife estimated covariance
matrices used to fit the mass functions and found it to be very
close to 1. Since we do not have estimates of the covariance
between mass bins at different snapshots, we could only esti-
mate the correlation length between redshifts. This could be
tested using lightcones, which we leave for future work.

With the covariance matrix of Equation 19, we can model
the residual systematics as a Gaussian random field. By

Comparison to test suite
(not used to train)

Points: Mean of 5 boxes
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Figure 2. The CMB allowed parameter space(contours) for �8 and
⌦M , which is a union of BAO from BOSS DR11, the Union SNIa
catalog, and Planck/WMAP9. Contour levels are the 1, 2, and 3�
confidence contours. Points are the locations of the AEMULUS sim-
ulations used to construct the emulator. The red stars mark the lo-
cations of the test suite.

None of the test suite simulations were used in the construc-
tion of the emulator.

2.1. Cosmological Models

Cluster abundance is most sensitive to the matter power
spectrum normalization �8 and matter content ⌦M . The
AEMULUS simulations exist in the parameter space p 2
[⌦bh

2,⌦ch
2,w,ns,H0,Neff,�8] where ⌦b is the baryonic mat-

ter fraction, ⌦c is the cold dark matter fraction, ns is the
power spectrum index, h = H0/100km/s/Mpc is the Hub-
ble constant, and Neff is the effective number of relativistic
species.

2.2. Halo Identification

Halos were identified using the ROCKSTAR halo finder
(Behroozi et al. 2013), which identifies halos across simu-
lation snapshots. We use the M200b mass definition, where
the halo is defined as a spherical overdensity (SO) � = 200
times more dense than the background. We conservatively
only consider halos with 200 or more particles. The mass
and abundance of the lightest halos were found to depend on
the mass resolution of the simulations. To account for this
systematic, we applied a correction to the recovered abun-
dances as described in Section 4.2.5 in DeRose 2018.

Halos in each snapshot were split into mass bins begin-
ning at the minimum halo mass resolved in each simulation.

The maximum edge was fixed arbitrarily at 1017
h

-1M�, and
no simulation had halos at or above 1016. Subhalos were
ignored. Using 83 = 512 spatial jackknife subregions, we es-
timated the covariance matrix between bins in a given snap-
shot. We ignore correlations between mass bins across dif-
ferent snapshots when performing the fits described in Sec-
tion 2.3.

2.3. Mass Function

Our emulators were not trained on the measured mass
functions directly. Instead, we fit the mass function of each
simulation snapshot with a modified version of the mass
function presented in appendix C of Tinker et al. (2008).
Similar fitting functions were presented in Jenkins et al.
(2001) and Warren et al. (2006). In Tinker et al. (2008),
the cosmological parameters altered the mass function in two
ways: 1) changing the contribution of matter to the critical
density ⌦m⇢c and 2) the mapping from mass to the RMS
variance of the linear density field �(M,z). We extend this
approach by allowing the fitting function parameters to have
cosmological dependence as well, which we captured via the
Gaussian Processes that underpin the emulator.

This fitting function has the following form

dn

dM
= G(�)

⇢̄m

M

d ln�-1

dM
(2)

where the halo multiplicity function G(�) is given by

G(�) = B
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exp(-g/�2) (3)

where �2 is the rms variance of the linear density field

�2 =
1

2⇡2

Z
P(k,z)Ŵ (kR)k2

dk. (4)

evaluated at the Lagrangian scale of the halo, i.e. R =
(3M/4⇡⇢̄m)1/3. P(k,z) is the linear matter power spectrum
as a function of wavenumber k and redshift z, and Ŵ is the
Fourier transform of the real-space top-hat window function.
Additionally, we enforce that all dark matter resides in halos,
which means that

Z
G(�)d ln�-1 = 1. (5)

The simulation is unable to sample arbitrarily small modes
of the power spectrum due to the finite size of the box. We
confirmed that our results are insensitive to a cut in k = 2⇡/R

at the scale of our simulation R = 1.05 h
-1Gpc. We use the

publicly available CLASS1 to calculate the power spectrum.

