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Wo=-­‐0.95±0.01	
  
Wa=-­‐0.5±0.1	
  

	
  
New	
  physics!	
  

	
  
Do	
  you	
  believe	
  the	
  result?	
  How	
  about	
  the	
  

error	
  bar?	
  
From	
  the	
  2nd-­‐ever	
  photo-­‐z-­‐only	
  
meeCng	
  (Taipei,	
  Sept.	
  2013)	
  



Need	
  redshi-s 	
  	
  

•  Spectroscopic	
  or	
  photometric	
  redshiIs	
  (photo-­‐zs).	
  
	
  
	
  
	
  
	
  
•  For	
  large	
  surveys	
  such	
  as	
  DES,	
  PanSTARRS	
  and	
  LSST,	
  photo-­‐zs	
  

are	
  the	
  only	
  opCon	
  (besides	
  cross-­‐correlaCon	
  techniques).	
  
	
  

Accurate	
  but	
  
expensive	
  

Innaccurate	
  
but	
  cheap	
  



Conclusion	
  

•  Mistrust	
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  photo-­‐zs	
  implies	
  enormous	
  costs	
  to	
  verify	
  that	
  
photo-­‐zs	
  are	
  okay.	
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Conclusion	
  
•  Mistrust	
  of	
  photo-­‐zs	
  implies	
  enormous	
  costs	
  to	
  verify	
  that	
  

photo-­‐zs	
  are	
  okay.	
  

•  We	
  cannot	
  trust	
  photo-­‐zs	
  because	
  we	
  don’t	
  trust	
  our	
  
understanding	
  of	
  galaxy	
  populaCons	
  and	
  distribuCons.	
  

•  But	
  galaxy	
  formaCon	
  studies	
  require	
  redshiIs.	
  

•  Both	
  have	
  to	
  be	
  done	
  simultaneously.	
  

•  SimulaCons	
  are	
  the	
  best	
  framework	
  with	
  which	
  to	
  assess	
  our	
  
state	
  of	
  knowledge	
  (and	
  I’ll	
  only	
  trust	
  cosmological	
  results	
  
from	
  LSST	
  when	
  we	
  can	
  produce	
  a	
  photometric	
  simulaCon	
  
that	
  closely	
  resembles	
  observaCons).	
  	
  





•  Probe	
  strong	
  
spectral	
  features	
  
(4000	
  Å	
  break)	
  

•  Flux	
  in	
  each	
  filter	
  
depends	
  on	
  galaxy’s	
  
type	
  and	
  redshiI.	
  

Basics	
  of	
  photo-­‐zs	
  

magnitude	
  =	
  A	
  –	
  log(flux)	
  
color	
  =	
  magnitude	
  -­‐	
  magnitude	
  

Terminology:	
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Figure 14: Variance in red (left panel) and blue star-forming (right panel) galaxies. The solid curves show the
composites of galaxies classified according to the refined colour classes (redder to bluer). The shaded areas represent
the 0.5σ (red galaxies) and 1σ (blue galaxies) variations about the average. See the online edition for a colour version
of this plot.
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Figure 15: Comparision of the various averaging methods for red galaxies with measured Hα. We plot the spectrum
in the top panel for reference. The middle panel shows the difference between the robust average and the normal
average and the median, respectively. The bottom panel shows the number of spectra used to determine the averages
of the wavelength bins.
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•  A	
  difficulty	
  is	
  that	
  there	
  is	
  a	
  
distribuCon	
  of	
  spectral	
  
types.	
  

•  And	
  you	
  have	
  to	
  separate	
  
galaxies	
  from	
  stars	
  and	
  
QSOs	
  (and	
  from	
  other	
  
galaxies	
  –	
  deblending).	
  

Basics	
  of	
  photo-­‐zs	
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Red	
  Galaxies	
  

Blue	
  Galaxies	
  



Basics	
  of	
  photo-­‐z’s	
  

Two	
  classes	
  of	
  methods:	
  
•  Template-­‐fiOng:	
  compare	
  

observed	
  fluxes	
  with	
  predicted	
  
fluxes	
  from	
  library	
  of	
  galaxy	
  
spectra.	
  

	
  
•  Training	
  set:	
  use	
  subsample	
  

with	
  known	
  redshiIs	
  to	
  “train”	
  
flux-­‐redshiI	
  relaCon.	
  

Courtesy	
  M.	
  Lima	
  



Basics	
  of	
  photo-­‐z’s	
  

Photo-­‐zs	
  are	
  oIen	
  not	
  very	
  good.	
  
Three	
  steps	
  before	
  geeng	
  to	
  the	
  
cosmology:	
  
	
  

•  Get	
  photo-­‐zs;	
  
	
  

•  EsSmate	
  photo-­‐z	
  errors	
  and	
  
cull	
  outliers;	
  

	
  

•  Calibrate	
  error	
  distribuSon,	
  
e.g.	
  P(zs|zp).	
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  steps	
  before	
  geeng	
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  the	
  
cosmology:	
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•  EsSmate	
  photo-­‐z	
  errors	
  and	
  
cull	
  outliers;	
  spectra	
  
recommended	
  

	
  

•  Calibrate	
  error	
  distribuSon,	
  
e.g.	
  P(zs|zp).	
  spectra	
  required	
  

polynomial	
  P(zs|zp)	
  



Need	
  spectra,	
  so	
  what? 	
  	
  

Good	
  spectroscopic	
  samples	
  are	
  hard	
  to	
  come	
  by.	
  Issues	
  
•  SelecSon	
  in	
  observables:	
  typically	
  have	
  many	
  more	
  bright	
  

samples	
  than	
  faint	
  samples.	
  
•  SelecSon	
  in	
  non-­‐observables:	
  sample	
  selected	
  for	
  a	
  different	
  

purpose	
  with	
  different	
  bands	
  (e.g.	
  DEEP2	
  survey).	
  
•  Shot-­‐noise:	
  samples	
  are	
  small.	
  
•  Sample	
  variance:	
  surveys	
  are	
  pencil-­‐beam.	
  
•  Spectroscopic	
  failures:	
  	
  

–  Can’t	
  get	
  spectra	
  for	
  certain	
  galaxies.	
  
–  Wrong	
  spectroscopic	
  redshiIs.	
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–  Can’t	
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Cunha	
  et	
  al.	
  2012a	
  

Cunha	
  et	
  al.	
  2012b	
  	
  



Weights	
  

Oi 

Oj	
  

Ok	
  

N(z)	
  

z	
  

Match	
  distribuCons	
  of	
  observables	
  in	
  
training	
  (spectroscopic	
  or	
  simulated)	
  sample	
  
and	
  photometric	
  sample	
  by	
  assigning	
  
weights	
  to	
  training	
  set	
  galaxies.	
  

