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* Spectroscopic or photometric redshifts (photo-zs).

Accurate but Innaccurate
expensive but cheap

* For large surveys such as DES, PanSTARRS and LSST, photo-zs
are the only option (besides cross-correlation techniques).



* Mistrust of photo-zs implies enormous costs to verify that
photo-zs are okay.
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* Mistrust of photo-zs implies enormous costs to verify that

photo-zs are okay.

 We cannot trust photo-zs because we don’t trust our
understanding of galaxy populations and distributions.

e But galaxy formation studies require redshifts.
* Both have to be done simultaneously.

e Simulations are the best framework with which to assess our
state of knowledge (and I'll only trust cosmological results
from LSST when we can produce a photometric simulation
that closely resembles observations).



The long road from photometric
redshifts to cosmology

Calculate
photo-z's

Optimize
filter shapes
and exposure
times

accurate
enough?

Remove NO
outliers

accurate
enough?

Characterize
NO error
distributions

Deal with
accurate
wrong enough?
spec-zs

accurate
enough?

Match
selection

4& about

photometric
calibration?




e Probe strong
spectral features

(4000 A break)

e Fluxin each filter
depends on galaxy’s
type and redshift.

2000 4000 6000 8000
Wavelength [A]

Terminology:

10000

magnitude = A — log(flux)
color = magnitude - magnitude




e A difficulty is that thereis a
distribution of spectral

types.

e And you have to separate
galaxies from stars and

QSOs (and from other
galaxies — deblending).
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Two classes of methods: - -

e Template-fitting: compare
observed fluxes with predicted
fluxes from library of galaxy
spectra.

Flux

e Training set: use subsample
with known redshifts to “train”
flux-redshift relation.

4000 6000 8000 10000 12000
A (R)

Courtesy M. Lima
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Photo-zs are often not very good.
Three steps before getting to the
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Photo-zs are often not very good.

Three steps before getting to the
cosmology:

e Get photo-zs; spectra
recommended

e Estimate photo-z errors and
cull outliers; spectra
recommended

e (Calibrate error distribution,
e.g. P(z,]z,). spectra required

hot

0O 02 04 06 08 1 1.2

Zspec



| Needspectra,sowhat?

Good spectroscopic samples are hard to come by. Issues

* Selection in observables: typically have many more bright
samples than faint samples.

* Selection in non-observables: sample selected for a different
purpose with different bands (e.g. DEEP2 survey).

* Shot-noise: samples are small.
 Sample variance: surveys are pencil-beam.

e Spectroscopic failures:

— Can’t get spectra for certain galaxies.
— Wrong spectroscopic redshifts.



Good spectroscopic samples are hard to come by. Solutions

Selection in observables: e.g. Weights (Lima, Cunha et al 2008)
Selection in non-observables: Don’t do it.

Shot-noise: need many galaxies
— Cunha et al. 2012a

Sample variance: need lots of area.

—

Spectroscopic failures: ”
— Can’t get spectra for certain galaxies. = Cunhaetal.2012b

— Wrong spectroscopic redshifts. -



Match distributions of observables in

training (spectroscopic or simulated) sample
and photometric sample by assigning Ok
weights to training set galaxies.

©
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0,
; P N,
Wezght oc - 2hoto where p; = — //
train ve% /| y’
N, : number of galaxies within ball O
of volume V.

The radius of the ball is determined by the distance
to 100t nearest neighbor in the training set in space N(z)
of observables (colors and magnitudes).

Assumption: Training set is locally representative of
photometric set.

Is that true? Yes, if differences in selection are only z
in observable space.




Good spectroscopic samples are hard to come by. Solutions

Selection in observables: e.g. Weights (Lima, Cunha et al 2008)
Selection in non-observables: Don’t do it.

Shot-noise: need many galaxies
— Cunha et al. 2012a

Sample variance: need lots of area.

—
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Study Dark Energy using

_ www.darkenergysurve

4 complementary techniques: g Wi 7 s
l. Cluster Counts =
Il. Weak Lensing L b '

lll. Baryon Acoustic Oscillations
V. Supernovae

y.org

« Two multiband surveys:
Main: 5000 deg? = 5 (h"1Gpc)3
300 million galaxies
g, r,i z, Yto 24th mag
SNe: 15 deg? repeat

« Build new 3 deg? FoV camera

and Data management sytem in
Blanco 4-m telescope

Survey 2012-2017 (525 nights)

Camera available for community
use the rest of the time (70%)



Fixed 0.01 error in P(z,]z,)
estimation, i.e, AP(z|z))

=0.01 at a single bin.

For DES shear-shear
analysis.
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Cunha et al. 2012a






For typical existing
spectroscopic samples,
sample variance is significantly
larger than shot noise.

Cunha, Huterer, Busha &
Wechsler
arXiv: 1109:5691
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Figure 1. Normalized spectroscopic redshift distribution for the
full data. The red (light gray) error bars show the 1-o variability
in the redshift distribution for contiguous 1 deg? angular patches.
The blue (dark gray) error bars show the variability in the redshift
distribution assuming random samples of with the same mean
number of objects as the 1 deg? patches. We assume that only a,
25% random subsample of each patch is targeted for spectroscopy,
yielding about 1.2 x 10* galaxies per patch on average.