1
http://class-code.net/

Tinker+08 fitting 
functions yields good fits 
to n(M)
Emulate linear fit 
parameters as function of 
cosmology.

Aemulus II: McClintock et al, arXiv:
1804.05867



New State of the Art

(n � nmodel)/nmodel

Tinker et al. (2008)

(n�nmodel)/nmodel

�R

�0.1 0.0 0.1
(n � nmodel)/nmodel

Emulator

�20 0 20
(n�nmodel)/nmodel

�R



Low Mass Halo Modeling

Emulating Tinker 
parameters allows for easy 
extrapolation to low mass.
Compare to high-res sims 
which are part of the next 
phase of the project
Results good to ~2% down 
to 1011 Msol/h out to z=1.

AEMULUS II: EMULATING THE HALO MASS FUNCTION 11
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Figure 9. Comparisons to two high resolution boxes with 400 Mpc h
-1 on a side (left) as well as seven simulations with 3 Gpc h

-1 on a side
(right). Lines in the lower panels are the emulator modeling uncertainty plotted in the mass range available to the simulations used to train the
emulator.
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and apparent LOS comoving distance shift !s for a galaxy observed
at a given by

!s =
vLOS

p

aH (a)
, (2)

where H (a) = ȧ/a is the expansion rate at a.
On large scales, where linear perturbation theory applies, the

peculiar velocity field vp is simply related to the underlying matter
density fluctuations, δm:

∇ · vp = −aHf δm (3)

where f = d ln D/d ln a is the logarithmic growth rate and D(a) is the
linear growth function that specifies the amplitude of fluctuations
as a function of a, relative to some initial fluctuation amplitude:
δm(a) ∝ D(a)δm,i. Therefore, in the linear regime, a measure of the
amplitude of the peculiar velocity field through RSD provides a
constraint on f times the amplitude of matter fluctuations on some
scale; often this scale is taken to be 8 h −1 Mpc, so that linear RSD
measure fσ 8. Because the scale dependence of the matter power
spectrum is extremely well constrained by the CMB, the specified
scale is not important for many applications (see section 5.1 of
Reid et al. 2012). The measurement of the amplitude of the peculiar
velocity field is typically made using the variation of the amplitude
of galaxy clustering as a function of orientation with respect to the
LOS caused by RSD. On large scales, equation (3) implies (Kaiser
1987)

δs
g(k) = (b + f µ2)δr

m(k). (4)

Here δs
g is the observed (in ‘redshift space’) galaxy density fluctu-

ation for wavevector k, b is the real space linear galaxy bias, and
δr

m(k) is the true underlying matter density fluctuation (i.e. in ‘real
space’, without velocity perturbations included in the redshift direc-
tion coordinate). The parameter µ is the cosine of the angle between
k and the LOS, and the known µ dependence allows a measure-
ment of fσ 8 after marginalizing over the unknown galaxy bias. In
this work, we work strictly in configuration space; see Fisher (1995)
for the configuration space equivalent of equation (4).

On smaller scales investigated in this work, non-linearities be-
come important and the relationship between v and δm becomes
substantially more complicated. A detailed description of many dis-
tinct physical effects that impact the observed redshift space galaxy
clustering on small scales is given in Tinker (2007). Because of the
complexity of the modelling and the high statistical precision of our
data, we resort to N-body simulations to provide predictions for our
observables, which we describe below.

2.3 Two-dimensional correlation function ξ (rσ , rπ )

Because RSD effects only distort the observed coordinates (or pair
separations) in the LOS direction, the two-point correlation function
ξ is fundamentally a function of two variables. In Fig. 1 we choose
as coordinates the LOS separation, rπ , and the separation transverse
to the LOS, rσ to display our measurement from the galaxy sample
analysed in this work. This measurement uses the angular upweight-
ing method described in Section 4.1 to correct for fibre collisions.
Two primary features are apparent: on large scales (∼8 h −1 Mpc and
above), contours of constant ξ are ‘squashed’ in the LOS direction.
The correlation between the density and velocity field described by
equation (3) on average reduces the apparent separation between
pairs of galaxies along the LOS. On smaller scales where equation
(3) breaks down, the contours are instead stretched along the LOS.
Galaxies orbiting in the potential of a gravitationally bound dark