! 

Weight"
#photo

#train

! 

"i =
Ni

V
where 

:	
  number	
  of	
  galaxies	
  within	
  ball	
  
	
  	
  of	
  volume	
  V.	
  

! 

Ni

The	
  radius	
  of	
  the	
  ball	
  is	
  determined	
  by	
  the	
  distance	
  
to	
  100th	
  nearest	
  neighbor	
  in	
  the	
  training	
  set	
  in	
  space	
  
of	
  observables	
  (colors	
  and	
  magnitudes).	
  
	
  
AssumpSon:	
  Training	
  set	
  is	
  locally	
  representaCve	
  of	
  
photometric	
  set.	
  
Is	
  that	
  true?	
  Yes,	
  if	
  differences	
  in	
  selecCon	
  are	
  only	
  
in	
  observable	
  space.	
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•  Study	
  Dark	
  Energy	
  using	
  	
  
	
  	
  	
  	
  4	
  complementary	
  techniques:	
  
	
  	
  	
  	
  	
  	
  	
  	
  I.	
  Cluster	
  Counts	
  
	
  	
  	
  	
  	
  	
  II.	
  Weak	
  Lensing	
  
	
  	
  	
  	
  	
  	
  III.	
  Baryon	
  AcousCc	
  OscillaCons	
  
	
  	
  	
  	
  	
  	
  IV.	
  Supernovae	
  
	
  

•	
  	
  	
  	
  Two	
  mulCband	
  surveys:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  Main:	
  5000	
  deg2	
  ≈	
  5	
  (h-­‐1Gpc)3	
  

	
  	
   	
  	
   	
  300	
  million	
  galaxies	
  
	
  	
   	
  g,	
  r,	
  i,	
  z,	
  Y	
  to	
  24th	
  mag	
  

	
  	
  	
  	
  	
  	
  	
  SNe:	
  15	
  deg2	
  repeat	
  
	
  

•	
  	
  	
  	
  Build	
  new	
  3	
  deg2	
  FoV	
  camera	
  	
  
	
  	
  	
  	
  	
  	
  	
  and	
  Data	
  management	
  sytem	
  in	
  

Blanco	
  4-­‐m	
  telescope	
  
	
  	
  	
  	
  	
  	
  Survey	
  2012-­‐2017	
  (525	
  nights)	
  
	
  	
  	
  	
  	
  	
  Camera	
  available	
  for	
  community	
  

use	
  the	
  rest	
  of	
  the	
  Cme	
  (70%)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Blanco 4-meter at CTIO 
www.darkenergysurvey.org	
  

The	
  Dark	
  Energy	
  Survey	
  



Biases	
  in	
  w	
  from	
  error	
  in	
  P(zs|zp)	
  esSmaSon	
  

•  Fixed	
  0.01	
  error	
  in	
  P(zs|zp)	
  
esCmaCon,	
  i.e,	
  ΔP(zs|zp)
=0.01	
  at	
  a	
  single	
  bin.	
  

•  For	
  DES	
  shear-­‐shear	
  
analysis.	
  

FracConal	
  bias	
  in	
  w	
  Bernstein	
  &	
  Huterer	
  (2010)	
  
Hearin	
  et	
  al.	
  (2010)	
  
Cunha	
  et	
  al.	
  2012a	
  



Biases	
  due	
  to	
  sample	
  variance	
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Figure 1. Normalized spectroscopic redshift distribution for the
full data. The red (light gray) error bars show the 1-σ variability
in the redshift distribution for contiguous 1 deg2 angular patches.
The blue (dark gray) error bars show the variability in the redshift
distribution assuming random samples of with the same mean
number of objects as the 1 deg2 patches. We assume that only a
25% random subsample of each patch is targeted for spectroscopy,
yielding about 1.2× 104 galaxies per patch on average.

= δCtrain
β − δCphot

β (17)

where the second line trivially follows given that the true,
underlying power spectra are the same for the training and
photometric galaxies. All of the shear power spectra biases
δC can straightforwardly be evaluated from Eq. (11) by us-
ing the contamination coefficients for the training and pho-
tometric fields, respectively. Therefore, the effective error in
the power spectra is equal to the difference in the biases of
the training set spectra (our estimates of the biases in the
observable quantities) and the photometric set spectra (the
actual biases in the observables).

5 RESULTS

We present our results in this section. In Sec. 5.1 we com-
pare the effects of sample variance on the spectroscopic red-
shifts and the photometric observables, concluding that the
effects on the redshifts are dominant. We then discuss the
impact of sample variance on photo-z training in Sec. 5.2,
finding that the effect on the photo-z scatter statistics is
negligible, but that it does introduce variability in the esti-
mate of the overall redshift distribution. The effect is much
smaller for photo-z methods that use a fitting-function, such
as the NNP, but pronounced for the density-based estima-
tors such as the p(z)w. In Sec. 5.3, we look at the impact of
sample variance in calibration of the photo-z error distribu-
tions, finding that it dominates shot-noise for the scenarios
we simulate. Finally, in Sec. 5.4 we examine the dependence
of our results on the number of tomographic bins used.

5.1 Spectroscopic redshift variance vs. photo-z
variance

Large-scale structure not only correlates the spatial distribu-
tion of galaxies, but also correlates the distribution of galaxy
types, colors, and other properties. For example, if there is

a big galaxy cluster in some patch on the sky, red galax-
ies will be over-represented in that patch. Since red galaxies
typically have better photo-z’s than blue galaxies, this LSS
fluctuation could result in additional bias in photo-z train-
ing and error calibration. Because this extra systematic is
indirectly caused by the existence of large-scale structures,
we refer to it as sample variance of the photo-zs, to differ-
entiate it from sample variance purely in galaxy positions,
hereafter sample variance in the spec-zs.

We use the conditional probabilities P (zp|zs) and
P (zs|zp) to disentangle the two sources of sample variance.
The key point is that P (zs|zp) is sensitive to changes in the
zs distribution, but not in the zp distribution. Conversely,
P (zp|zs) is only sensitive to changes in the zp distribution,
but not in zs (one can be convinced of this point by con-
structing simple toy examples).