Example:

Distribution of galaxies in
photometric sample:

Distribution of galaxies in
calibration sample:

1 1 1
phot 6 zphot 1 6
1 2 1

spec spec

LSS fluctuation!!!



photometric
sample:

P(z,]z,)
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photometric
sample: 111]2 1{1]4 calibration
1le6l1 116l 2 sample:
Conclusion:

fluctuations.

P(z,|z,) is sensitive to z
is not. Conversely, only P(z,|z,) is sensitive to z

spec
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An example:

Errors in N(z,,..) translate into errors in
the error matrix estimation.

BP(2,17,) = P2, 2, por - P2sl 2y |
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Assuming fiducial o(w)=0.035,
and perfect spectroscopic
selection.

Cunha, Huterer, Busha & Wechsler (2012a)
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 What if the patches were not chosen randomly?
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If we are lucky, a single patch may result in very small bias.
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 What if the patches were not chosen randomly?

* If we are lucky, a single patch may result in very small bias.

* Question: how do we find that patch?



* Idea: The patches that look most similar to the survey
average, will produce the smallest biases if used for

calibration.

* Question: What do you mean by most similar?



Several options:

* 1-point statistics (e.g. Redshift distribution)
— Rms (x?)
— Kolmogorov-Smirnov (KS) — more sensitive to biases.

e 2-point statistics (e.g. correlation function)

Based on:
* Photometric properties
* Spectroscopic properties (perhaps of a brighter sample)



* 8000 sq. degrees
* DES depth (griz bands), cut at i<23.5
 BPz photo-zs (for plots shown).

* Photo-z stats (pretty awful, at present — more on this later):
— 0=0.2



o procedwe

* Split simulation into thousands of patches of area 1/8 sq. deg
— comparable to aperture of Magellan.

 To improve statistics, generate millions of sets of 20 patches,
randomly picked.

* Look at fractional biases in w from using each of the sets of
patches.

* Look for correlations between biases in w and how well N(z)
of patches reproduces the simulation mean.



Spectroscopic case
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Spectroscopic case

0.10
Start with naive scenario:

- Use N(z.,...) to choose lucky patches. o0t 0.09
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Use N(z,,.,) to choose
lucky patches.

2x improvement in
patches from using
lucky patches (1.4x
in w-bias)

o of total
population
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. Parenthsis: How do photo- errors affect results?

e Effects on statistical constraints for fixed calibration:

— Square-root of scatter (Zhaoming Ma, Fisher matrix, depends on
priors)

e Effects on calibration for fixed statistical constraints:

— Shot-noise dominated limit: No dependence, believe it or not.
— Sample-variance dominated limit: Square-root of scatter.

* Impact on lucky-patch selection:
— ??? — at least square-root of scatter.



* Lucky patch selection is free and reduces calibration
requirements.

e (Can this approach bias things in any way?

 Whatis the best 1-point statistic and the best tracer
population?

 How much will 2-point statistics contribute?



Good spectroscopic samples are hard to come by. Solutions

Selection in observables: e.g. Weights (Lima, Cunha et al 2008)
Selection in non-observables: Don’t do it.

Shot-noise: need many galaxies
= Cunhaetal. 2012a

Sample variance: need lots of area.

—

Spectroscopic failures: ”
— Can’t get spectra for certain galaxies. = Cunhaetal.2012b

— Wrong spectroscopic redshifts. -






N-body + photometry

simulation

simulated sky surveys
developed with
Michael Busha (galaxies + sim) =
Matt Becker (lensing + sim)
Brandon Erickson (sim pipeline)
Gus Evrard

Andrey Kravtsov

merger trees —

assign galaxies

f

calculate shear

DES Mo

lens galaxies

Peter Behroozi (halos) photometric errors

Joerg Dietrich (shapes)
Basilio Santiago (stars)
Molly Swanson (mask) create sky images

photometric redshifts

Eli Rykoff, Rachel Reddick (testing)

+ additional feedback by CWG, Sarah Hansen, Jiangang Hao, Alex Ji,
Eusebio Sanchez, Tim Eifler, Joanne Cohn, Martin White

+ many, many folks who will do analysis!

Risa Wechsler
Stanford/SLAC/KIPAC

Spectroscopy:

— Simulated spectra: K-correct templates + resolution + noise

— Spectroscopic redshifts: IRAF-rvsao on 1-D simulated spectra



* Spectroscopic samples are very
incomplete

Case study: Simulations of
DES photometry + VVDS-like spec-z’s

True SSR

0.8 r

0.6

04

0.2
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v

. 4.5 h exposures
8-m telescope

0 02 04 06 08 1 12 14 16 18
Redshift

True SSR: fraction
of galaxies with
correct redshifts.