Figure 1. The two-dimensional correlation function ξ (rσ , rπ ) of SDSS-
III CMASS galaxies. The perturbations of the observed redshifts about the
Hubble flow due to peculiar velocities introduce anisotropy in the correla-
tion strength with respect to the LOS (y-axis in the figure). In this plot, fibre
collisions have been corrected using the angular upweighting method. The
dashed circle indicates the separation scale (∼8 h −1 Mpc) at which the ob-
served quadrupole transitions from positive (dominated by FOG velocities)
to negative (dominated by large-scale Kaiser infall velocities). Contours at
ξ = [2, 1, 0.5, 0.25] are shown with solid black curves.

matter halo have a virial-like velocity component. As we will see,
the SDSS-III CMASS galaxies shown here occupy massive dark
matter haloes with large virial velocities. The prominent feature in
ξ along the LOS (i.e. at rσ < 1 h −1 Mpc) is due to these motions,
often called ‘fingers of god’ (FOGs; Jackson 1972); note that these
virial-like velocities distort ξ at all separations, and their impact
must be mitigated even in analysis of relatively large scales (e.g.
Reid et al. 2012).

In this work, we choose not to analyse ξ (rσ , rπ ) directly, since
information is spread over a large number of bins. As described in
Section 5.1, we estimate measurement errors by bootstrapping the
survey, and therefore need to reduce the number of measurements
to well below the number of bootstrap regions, which are limited
in number since each region must span scales larger than we in-
clude in our analysis. In this section, we present the observables we
will estimate from ξ (rσ , rπ ) and compare with theoretical models
directly.

The most widely used observable in studies of small-scale galaxy
clustering is wp(rσ ), which quantifies the clustering as a function
of transverse pair separation rσ . All pairs with LOS separations
smaller than πmax contribute to wp:

wp(rσ ) = 2
∫ πmax

0
drπξ (rσ , rπ ). (5)

πmax is traditionally chosen to be large (80 h −1 Mpc in this work) so
that the sensitivity of wp to RSD is minimal (but see van den Bosch
et al. 2013).

On large scales and for the highly biased tracers we consider here,
the majority of redshift space information is available by measuring
the first two even multipoles (ℓ = 0, 2) of ξ :

ξℓ(s i) = 2ℓ + 1
2

∫
dµs ξ (s i , µs )Lℓ(µs ), (6)

MNRAS 444, 476–502 (2014)
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and apparent LOS comoving distance shift !s for a galaxy observed
at a given by

!s =
vLOS

p

aH (a)
, (2)

where H (a) = ȧ/a is the expansion rate at a.
On large scales, where linear perturbation theory applies, the

peculiar velocity field vp is simply related to the underlying matter
density fluctuations, δm:

∇ · vp = −aHf δm (3)

where f = d ln D/d ln a is the logarithmic growth rate and D(a) is the
linear growth function that specifies the amplitude of fluctuations
as a function of a, relative to some initial fluctuation amplitude:
δm(a) ∝ D(a)δm,i. Therefore, in the linear regime, a measure of the
amplitude of the peculiar velocity field through RSD provides a
constraint on f times the amplitude of matter fluctuations on some
scale; often this scale is taken to be 8 h −1 Mpc, so that linear RSD
measure fσ 8. Because the scale dependence of the matter power
spectrum is extremely well constrained by the CMB, the specified
scale is not important for many applications (see section 5.1 of
Reid et al. 2012). The measurement of the amplitude of the peculiar
velocity field is typically made using the variation of the amplitude
of galaxy clustering as a function of orientation with respect to the
LOS caused by RSD. On large scales, equation (3) implies (Kaiser
1987)

δs
g(k) = (b + f µ2)δr

m(k). (4)

Here δs
g is the observed (in ‘redshift space’) galaxy density fluctu-

ation for wavevector k, b is the real space linear galaxy bias, and
δr

m(k) is the true underlying matter density fluctuation (i.e. in ‘real
space’, without velocity perturbations included in the redshift direc-
tion coordinate). The parameter µ is the cosine of the angle between
k and the LOS, and the known µ dependence allows a measure-
ment of fσ 8 after marginalizing over the unknown galaxy bias. In
this work, we work strictly in configuration space; see Fisher (1995)
for the configuration space equivalent of equation (4).