We estimate the variability of the error distributions
across patches by the standard deviation about the mean.
For P (zp|zs) we define

σ(P (zp|zs)) =

��
patches

�
P (zp|zs)− P (zp|zs)

�2

Npatches
(18)

where P (zp|zs) is the mean ’leakage’ across the patches. We
equivalently define the quantity σ(P (zs|zp)). We are inter-
ested in the increase in variability relative to the case of a
random subsample.

In the top panel of Fig. 2 we show the ratio of
σ(P (zp|zs)) calculated for the 0.25 deg2 LSS patches and the
corresponding 0.25 deg2 random-equivalent patches. In the
bottom panel of the same figure, we show the correspond-
ing ratio for σ(P (zs|zp)). We perform this test using the
template photo-zs so as to isolate the importance of sample
variance on the calibration of the error matrices. Comparing
the two plots, we see that sample variance of the photo-z’s
does not increase appreciably between the random and the
LSS patches, i.e. the ratios in each pixel are very close to
unity. The sample variance of the spec-zs, on the other hand,
shows marked increase, as was already apparent from Fig. 1.

5.2 Sample variance in photo-z training

In this section we examine the effects of sample variance in
the training of photo-zs finding that the commonly reported
scatter in the photo-z estimation is affected by the shot noise
but not by sample variance.

Table 1 shows the photo-z scatter of the photometric
sample for the polynomial method as well as the width of
the p(z)ws, averaged over all galaxies and all training iter-
ations. The photo-z scatter is defined as the standard de-
viation (around zero) of the P (zp − zs) distribution. The
average mean width of the p(z)w is defined as the average,
over all training iterations, of the mean 1-σ width of the
p(z)ws of the galaxies in the photometric sample. Compar-
ison of the corresponding ’LSS’ and ’Random’ columns in
the Table shows that large-scale structure does not affect
the photo-z or p(z)w statistics significantly. The training set
size is important, however, as larger training sets have lower
shot noise. For the polynomial photo-z’s, we see a 12% degra-
dation in the scatter between the 6 deg2 and 0.25 deg2 cases.
The p(z)ws are much more sensitive, with a degradation of
63%.
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Figure 8. Relation between number of independent patches and galaxies observed per patch so that the calibration bias will yield a

bias/error ratio in w that is less than 1.0 with 95% probability. We consider three different telescope apertures based on capabilities of

existing telescopes: 1/4 deg
2
(solid black), 1/8 deg

2
(solid red) and 1/32 deg

2
(or 112.5 arcmin2; blue). The first two scenarios correspond

to the optimistic and pessimistic assumptions about the effective observing area of Magellan. The VIMOS-VLT instrument could observe

about 1/16 deg
2
. The diagonal light gray lines indicate contours of fixed total number of galaxies, while the vertical band indicates

typical number of galaxies per observed patch possible with a single pointing of Magellan or VLT. For a fixed number of galaxies per

patch, the total number of patches required is higher for a smaller patch area in order to compensate for the increased sample variance

per patch. Similarly, if the survey can observe more galaxies in each patch, then the total number of patches obviously decreases since

fewer patches will be required to calibrate the shot noise, at the expense of increasing the total number of galaxies required.

Ωm = 0.25 and σ8 = 0.8 in a 1Gpc/h box with 11203 par-
ticles. The lightcone output necessary for the ADDGALS
algorithm was created by pasting together 33 snapshots in
the redshift range z = 0− 1.33. This results in a 220 sq de-
gree lightcone whose orientation was selected such that there
are no particle replications in the inner ∼ 100 sq. deg. and
minimal replications in the outer regions.

The ADDGALS algorithm used to create the galaxy
distribution consists of two steps: galaxies based on an in-
put luminosity function are first assigned to particles in
the simulated lightcone, after which multi-band photome-
try is added to each galaxy using a training set of observed
galaxies. For the first step, we begin by defining the rela-
tion P (δdm|Mr, z) — the probability that a galaxy with
magnitude Mr a redshift z resides in a region with local
density δdm, defined as the radius of a sphere containing
1.8×1013h−1M⊙ of dark matter. This relation can be tuned
to reproduce the luminosity-dependent galaxy 2-point func-
tion by using a much higher resolution simulation combined
with the technique known as subhalo abundance matching.
This is an algorithm for populating very high resolution dark
matter simulations with galaxies based on halo and subhalo
properties that accurately reproduces properties of the ob-
served galaxy clustering (Conroy et al. 2006; Wetzel and
White 2010; Behroozi et al. 2010; Busha et al. 2011a). The
relationship P (δdm|Mr, z) can be measured directly from the
resulting catalog. Once this probability relation has been de-
fined, galaxies are added to the simulation by integrating a

(redshift dependent) r-band luminosity function to generate
a list of galaxies with magnitudes and redshifts, selecting
a δdm for each galaxy by drawing from the P (δdm|Mr, z)
distribution, and attaching it to a simulated dark matter
particle with the appropriate δdm and redshift. The advan-
tage of ADDGALS over other commonly used approaches
based on the dark matter halos is the ability to produce sig-
nificantly deeper catalogs using simulations of only modest
size. When applied to the present simulation, we populate
galaxies as dim as Mr ≈ −16, compared with the Mr ≈ −21
completeness limit for a standard halo occupation (HOD)
approach.

While the above algorithm accurately reproduces the
distribution of satellite galaxies, central objects require ex-
plicit information about the mass of their host halos. Thus,
for halos larger than 5×1012h−1M⊙, we assign central galax-
ies using the explicit mass-luminosity relation determined
from our calibration catalog. We also measure δdm for each
halos, which is used to draw a galaxy from the integrated lu-
minosity function with the appropriate magnitude and den-
sity to place at the center.

For the galaxy assignment algorithm, we choose a lu-
minosity function that is similar to the SDSS luminosity
function as measured in Blanton et al. (2003), but evolves
in such a way as to reproduce the higher redshift obser-
vations of the NDWFS and DEEP2 observations. We use
a Schechter Function with φ∗ = 1/81 × 10−2z/3, M∗ =

c� 0000 RAS, MNRAS 000, 000–000
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Figure 8. Fractional biases inw (i.e. the bias/error ratios inw) for the differ-
ent 1 deg2 patches used to train and/or calibrate the photometric redshifts.
The top panel shows that errors in different photo-z methods produce corre-
lated biases in the equation of statew in the presence of the LSS. The x-axis
indicates the fractional bias in w for the polynomial estimator, while the y-
axis shows the corresponding bias for template estimator (black points) and
the p(z)w estimator (green points). The bottom panel shows the random
equivalent patches where the correlation is much less pronounced.

mator is not as sensitive to shot noise. Moreover, the p(z)w method
is the only method that yields a perfect reconstruction of the over-
all redshift distribution in the limit of large area of spectroscopic
samples.
• The polynomial-fitting method appears to have slightly larger

mean fractional bias than the p(z)w and template-fitting in the
cases shown in Table 2. However, the mean fractional bias is sig-
nificantly smaller than the σ68 width in all cases. In addition, the
polynomial technique outperforms the other methods in almost all
scenarios, suggesting that use of a training set yields improvements
superior to any bias introduced by using the same patch to train
and calibrate the photo-zs. We believe that the conclusion that one
can use the same sample to train and calibrate photo-zs should hold
for other training-set-dependent photo-z techniques provided the
method has some control for the degrees of freedom it utilizes and
thereby avoid biases due to over-fitting.