2



True SSR

SSR: Spectroscopic Success Rate

True SSR: fraction of galaxies with correct 06
redshifts. i
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i-mag



SSR: Spectroscopic Success Rate

True SSR: fraction of galaxies with correct
redshifts.

Observed SSR: Fraction of galaxies with
redshift confidence above some threshold (e.g.
Q>4).

Q: Strength of correlation between observed

spectra and best-fitting spectrum in a template
library.

Cannot use spectroscopic sample for calibration of

photo-zs of photometric sample if selection is different.
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| Completenessissues

SSR: Spectroscopic Success Rate

True SSR: fraction of galaxies with correct
redshifts.

r-i

True SSR

In simulations, neural network
Observe
redshift| approach was able to match
a>4). spectroscopic selection in
a: stren, photometric sample.

| | | | | | 0

°21 215 22 225 23 235 24

i-mag

Observed SSR

spectra ana DEST-TITUNE SPECTrUmn I d TEMpIate
library.

Cannot use spectroscopic sample for calibration of
photo-zs of photometric sample if selection is different.
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| Selection matching with neuralnet

* Have a redshift confidence (Q) for galaxies in spectroscopic
sample.

e Use neural net to find a relation between Q and photometric
observables (magnitudes). This is Q.

* Qcan be calculated for all galaxies in the spectroscopic and
photometric samples.



Shear-Shear constraints on w

Qest: redshift confidence
estimated with neural net. 16200 secs bias(w)

Selection Gal. Frac. o(w) Ztrue

SSRTI Percentage of

e Qest > 1.5 0.75 0.07 0.004

correct redshifts in °
training sample. Qest > 2.5 0.59 009  0.002
Qest > 3.5 0.46 0.10  -0.001

ztrue' bias due to

selection matching with
neural networks: is

negligible

Cunha, Huterer, Lin, Busha, Wechsler et al, 2012



Spectroscopic failures (wrong redshifts)

Issues:

— When spec-z’s are wrong, they’re really

wrong.

— A small speck of wrong redshifts is
enough to mess up cosmological
constraints.

Sample used in the plot has 98.6% correct

1.6
5 1.2
o
Q.
0
N

0.8

0.4

0 o

redshifts and constitutes 60% of total sample.

Case study: Simulations of
DES photometry + VVDS-like spec-z’s

0

04 08 12 16 2

Ztrue

Q: cross-correlation
parameter (measures
redshift confidence)

Cunha, Huterer, Lin, Busha, Wechsler et al, 2012b



Shear-Shear constraints on w

Qest: redshift confidence

estimated with neural net. 16200 secs bias(w)
Selection Gal. Frac.  SSRt (%)  o(w) Ztrue Zspec
SSRTZ Percentage of
s Qest > 1.5 0.75 91.4 007 0004 |-052
correct redshifts in
training sample. Qost > 2.5 0.59 97.8 009 0002 |-0.13
Qest > 3.5 0.46 99.6 0.10  -0.001 |-0.02

ztrue' bias due to

selection matching with
neural networks: is
negligible

zspec' bias due to
selection matching +
wrong redshifts: is

substantial

Cunha, Huterer, Lin, Busha, Wechsler et al, 2012



Incompleteness:

— Does not introduce cosmological biases if selection matching is
performed.

— Statistical constraints suffer with reduction of sample size.

Wrong redshifts:
— Cause severe biases.
— Need better than 99% correct redshifts.
— 1f 99% accuracy not possible, need to calibrate spectroscopic error

distribution P(z,,.|z....) with deeper sample/better instrument.

true spec

Moral of the story: Focus has to be on accuracy of derived
redshifts.



Existing instruments:
- VLT (8-m)

- Magellan (6.5 m)
- Gemini (8-m)

- Keck (10-m)

Planned:

- PFS on Subaru (8 m)

- ngCFHT (8 m)

- IFU on WFIRST (2.5 m)
- GMACS (24.5 m)




Calibrating photo-z's at LSST depth is limited by

incompleteness in redshift surveys

Equivalent I, for 30 nights

 Even with instruments now being built,
21 22 23 24 25 26

this will be extremely difficult from the
ground at z>2, degrading DE FoM
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Redshift success rates from DEEP2
(Newman et al. 2012), zCOSMOS
(Lilly et al. 2009)



Integral Field Spectroscopy Concept

Integral Field Unit (IFU): obtains a Telescope Focal
spectrum at every point in its field Plane
of view. A hybrid of photometry &

spectroscopy: an image at every Slicer
possible wavglengt.h, ora spe_ctrum Mirror
at every possible pixel of the image
Array
Row of Pupil Mirrors
Row of Slit Mirrors
A
A

3" x 3" with 0.15” slits



Why an IFU on WFIRST?

* Get supernovae spectra while Focal Plane
performing the imaging survey.

* But SN only takes up one pixel in IFU

* Use rest of IFU to get spectra!




Why an IFU on WFIRST?

* About 3000 sq degrees.

=
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« few x10* low-res spectra
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 Extending LSST calibration
beyond z~2 can improve FoM by
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In collaboration with S. Perlmutter,
J. Newman and C. Hirate






DES 5yr
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