On smaller scales investigated in this work, non-linearities be-
come important and the relationship between v and δm becomes
substantially more complicated. A detailed description of many dis-
tinct physical effects that impact the observed redshift space galaxy
clustering on small scales is given in Tinker (2007). Because of the
complexity of the modelling and the high statistical precision of our
data, we resort to N-body simulations to provide predictions for our
observables, which we describe below.

2.3 Two-dimensional correlation function ξ (rσ , rπ )

Because RSD effects only distort the observed coordinates (or pair
separations) in the LOS direction, the two-point correlation function
ξ is fundamentally a function of two variables. In Fig. 1 we choose
as coordinates the LOS separation, rπ , and the separation transverse
to the LOS, rσ to display our measurement from the galaxy sample
analysed in this work. This measurement uses the angular upweight-
ing method described in Section 4.1 to correct for fibre collisions.
Two primary features are apparent: on large scales (∼8 h −1 Mpc and
above), contours of constant ξ are ‘squashed’ in the LOS direction.
The correlation between the density and velocity field described by
equation (3) on average reduces the apparent separation between
pairs of galaxies along the LOS. On smaller scales where equation
(3) breaks down, the contours are instead stretched along the LOS.
Galaxies orbiting in the potential of a gravitationally bound dark

Figure 1. The two-dimensional correlation function ξ (rσ , rπ ) of SDSS-
III CMASS galaxies. The perturbations of the observed redshifts about the
Hubble flow due to peculiar velocities introduce anisotropy in the correla-
tion strength with respect to the LOS (y-axis in the figure). In this plot, fibre
collisions have been corrected using the angular upweighting method. The
dashed circle indicates the separation scale (∼8 h −1 Mpc) at which the ob-
served quadrupole transitions from positive (dominated by FOG velocities)
to negative (dominated by large-scale Kaiser infall velocities). Contours at
ξ = [2, 1, 0.5, 0.25] are shown with solid black curves.

matter halo have a virial-like velocity component. As we will see,
the SDSS-III CMASS galaxies shown here occupy massive dark
matter haloes with large virial velocities. The prominent feature in
ξ along the LOS (i.e. at rσ < 1 h −1 Mpc) is due to these motions,
often called ‘fingers of god’ (FOGs; Jackson 1972); note that these
virial-like velocities distort ξ at all separations, and their impact
must be mitigated even in analysis of relatively large scales (e.g.
Reid et al. 2012).

In this work, we choose not to analyse ξ (rσ , rπ ) directly, since
information is spread over a large number of bins. As described in
Section 5.1, we estimate measurement errors by bootstrapping the
survey, and therefore need to reduce the number of measurements
to well below the number of bootstrap regions, which are limited
in number since each region must span scales larger than we in-
clude in our analysis. In this section, we present the observables we
will estimate from ξ (rσ , rπ ) and compare with theoretical models
directly.

The most widely used observable in studies of small-scale galaxy
clustering is wp(rσ ), which quantifies the clustering as a function
of transverse pair separation rσ . All pairs with LOS separations
smaller than πmax contribute to wp:

wp(rσ ) = 2
∫ πmax

0
drπξ (rσ , rπ ). (5)

πmax is traditionally chosen to be large (80 h −1 Mpc in this work) so
that the sensitivity of wp to RSD is minimal (but see van den Bosch
et al. 2013).

On large scales and for the highly biased tracers we consider here,
the majority of redshift space information is available by measuring
the first two even multipoles (ℓ = 0, 2) of ξ :

ξℓ(s i) = 2ℓ + 1
2

∫
dµs ξ (s i , µs )Lℓ(µs ), (6)

MNRAS 444, 476–502 (2014)
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may not be exactly Gaussian, and it assumes that different rp
bins are uncorrelated. But even with these caveats, Figure 3
shows the potential of the emulator to make high accuracy
predictions of clustering.