5.4 Dependence on simulations and parametrizations

In this section we discuss some of our choices of survey param-
eters.

Bias in w

6 deg2 LSS Random

Technique δw/σ(w) σ68 ∆χ2
med δw/σ(w) σ68 ∆χ2

med

Template 0.04 2.56 3.14 0.04 0.44 0.14

Polynomial -0.07 1.53 2.04 -0.04 0.39 0.12

p(z)w 0.05 2.33 2.56 0.07 0.31 0.10

1 deg2 a.addddaaaaaaa aaaddddaaaaaa

Template -0.04 3.75 7.36 0.01 0.92 0.75

Polynomial -0.19 2.96 4.74 0.00 0.93 0.64

p(z)w -0.01 3.99 9.05 0.029 0.78 0.50

1/4 deg2 a.addddaaaaaaa aaaddddaaaaaa

Template 0.03 4.61 16.4 -0.15 1.9 2.9

Polynomial -0.11 3.99 10.3 -0.17 1.7 2.2

p(z)w 0.07 5.88 32.3 -0.10 2.0 3.0

Table 2. Mean fractional bias in w (i.e. mean of δw/σ(w)) and σ68 (i.e.
width of the |δw|/σ(w) distribution) for the different techniques, assuming
patches of area 6, 1, 1/4 deg2 for training and calibration or a random sub-
sample with the same number of galaxies. The ∆χ2

med column indicates
the median value (among all patches) of ∆χ2

tot of the fit over all cosmo-
logical parameters; see Eq. (20).

5.4.1 Dependence on intrinsic ellipticity

For most of the results shown on this paper, we have assumed
the optimistic value of 〈γ2

int〉
1/2 = 0.16 for the rms intrinsic el-

lipticity. The effective intrinsic ellipticity is somewhat difficult
to estimate before the survey has started taking data, and there
is a range of forecasted values in the literature; for example,
〈γ2

int〉
1/2 = 0.23 (Laszlo et al. 2011; Kirk et al. 2011). We tested

using rms ellipticity of 0.26 with the template photo-zs, and
found that the change affects primarily the fiducial constraints,
degrading e.g. marginalized error in w by a factor of ∼ 1.6
(from 0.035 to 0.055). The overall degradation in the σ68 of the
distribution of |δw|/σ(w) degrades by a factor of ∼ 1.9 for the
LSS cases and ∼ 1.6 for the random equivalent cases. Since
we find that the intrinsic galaxy ellipticity primarily affects the
fiducial cosmological parameter errors (i.e. σ(w), rather than
the systematic bias δw), we use it as a control parameter to
vary our baseline cosmological parameter error assumptions8.
Henceforth, we adopt 〈γ2

int〉
1/2 = 0.16 as the optimistic case for

the dark energy fiducial errors (which leads to more challeng-
ing follow-up requirements), and 〈γ2

int〉
1/2 = 0.26 as the pes-

8 Note, it would not be hard to come up with other ways to improve the
fiducial constraints, such as adding other 2-pt correlations to the analysis,
or including magnification. Conversely, one could add intrinsic alignments
and other sources of errors to degrade the constraints.
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ent 1 deg2 patches used to train and/or calibrate the photometric redshifts.
The top panel shows that errors in different photo-z methods produce corre-
lated biases in the equation of statew in the presence of the LSS. The x-axis
indicates the fractional bias in w for the polynomial estimator, while the y-
axis shows the corresponding bias for template estimator (black points) and
the p(z)w estimator (green points). The bottom panel shows the random
equivalent patches where the correlation is much less pronounced.

mator is not as sensitive to shot noise. Moreover, the p(z)w method
is the only method that yields a perfect reconstruction of the over-
all redshift distribution in the limit of large area of spectroscopic
samples.
• The polynomial-fitting method appears to have slightly larger

mean fractional bias than the p(z)w and template-fitting in the
cases shown in Table 2. However, the mean fractional bias is sig-
nificantly smaller than the σ68 width in all cases. In addition, the
polynomial technique outperforms the other methods in almost all
scenarios, suggesting that use of a training set yields improvements
superior to any bias introduced by using the same patch to train
and calibrate the photo-zs. We believe that the conclusion that one
can use the same sample to train and calibrate photo-zs should hold
for other training-set-dependent photo-z techniques provided the
method has some control for the degrees of freedom it utilizes and
thereby avoid biases due to over-fitting.

5.4 Dependence on simulations and parametrizations

In this section we discuss some of our choices of survey param-
eters.

Bias in w

6 deg2 LSS Random

Technique δw/σ(w) σ68 ∆χ2
med δw/σ(w) σ68 ∆χ2

med

Template 0.04 2.56 3.14 0.04 0.44 0.14

Polynomial -0.07 1.53 2.04 -0.04 0.39 0.12

p(z)w 0.05 2.33 2.56 0.07 0.31 0.10

1 deg2 a.addddaaaaaaa aaaddddaaaaaa

Template -0.04 3.75 7.36 0.01 0.92 0.75

Polynomial -0.19 2.96 4.74 0.00 0.93 0.64

p(z)w -0.01 3.99 9.05 0.029 0.78 0.50
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Template 0.03 4.61 16.4 -0.15 1.9 2.9

Polynomial -0.11 3.99 10.3 -0.17 1.7 2.2

p(z)w 0.07 5.88 32.3 -0.10 2.0 3.0

Table 2. Mean fractional bias in w (i.e. mean of δw/σ(w)) and σ68 (i.e.
width of the |δw|/σ(w) distribution) for the different techniques, assuming
patches of area 6, 1, 1/4 deg2 for training and calibration or a random sub-
sample with the same number of galaxies. The ∆χ2

med column indicates
the median value (among all patches) of ∆χ2

tot of the fit over all cosmo-
logical parameters; see Eq. (20).

5.4.1 Dependence on intrinsic ellipticity

For most of the results shown on this paper, we have assumed
the optimistic value of 〈γ2

int〉
1/2 = 0.16 for the rms intrinsic el-

lipticity. The effective intrinsic ellipticity is somewhat difficult
to estimate before the survey has started taking data, and there
is a range of forecasted values in the literature; for example,
〈γ2

int〉
1/2 = 0.23 (Laszlo et al. 2011; Kirk et al. 2011). We tested

using rms ellipticity of 0.26 with the template photo-zs, and
found that the change affects primarily the fiducial constraints,
degrading e.g. marginalized error in w by a factor of ∼ 1.6
(from 0.035 to 0.055). The overall degradation in the σ68 of the
distribution of |δw|/σ(w) degrades by a factor of ∼ 1.9 for the
LSS cases and ∼ 1.6 for the random equivalent cases. Since
we find that the intrinsic galaxy ellipticity primarily affects the
fiducial cosmological parameter errors (i.e. σ(w), rather than
the systematic bias δw), we use it as a control parameter to
vary our baseline cosmological parameter error assumptions8.
Henceforth, we adopt 〈γ2

int〉
1/2 = 0.16 as the optimistic case for

the dark energy fiducial errors (which leads to more challeng-
ing follow-up requirements), and 〈γ2
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1/2 = 0.26 as the pes-

8 Note, it would not be hard to come up with other ways to improve the
fiducial constraints, such as adding other 2-pt correlations to the analysis,
or including magnification. Conversely, one could add intrinsic alignments
and other sources of errors to degrade the constraints.
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•  What	
  if	
  the	
  patches	
  were	
  not	
  chosen	
  randomly?	
  

•  If	
  we	
  are	
  lucky,	
  a	
  single	
  patch	
  may	
  result	
  in	
  very	
  small	
  bias.	
  

•  QuesSon:	
  how	
  do	
  we	
  find	
  that	
  patch?	
  



GeOng	
  lucky	
  with	
  cosmic	
  variance	
  

•  Idea:	
  The	
  patches	
  that	
  look	
  most	
  similar	
  to	
  the	
  survey	
  
average,	
  will	
  produce	
  the	
  smallest	
  biases	
  if	
  used	
  for	
  
calibraCon.	
  

•  QuesSon:	
  What	
  do	
  you	
  mean	
  by	
  most	
  similar?	
  



Choosing	
  the	
  most	
  similar	
  patches	
  

Several	
  opSons:	
  
•  1-­‐point	
  staSsScs	
  (e.g.	
  Redshi-	
  distribuSon)	
  

–  Rms	
  (χ2)	
  
–  Kolmogorov-­‐Smirnov	
  (KS)	
  –	
  more	
  sensiSve	
  to	
  biases.	
  

•  2-­‐point	
  staSsScs	
  (e.g.	
  correlaSon	
  funcSon)	
  

Based	
  on:	
  
•  Photometric	
  properSes	
  
•  Spectroscopic	
  properSes	
  (perhaps	
  of	
  a	
  brighter	
  sample)	
  



The	
  simulaSons	
  

•  8000	
  sq.	
  degrees	
  
•  DES	
  depth	
  (griz	
  bands),	
  cut	
  at	
  i<23.5	
  
•  BPz	
  photo-­‐zs	
  (for	
  plots	
  shown).	
  
	
  	
  
•  Photo-­‐z	
  stats	
  (prewy	
  awful,	
  at	
  present	
  –	
  more	
  on	
  this	
  later):	
  

–  σ=	
  0.2	
  
–  σ68=	
  0.13	
  



Procedure	
  

•  Split	
  simulaCon	
  into	
  thousands	
  of	
  patches	
  of	
  area	
  1/8	
  sq.	
  deg	
  
–	
  comparable	
  to	
  aperture	
  of	
  Magellan.	
  

•  To	
  improve	
  staCsCcs,	
  generate	
  millions	
  of	
  sets	
  of	
  20	
  patches,	
  
randomly	
  picked.	
  

•  Look	
  at	
  fracSonal	
  biases	
  in	
  w	
  from	
  using	
  each	
  of	
  the	
  sets	
  of	
  
patches.	
  

•  Look	
  for	
  correlaCons	
  between	
  biases	
  in	
  w	
  and	
  how	
  well	
  N(z)	
  
of	
  patches	
  reproduces	
  the	
  simulaCon	
  mean.	
  



Spectroscopic	
  case	
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  with	
  naïve	
  scenario:	
  
-­‐	
  Use	
  N(zspec)	
  to	
  choose	
  lucky	
  
patches.	
  
	
  
DistribuCon	
  of	
  patch-­‐sets	
  in	
  
KS	
  –	
  w-­‐bias	
  space.	
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Start	
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4x	
  improvement	
  in	
  
patches	
  from	
  using	
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  patches	
  (2x	
  in	
  
w-­‐bias)	
  



Photometric	
  case	
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σ	
  of	
  total	
  
populaCon	
  

2x	
  improvement	
  in	
  
patches	
  from	
  using	
  
lucky	
  patches	
  (1.4x	
  
in	
  w-­‐bias)	
  



Parenthesis:	
  How	
  do	
  photo-­‐z	
  errors	
  affect	
  results?	
  

•  Effects	
  on	
  staCsCcal	
  constraints	
  for	
  fixed	
  calibraCon:	
   	
  	
  
–  Square-­‐root	
  of	
  scawer	
  (Zhaoming	
  Ma,	
  Fisher	
  matrix,	
  depends	
  on	
  

priors)	
  

•  Effects	
  on	
  calibraCon	
  for	
  fixed	
  staCsCcal	
  constraints:	
  
–  Shot-­‐noise	
  dominated	
  limit:	
  No	
  dependence,	
  believe	
  it	
  or	
  not.	
  
–  Sample-­‐variance	
  dominated	
  limit:	
  Square-­‐root	
  of	
  scaoer.	
  
	
  

•  Impact	
  on	
  lucky-­‐patch	
  selecCon:	
  
–  ???	
  –	
  at	
  least	
  square-­‐root	
  of	
  scawer.	
  

	
   	
  	
  



Conclusions	
  

•  Lucky	
  patch	
  selecCon	
  is	
  free	
  and	
  reduces	
  calibraCon	
  
requirements.	
  

•  Can	
  this	
  approach	
  bias	
  things	
  in	
  any	
  way?	
  
•  What	
  is	
  the	
  best	
  1-­‐point	
  staCsCc	
  and	
  the	
  best	
  tracer	
  

populaCon?	
  