Using the analytic model for wp, we can easily explore how
the accuracy of the emulator varies with position within the
cosmological parameter space. Figure 4 shows the 68% error
on wp as a contour plot on 2D projections of the cosmological
parameter space. The emulator in this test has 1� uncertainty
on the training sample and the analytic model predictions are
taken as truth for the test points (i.e., the blue curve in Figure
3). The error in this case purely comes from the understand-
ing of the GP from the noisy training set. The result shows
the error of the emulator is more sensitive to the value of �8
than other parameters, but the variations of the accuracy are
small relative to the 1� error level on the training data. This
implies that being near the edge in the parameter space does
not degrade emulator accuracy.
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log Msat = 14.4, ↵ = 1.53, log Mcut = 13.0, �log M = 0.37

log Msat = 13.8, ↵ = 1.45, log Mcut = 11.9, �log M = 0.08

FIG. 2.— A randomly chosen subsample of wp calculated with analytic
method for the input training set (red) and the mean (black). The dotted and
dashed blue curves show two HOD models lower and higher than the mean
wp respectively with the same cosmology. For comparison, the measure-
ments from BOSS DR11 (Reid et al. 2014) are shown as dots with errorbars
ignored for visualization purpose.

3. BUILDING THE EMULATOR WITH N-BODY SIMULATIONS

The previous section demonstrates that the GP is a pow-
erful tool to emulate the galaxy correlation function. We
now apply this methodology to the estimate of the corre-
lation function directly from N-Body simulations. The de-
tails of the simulations are presented in DeRose et al. (2018).
Briefly, the simulation products are (1.05 h

�1Gpc)3 boxes
with 14003 particles, resulting in a mass resolution of 3.51 ⇥
1010

�
⌦m
0.3

�
h
�1

M�. Compared with the cosmology designs
used for the analytic emulator, the N-Body simulations have
three extra parameters: w� the equation of state of dark en-
ergy and Neff - the number of relativistic species and �f =
f/fCDM-the factor to scale all halo velocities in the simula-
tion, a fractional change in this parameter is proportional to
the change in the linear growth rate at linear and non-linear
scales (Reid et al. 2014). In addition, we also add three HOD
parameters ⌘con, ⌘vc, ⌘vs to incorporate spatial and velocity
bias of galaxies within halos.

FIG. 3.— The performance of the emulator with analytic method: the red
solid curve is the error of the input training set (1�). The blue and green
correspond to the test points with extra 0 and 1� levels of noise. The purple
line in the bottom represent the result when the input training set has no error.
The 68% and RMS error are nearly the same, thus no catastrophic outliers.
The blue curve represents the error purely come from emulation. Assuming
the error from emulation and the error on test points are independent, the final
error estimate of the emulator (green) is an addition in quadrature of the blue
and red.

FIG. 4.— The error of the emulator of wp with analytic method shown in
the cosmological parameter space, obtained from 200 cosmologies randomly
sampled within the training parameter space. The error of each cosmology
is estimated from the 68% error of 200 test HODs. The figure shows error
projected onto 2D parameter planes at scale: rp = 5.48h�1Mpc, the results
for other scales have similar pattern. The errors shown here are normalized
by the mean of these errors (the blue solid line in Figure 3) at this scale,
and the fluctuations at various positions in the parameter space are mostly
around 20-30%. Compared with the input training error which is a few times
larger than the mean, the error from the emulator is pretty constant across the
parameter space.

Our emulator of the galaxy correlation function using N-
Body simulations has 15 parameters in the input parameter
set. Because of this increase in dimensionality, we find that
a design with 400 HODs is not sufficient to fully sample the
space. We increase the number of HOD designs NHOD to 2000
to obtain the training set. Note that the test cosmologies have

Random sample of training points for wp(rp).
Circles are BOSS DR10 data for comparison.
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Parameter Space

Υf scales the motion of the halos relative to that in 
the simulation. Thus, it is equivalent to scaling f:
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Parameter Meaning Range
Cosmology ⌦m The matter energy density [0.255, 0.353]