•  How	
  much	
  will	
  2-­‐point	
  staCsCcs	
  contribute?	
  



Recap	
  

Good	
  spectroscopic	
  samples	
  are	
  hard	
  to	
  come	
  by.	
  SoluSons	
  
•  SelecSon	
  in	
  observables:	
  e.g.	
  Weights	
  (Lima,	
  Cunha	
  et	
  al	
  2008)	
  
•  SelecSon	
  in	
  non-­‐observables:	
  Don’t	
  do	
  it.	
  
•  Shot-­‐noise:	
  need	
  many	
  galaxies	
  
•  Sample	
  variance:	
  need	
  lots	
  of	
  area.	
  
•  Spectroscopic	
  failures:	
  	
  

–  Can’t	
  get	
  spectra	
  for	
  certain	
  galaxies.	
  
–  Wrong	
  spectroscopic	
  redshi-s.	
  

Cunha	
  et	
  al.	
  2012a	
  

Cunha	
  et	
  al.	
  2012b	
  	
  



Spectroscopic	
  failures	
  



Spectroscopic	
  simulaSons	
  

•  N-­‐body	
  +	
  photometry	
  

	
  
	
  
	
  
	
  
	
  
	
  
•  Spectroscopy:	
  

–  Simulated	
  spectra:	
  K-­‐correct	
  templates	
  +	
  resoluCon	
  +	
  noise	
  
–  Spectroscopic	
  redshi-s:	
  IRAF-­‐rvsao	
  on	
  1-­‐D	
  simulated	
  spectra	
  

	
  	
  



Completeness	
  issues 	
  	
  

•  Spectroscopic	
  samples	
  are	
  very	
  
incomplete	
  

	
  
Case	
  study:	
  SimulaCons	
  of	
  
DES	
  photometry	
  +	
  VVDS-­‐like	
  spec-­‐z’s	
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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SSR:	
  Spectroscopic	
  Success	
  Rate	
  
	
  
True	
  SSR:	
  fracCon	
  of	
  galaxies	
  with	
  correct	
  
redshiIs.	
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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area), galaxies with R > 6 (solid line), galaxies with R > 5 (dashed line)
and galaxies with R > 4 (dotted line). Bottom panel: Distribution of true
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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SSR:	
  Spectroscopic	
  Success	
  Rate	
  
	
  
True	
  SSR:	
  fracCon	
  of	
  galaxies	
  with	
  correct	
  
redshiIs.	
  
	
  
Observed	
  SSR:	
  FracCon	
  of	
  galaxies	
  with	
  
redshiI	
  confidence	
  above	
  some	
  threshold	
  (e.g.	
  
Q>4).	
  
	
  
Q:	
  Strength	
  of	
  correlaCon	
  between	
  observed	
  
spectra	
  and	
  best-­‐fieng	
  spectrum	
  in	
  a	
  template	
  
library.	
  	
  

Cannot	
  use	
  spectroscopic	
  sample	
  for	
  calibraCon	
  of	
  
photo-­‐zs	
  of	
  photometric	
  sample	
  if	
  selecCon	
  is	
  different.	
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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SSR:	
  Spectroscopic	
  Success	
  Rate	
  
	
  
True	
  SSR:	
  fracCon	
  of	
  galaxies	
  with	
  correct	
  
redshiIs.	
  
	
  
Observed	
  SSR:	
  FracCon	
  of	
  galaxies	
  with	
  
redshiI	
  confidence	
  above	
  some	
  threshold	
  (e.g.	
  
Q>4).	
  
	
  
Q:	
  Strength	
  of	
  correlaCon	
  between	
  observed	
  
spectra	
  and	
  best-­‐fieng	
  spectrum	
  in	
  a	
  template	
  
library.	
  	
  

Cannot	
  use	
  spectroscopic	
  sample	
  for	
  calibraCon	
  of	
  
photo-­‐zs	
  of	
  photometric	
  sample	
  if	
  selecCon	
  is	
  different.	
  

In	
  simulaCons,	
  neural	
  network	
  
approach	
  was	
  able	
  to	
  match	
  
spectroscopic	
  selecCon	
  in	
  
photometric	
  sample.	
  



SelecSon	
  matching	
  with	
  neural	
  net	
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  a	
  redshi-	
  confidence	
  (Q)	
  for	
  galaxies	
  in	
  spectroscopic	
  
sample.	
  

•  Use	
  neural	
  net	
  to	
  find	
  a	
  relaCon	
  between	
  Q	
  and	
  photometric	
  
observables	
  (magnitudes).	
  This	
  is	
  Qest.	
  

•  Qest	
  can	
  be	
  calculated	
  for	
  all	
  galaxies	
  in	
  the	
  spectroscopic	
  and	
  
photometric	
  samples.	
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Constraints on w (template-fitting photo-zs)

16200 secs bias(w)

Selection Gal. Frac. SSRT (%) σ(w) ztrue zspec

Qest > 1.5 0.75 91.4 0.07 0.004 - 0.52

Qest > 2.5 0.59 97.8 0.09 0.002 - 0.13

Qest > 3.5 0.46 99.6 0.10 -0.001 - 0.02

48600 secs

Qest > 1.5 0.96 93.6 0.06 0.004 - 0.39

Qest > 2.5 0.81 97.8 0.07 0.005 - 0.15

Qest > 3.5 0.66 99.6 0.08 0.003 - 0.03

Table 2. Statistical and systematical errors in w for the different samples.
The bias results shown used the template-fitting photo-zs. The Galax. Frac.
column indicates the fraction of galaxies from the full data set that passed
the selection cut.

in w are negligible compared to the statistical constraints, demon-
strating that the neural network can accurately match the spectro-
scopic selection to the photometric sample. The table also shows
the fraction of galaxies surviving the selection cuts. For example,
for the 16200 secs exposures, we see that the Qest > 3.5 cut re-
moves more than half of the sample, which results in nearly a factor
of two degradation in the statistical constraints relative to what is
achievable with the full sample (σ(w) = 0.055). The degradation
is so severe because most of the objects removed by the cut are at
high redshifts.

Next, we examine the impact of wrong redshifts. As the last
column of Table 2 shows, wrong redshifts can be devastating to the
weak lensing constraints. The bias in w is, perhaps, tolerable only
in the Qest > 3.5 cases. In the other scenarios one can see that the
biases in w are greater than the 1σ constraints even with close to
98% correct redshifts (SSRT ! 0.98).

Comparing the 48600 secs and 16200 secs results we see that
the magnitude of the biases in w are set entirely by the spectro-
scopic success rate (SSRT), regardless of the level of complete-
ness. This is another reminder that the emphasis must be on accu-
racy over completeness.