⌦b The baryon energy density [0.039, 0.062]
�8 The amplitude of matter fluctuations on 8 h�1Mpc scales. [0.575, 0.964]
h The dimensionless Hubble constant [0.612, 0.748]
ns The spectral index of the primordial power spectrum [0.928, 0.997]
w† The dark energy equation of state [-1.40, -0.57]
Neff

† The number of relativistic species [2.62, 4.28]
�f † The Amplitude of halo velocity field relative to wCDM+GR [0.5, 1.5]

HOD logMsat The typical mass scale for halos to host one satellite [13.8, 14.5]
↵ The power-law index for the mass dependence of the number of satellites [0.2, 1.8]
logMcut The mass cut-off scale for the satellite occupatioin function [10.0, 13.7]
�logM The scatter of halo mass at fixed galaxy luminosity [0.05, 0.6]
⌘con† The halo concentration parameter [0.2, 2.0]
⌘vc† The velocity bias for central galaxies [0.0, 0.7]
⌘vs† The velocity bias for satellite galaxies [0.2, 2.0]

† This parameter is not used in the emulator of wp with analytic method.

TABLE 1
THE PARAMETERS USED IN OUR EMULATOR, THEIR PHYSICAL MEANING AND THE RANGE IN THE PARAMETER SPACE.

After this process is completed and the hyperparameters are
known, we can substitute the values into Eq.(10) to make pre-
diction for the test points.

2.5. Estimating the Error on the Training Sample
In order to investigate the performance of the GP in build-

ing the emulator. We first apply the above method to calculate
wp with the analytical method (Tinker et al. 2005; Tinker et al.
2012). But we first need to estimate the appropriate error that
the emulator may take as input. We want the error to reflect
that of the training sample from simulations. This is obtained
by the simulation suite which includes 7 test cosmologies as
shown in Figure 1. The simulations of these test cosmologies
have the same box size, mass resolution and other character-
istics as the 40 fiducial cosmologies. Additionally, each of
these test cosmologies has 5 boxes with different initial phases
which can be used to estimate the sample variance. We cal-
culate the error of wp from these test boxes using 100 HOD
models chosen from our parameter space listed in Table 1 and
populate the boxes 10 times for each HOD set, the resulting
galaxy catalogs can give the measurement of wp through pair
counts. For a given HOD, a significant source of uncertainty
is Poisson fluctuations in the satellite occupation for a finite
sample of halos. Thus, multiple populations of a single HOD
is necessary to reduce small-scale noise in the clustering mea-
surements. As a result, for each cosmology+HOD parameter
set, we have 50 measurements of wp: 10 per box with 5 boxes
for each cosmology.

We measure the standard deviation of these 50 wp measure-
ments for all the test cosmologies and HOD sets which give
a total error estimate. The contribution of this error budget
includes the sample variance and shot noise. We estimate
the former by calculating the mean of wp for the 5 boxes
at each cosmology, and compute the standard deviation of
these means. Assuming the sample variance and shot noise
are added in quadrature to give the total error, we can get the
estimate of the shot noise.

2.6. Implementing the Emulator Using the Analytic
Clustering Model

As with the design of the cosmologies, we apply the latin
hyper-cube method and choose NHOD designs to sample the

HOD parameter space 5. Figure 2 shows a randomly chosen
subsample of the wp calculated with analytical method. To
reduce memory consumption and CPU time, we select a sub-
sample of HOD models for each cosmology. This provides
full coverage of the HOD parameter space without requiring
400⇥40 training points. We construct independent emulators
for each bin in rp or s such that the emulator for a specific
rp or s bin has its own optimized hyperparameters. Although
this ignores correlation between rp bins, we find that this ap-
proach is optimal considering the balance between speed and
accuracy. Taking into account the correlation between dif-
ferent rp bins can increase the training set and memory con-
sumption significantly which can affect the optimization of
the GP parameters.

We first build the emulator under the ideal conditions,
where the training data are the original wp calculated with
the analytical method and the error � = 0. In order to evalu-
ate the emulator performance, we first randomly generate 200
cosmology sets and 200 HOD sets within the input parame-
ter space as shown in Figure 1 and Table 1, then calculate the
wp with the same analytical method at the same scales. We
compare the “truth” with the prediction from emulator and
calculate the fractional error, the result is shown as the purple
line in Figure 3. The error is estimated as the 68% error and
root mean square error (the latter is not shown in the figure for
clarity) for all the test points, and the results of these two es-
timate are consistent implying no catastrophic outliers. This
result shows that under the ideal conditions, the emulator can
give accurate predictions of the correlation function and the
GP modeling is robust. The error is relatively constant at all
scales given average value 0.3%.

Next we build the emulator with the same input training
coordinates, but we add a Gaussian random deviation with
width of 1� to each training data point, where � is the error
estimated from the N-body simulations as detailed in previous
section. The comparison with the test points is shown as the
blue lines in Figure 3. This result shows that the accuracy is
degraded as we add the noise to the input training data, but
the decrease is not significant relative to the 1� error level it-
self. Then we add Gaussian noise with a width of 1� to the

5 For the analytic model, we adopt NHOD = 400 and therefore a sampling
scheme with overlap; for simulation-based emulator, we choose NHOD =
2000 which results a non-overlap sampling scheme when the number of sub-
sample of HOD models is 50.

�f =
f

fGR
fGR =

d lnD

d ln a
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FIG. 5.— The performance of the emulator for wp (left), ⇠0 (middle) and ⇠2 (right) respectively, measured from N-body simulations. Top : Ten randomly
chosen models for wp (⇠0, ⇠2) measured from simulations and the prediction from emulator. They are shown as ratio with respect to the mean measurement of
the training sample for visualization. Bottom : The 68% and 95%� error distributions of the emulator, represented by the shaded area. The test sample has error
(dashed red) smaller than the training sample (solid red) due to larger simulation volumes. Note that the result for ⇠2 (right panel) are presented by the absolute
error instead of fractional error, and its top panel shows the performance of ⇠2s4 instead of ⇠2s2.

FIG. 6.— The cosmological parameter-dependence of the redshift space monopole given the real space clustering amplitude. In the test, we fix all the
cosmological parameters and perform a HOD fit to the given wp. From left to right, the cosmological parameters are the same except �f (left), ⌦m (middle) and
�8 (right) as labeled. The grey band shows the sample variance equivalent to BOSS DR11 volume.

transition between one-halo and two-halo clustering.
These parameters impact galaxy velocities at large and

small scales, as well as the shape of real-space clustering. The
combination of real and redshift-space observables therefore
provides enough leverage to break degeneracies and indepen-
dently constrain each of these three quantities, without the
need of an strong CMB prior. In this section, we demon-
strate the ability of our clustering emulator to recover the
input cosmologies on both the test N-body simulations, and
with even higher resolution simulations that can track sub-
structure within halos.

4.1. Recovery test on simulation boxes
With the above emulator for galaxy correlation function, we

can now apply a MCMC fitting to the measurement in cosmo-
logical and galaxy occupation parameter space. The result can
also provide a direct measurement of f�8 at z ⇠ 0.57. More-
over, the combination of real- and redshift-space clustering
affords enough constraining power to break this degeneracy
and constrain f directly. As a first test, we randomly choose
a parameter set (including both cosmological parameters and
HOD parameters) from the test boxes, and assume that the
correlation function measurements are “observational data”.

Then we use our emulator to generate predictions and con-
struct a likelihood function. To estimate the likelihood of a
given model, we need to estimate the covariance in the data.
Not just the correlation between r-bins of a given statistic,
but between the statistics themselves. In order to estimate this
correlation between wp, ⇠0 and ⇠2 for the likelihood function,
we use the Merniva simulations which are a set of 100 N-body
simulations (Grieb et al. 2016). The parameters of the HOD
model are chosen to be “CMASS-like” at z ⇠ 0.57, but in test
we find that the errors depend little on HOD model. We cal-
culate the galaxy correlation function from these galaxy cat-
alogs and estimate the correlation matrix (by normalizing the
covariance matrix for these galaxy correlation functions). As
a conservative test, we first choose the error of the correlation
function to be an addition in quadrature of the input train-
ing error of the emulator (which correspond to a simulation
volume of about 5Gpc3

h
�3), and the emulator uncertainty as

defined above. The resulting error thus corresponds to a sim-
ulation volume smaller than 5Gpc3

h
�3. We use this error es-

timate as the diagonal elements combined with the correlation
matrix to populate the covariance matrix in our construction

Emulator better than sample variance of training boxes!