We investigated the dependence of the results on the photo-z
estimator by performing the WL analysis with the neural network
photo-zs instead of the template photo-zs. The resulting biases inw
are shown in the third column of Table 3. Comparing to the fourth
column where we reproduce the template photo-z biases from Ta-
ble 2, we see that the magnitude of the bias is very similar for the
two photo-z estimators, despite difference in the photo-z error dis-
tributions of both (see e.g. Cunha et al. 2012).

We also tested the possibility of decreasing the biases by
culling photo-z outliers. In the presence of wrong spectroscopic
redshifts, the culling could remove not only catastrophic photomet-
ric redshifts, but perhaps also identify the wrong zspecs. We used
the nearest-neighbor error estimator, NNE (Oyaizu et al. 2008a), to
cull 10% of the sample selected as the galaxies with largest NNE

error, (eNNE). Since the fraction of objects to be culled was fixed,
the value of the eNNE cut varied for each catalog and photo-z es-
timator. The results are presented in the last two columns of Ta-
ble 3. For simplicity, we did not recalculate the fiducial constraints
when deriving the biases for the culled samples; given the quali-
tative nature of this analysis, this is a reasonable approximation.
The NNE cut seems quite effective for the neural network photo-zs,
typically reducing the biases by half. When the NNE culling was
applied to the template-fitting estimator, the effect was negligible
for the Qest > 3.5 case, and relatively small for the other cases,
suggesting that the NNE is only effective for identifying spectro-
scopic outliers when a training set based procedure is used. This
is by no means obvious since the NNE is very efficient at identi-
fying photo-z outliers even when template-fitting methods are used
(Oyaizu et al. 2008a). For comparison, we also tested the effect
of applying the same 10% cut using an error estimator from the
template-fitting code itself4. We find that the biases due to wrong
redshifts for theQest > 1.5, 2.5 and 3.5 cases are reduced to -0.41,
-0.086 and -0.014, showing that culling using this error estimator
is also beneficial. In contrast, note that, in Cunha et al. (2012), we
found that culling based on photo-z error estimates had little impact
on cosmological biases.

Finally, we investigated the dependence of the results on the
settings of our spectroscopic pipeline, described in Sec. 3.1. We
find that our fiducial settings, despite giving the best high redshift
completeness, yielded the largest biases in w, shown in the Table
2. The different settings yielded consistent trends, and we focus on
one particular case, that highlights the importance of the pipeline
settings. The Original setting for the pipelinehad a factor of two
smaller bias for the Qest > 3.5 sample. In the Original setting,
recall that only 6 templates were used. As can be seen by compar-
ing the right plot in Fig. 4 with Fig. 5, the 3 additional templates
increased the redshift completeness above z > 1.4 but resulted
in leakage from the high ztrue bins to low zspec bins. In particu-
lar, some galaxies at ztrue ∼ 0.9 were assigned zspecs of ∼ 0.5
and ∼ 0.7. This failure mode was responsible for about 2/3 of the
increase in bias in going from the Original to the Fiducial setting.
The remainder of the difference was due to the fact that the Fiducial
setting uses czguess = 1.6 which has the effect of increasing the
probability that a galaxy will be assigned a high redshift. As a re-
sult, the Fiducial setting yields zspecs above 1.5 for several galaxies
with ztrue < 0.8.

We conclude that the commonly adopted approach of max-
imizing the completeness is not recommended because it leads to
the increase of the fraction of wrong redshifts which in turn implies
worse dark energy parameter biases.

5.4 Spectroscopic selection matching: Weighting approach

In Section 5.3, we matched the selection of the spectroscopic and
photometric samples by culling the photometric sample. That is,
we selectively removed galaxies from the photometric sample so
that it statiscally matched, as closely as possible, the spectroscopic
sample. In this section we try a more agressive approach that allows
us to keep nearly the full photometric sample. Our technique is to
weight galaxies in the spectroscopic sample using the probwts
method of Lima et al. (2008) and Cunha et al. (2009), so that
the statistical properties of these weighted spectroscopic galaxies

4 The error estimate we use is the difference between the
Z BEST68 HIGH and Z BEST68 LOW outputs of the LePhare code.
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Constraints on w (template-fitting photo-zs)

16200 secs bias(w)

Selection Gal. Frac. SSRT (%) σ(w) ztrue zspec
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Table 2. Statistical and systematical errors in w for the different samples.
The bias results shown used the template-fitting photo-zs. The Galax. Frac.
column indicates the fraction of galaxies from the full data set that passed
the selection cut.

in w are negligible compared to the statistical constraints, demon-
strating that the neural network can accurately match the spectro-
scopic selection to the photometric sample. The table also shows
the fraction of galaxies surviving the selection cuts. For example,
for the 16200 secs exposures, we see that the Qest > 3.5 cut re-
moves more than half of the sample, which results in nearly a factor
of two degradation in the statistical constraints relative to what is
achievable with the full sample (σ(w) = 0.055). The degradation
is so severe because most of the objects removed by the cut are at
high redshifts.

Next, we examine the impact of wrong redshifts. As the last
column of Table 2 shows, wrong redshifts can be devastating to the
weak lensing constraints. The bias in w is, perhaps, tolerable only
in the Qest > 3.5 cases. In the other scenarios one can see that the
biases in w are greater than the 1σ constraints even with close to
98% correct redshifts (SSRT ! 0.98).

Comparing the 48600 secs and 16200 secs results we see that
the magnitude of the biases in w are set entirely by the spectro-
scopic success rate (SSRT), regardless of the level of complete-
ness. This is another reminder that the emphasis must be on accu-
racy over completeness.

We investigated the dependence of the results on the photo-z
estimator by performing the WL analysis with the neural network
photo-zs instead of the template photo-zs. The resulting biases inw
are shown in the third column of Table 3. Comparing to the fourth
column where we reproduce the template photo-z biases from Ta-
ble 2, we see that the magnitude of the bias is very similar for the
two photo-z estimators, despite difference in the photo-z error dis-
tributions of both (see e.g. Cunha et al. 2012).

We also tested the possibility of decreasing the biases by
culling photo-z outliers. In the presence of wrong spectroscopic
redshifts, the culling could remove not only catastrophic photomet-
ric redshifts, but perhaps also identify the wrong zspecs. We used
the nearest-neighbor error estimator, NNE (Oyaizu et al. 2008a), to
cull 10% of the sample selected as the galaxies with largest NNE

error, (eNNE). Since the fraction of objects to be culled was fixed,
the value of the eNNE cut varied for each catalog and photo-z es-
timator. The results are presented in the last two columns of Ta-
ble 3. For simplicity, we did not recalculate the fiducial constraints
when deriving the biases for the culled samples; given the quali-
tative nature of this analysis, this is a reasonable approximation.
The NNE cut seems quite effective for the neural network photo-zs,
typically reducing the biases by half. When the NNE culling was
applied to the template-fitting estimator, the effect was negligible
for the Qest > 3.5 case, and relatively small for the other cases,
suggesting that the NNE is only effective for identifying spectro-
scopic outliers when a training set based procedure is used. This
is by no means obvious since the NNE is very efficient at identi-
fying photo-z outliers even when template-fitting methods are used
(Oyaizu et al. 2008a). For comparison, we also tested the effect
of applying the same 10% cut using an error estimator from the
template-fitting code itself4. We find that the biases due to wrong
redshifts for theQest > 1.5, 2.5 and 3.5 cases are reduced to -0.41,
-0.086 and -0.014, showing that culling using this error estimator
is also beneficial. In contrast, note that, in Cunha et al. (2012), we
found that culling based on photo-z error estimates had little impact
on cosmological biases.

Finally, we investigated the dependence of the results on the
settings of our spectroscopic pipeline, described in Sec. 3.1. We
find that our fiducial settings, despite giving the best high redshift
completeness, yielded the largest biases in w, shown in the Table
2. The different settings yielded consistent trends, and we focus on
one particular case, that highlights the importance of the pipeline
settings. The Original setting for the pipelinehad a factor of two
smaller bias for the Qest > 3.5 sample. In the Original setting,
recall that only 6 templates were used. As can be seen by compar-
ing the right plot in Fig. 4 with Fig. 5, the 3 additional templates
increased the redshift completeness above z > 1.4 but resulted
in leakage from the high ztrue bins to low zspec bins. In particu-
lar, some galaxies at ztrue ∼ 0.9 were assigned zspecs of ∼ 0.5
and ∼ 0.7. This failure mode was responsible for about 2/3 of the
increase in bias in going from the Original to the Fiducial setting.
The remainder of the difference was due to the fact that the Fiducial
setting uses czguess = 1.6 which has the effect of increasing the
probability that a galaxy will be assigned a high redshift. As a re-
sult, the Fiducial setting yields zspecs above 1.5 for several galaxies
with ztrue < 0.8.

We conclude that the commonly adopted approach of max-
imizing the completeness is not recommended because it leads to
the increase of the fraction of wrong redshifts which in turn implies
worse dark energy parameter biases.

5.4 Spectroscopic selection matching: Weighting approach

In Section 5.3, we matched the selection of the spectroscopic and
photometric samples by culling the photometric sample. That is,
we selectively removed galaxies from the photometric sample so
that it statiscally matched, as closely as possible, the spectroscopic
sample. In this section we try a more agressive approach that allows
us to keep nearly the full photometric sample. Our technique is to
weight galaxies in the spectroscopic sample using the probwts
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Conclusions	
  

•  Incompleteness:	
  
–  	
  Does	
  not	
  introduce	
  cosmological	
  biases	
  if	
  selecCon	
  matching	
  is	
  

performed.	
  	
  
–  StaCsCcal	
  constraints	
  suffer	
  with	
  reducCon	
  of	
  sample	
  size.	
  	
  

•  Wrong	
  redshi-s:	
  
–  Cause	
  severe	
  biases.	
  
–  Need	
  bewer	
  than	
  99%	
  correct	
  redshiIs.	
  
–  If	
  99%	
  accuracy	
  not	
  possible,	
  need	
  to	
  calibrate	
  spectroscopic	
  error	
  

distribuCon	
  P(ztrue|zspec)	
  with	
  deeper	
  sample/bewer	
  instrument.	
  

•  Moral	
  of	
  the	
  story:	
  Focus	
  has	
  to	
  be	
  on	
  accuracy	
  of	
  derived	
  
redshiIs.	
  
	
  



How	
  can	
  we	
  get	
  so	
  many	
  spectra?	
  

ExisCng	
  instruments:	
  
-­‐  VLT	
  (8-­‐m)	
  
-­‐  Magellan	
  (6.5	
  m)	
  
-­‐  Gemini	
  (8-­‐m)	
  
-­‐  Keck	
  (10-­‐m)	
  

Planned:	
  
-­‐  PFS	
  on	
  Subaru	
  (8	
  m)	
  
-­‐  ngCFHT	
  (8	
  m)	
  
-­‐  IFU	
  on	
  WFIRST	
  (2.5	
  m)	
  
-­‐  GMACS	
  (24.5	
  m)	
  



Calibrating  photo-­‐‑z'ʹs  at  LSST  depth  is  limited  by  
incompleteness  in  redshift  surveys	


•  Even with instruments now being built, 
this will be extremely difficult from the 
ground at z>2, degrading DE FoM!

Redshift success rates from DEEP2 
(Newman et al. 2012), zCOSMOS 
(Lilly et al. 2009)!

Equivalent IAB for 30 nights	
  

 3000  4000  5000  6000  7000  8000  9000  10000  11000  12000  13000
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Integral Field Spectroscopy Concept 
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3" x 3" with 0.15” slits 

Integral	
  Field	
  Unit	
  (IFU):	
  obtains	
  a	
  
spectrum	
  at	
  every	
  point	
  in	
  its	
  field	
  
of	
  view.	
  	
  A	
  hybrid	
  of	
  photometry	
  &	
  
spectroscopy:	
  an	
  image	
  at	
  every	
  
possible	
  wavelength,	
  or	
  a	
  spectrum	
  
at	
  every	
  possible	
  pixel	
  of	
  the	
  image	
  



Why  an  IFU  on  WFIRST?	


•  Get supernovae spectra while 
performing the imaging survey.!

•  But SN only takes up one pixel in IFU!

•  Use rest of IFU to get spectra!!

!

!

Imager	
  

Focal	
  Plane	
  

IFU	
  



Why  an  IFU  on  WFIRST?	


•  About 3000 sq degrees.!

•  few ×104 low-res spectra!

•  Extending LSST calibration 
beyond z~2 can improve FoM by 
30-40%.!

!

!

In	
  collaboraCon	
  with	
  S.	
  Perlmuwer,	
  
J.	
  Newman	
  and	
  C.	
  Hirate	
  



Part	
  II	
  -­‐	
  Angular	
  selecSon	
  issues	
  



Strong	
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  dependence	
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