BOSS-like Projections
Aemulus III: Emulation of the Galaxy Correlation Function 11

FIG. 9.— The scale-dependence of the constraint on f (left) and f�8 (right) from galaxy clustering measurements, assuming an SDSS DR11-like galaxy sample.
Solid and dashed lines correspond to constraints with and without quadrupole data respectively. Blue lines assume our emulator has no error in prediction, i.e.
the covariance matrix in Eq (16) only contains sample variance, while the red lines assume the emulator has error which is added in quadrature with the sample
variance. In the panel for f�8, two measurements from Reid et al. (2014) and Samushia et al. (2014) for BOSS CMASS galaxy sample are marked by dot and
star. Triangle stands for the noisy emulator test with fixed cosmological parameters. For the constraint with noisy emulator (solid red), we find the error for f
and f�8 scale roughly with the minimum scale as r0.2min and r0.4min respectively.

ker et al. (2012); Reddick et al. (2014)).
In addition to reducing the theoretical uncertainties of mod-

eling clustering at non-linear scales, the simulation-based ap-
proach used here is ideal for tackling observational system-
atics as well. The next version of this emulator will be ap-
plied to the existing LRG datasets, including CMASS, LOWZ
and the eBOSS LRG sample at higher redshift (Parejko et al.
2013; Zhai et al. 2017). The dominant observational system-
atic for these samples is fiber collisions—the constraint that
two galaxies closer than 62 arcsec cannot be observed at the
same time. Nearly all previous attempts to account for this
effect involve correcting the data (e.g., Zehavi et al. 2011;
White et al. 2011). But in using simulations it is possible to
forward model the impact of fiber collisions on observational
measures of clustering, and incorporate any uncertainties in
the model itself.

Although we have focused on demonstrating the constrain-
ing power of small-scale clustering for a galaxy sample of a
given redshift and number density, the ultimate goal of the
AEMULUS galaxy clustering emulator is to build a robust tool
to allow modeling of galaxies at any number density and any
redshift. This will significantly increase the parameter space
and the dynamic range of clustering signals to be modeled.
This may require numerical algorithms beyond the traditional
GP (Ng & Deisenroth 2014). But our current results represent
the first significant step on the path to that goal.

ZZ thanks Boris Leistedt, David Hogg and David Wein-
berg for their helpful comments and suggestions. This re-
search used resources of the National Energy Research Scien-
tific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
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Klypin, A., Yepes, G., Gottlöber, S., Prada, F., & Heß, S. 2016, MNRAS,

457, 4340
Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, ApJ, 740, 102
Lawrence, E., Heitmann, K., White, M., et al. 2010, ApJ, 713, 1322
McClintock, T., et al. 2018, in preparation
McLaughlin, S., et al. 2018, in preparation
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563

Non-linear analysis: 2x better than large-scale analysis
Constraints improve monotonically w/ scale
~Half of constraint comes from quadrupole



A Community Resource

Github Project Page:
https://aemulusproject.github.io

Repo for all software including user friendly 
halo mass function emulator
All data, including halo catalogs and snapshots 
will be made available once papers are accepted 
(very soon!)

https://aemulusproject.github.io


The Future

  Phase I Simulations:

  Phase II Simulations:

Apply methods of McClintock et. al to halo bias
Apply RSD model (+extensions) to measurements of non-linear 
RSD in BOSS
Detection (?) of assembly bias in massive galaxy samples

High resolution suite: L=400 Mpc/h, Np=20483 (nearly done!)
Good for DESI ELGs, BGS, g-g lensing, redMaGiC

Simulations w/ expanded parameter space and neutrinos
Clustering statistics using abundance matching models



Summary

Realistic suite of simulated galaxy surveys are essential for 
validating systematics models and many other facets of DES

Volume important, but also need realism so still a place for more 
expensive/diverse models

Simulations can be used as precision models for non-linear 
observables

Lots of work to be done including more physics e.g. neutrinos, 
baryonic effects


