What don't we know about galaxy formation?

Darren Croton University of California Berkeley

Theory: Simon White, et al. (Virgo) Observational: Marc Davis, et al. (DEEP2/AEGIS

Galaxies, why we care ...

- highly non-linear evolution
- home of internal phenomena
- shaped by external influences

I. What we think we know

- 2. What we think we don't know
- 3. Next generation surveys

What (we think) we know

Star formation

M31

Supernova feedback

M82

Satellite infall

Galaxy C153 in Cluster Abell 2125

NASA, W. Keel (University of Alabama), F. Owen (National Radio Astronomy Observatory), M. Ledlow (Gemini Observatory) and D. Wang (University of Massachusetts) STScI-PRC04-02a

Morphological evolution

NGC 2207 & IC 2163

... and assembly

Seyfert's Sextet

... and death

M87 (Virgo cluster)

Black holes

AGN jets

M87 (Virgo cluster)

AGN bubbles

GEMS (Rix et al. 2004)

making sense of this with models

Alien invasion

height & shape, density, pressure, gravity, ...

flexibility, running, jumping, disintegration resistance

(human)

Our model is only as good as the questions we ask

For systems with infinite levels of complexity, our model can never be "correct"

- Schmidt law star formation
- SFR dependent SN winds
- satellite gas stripping
- morphological transformation
- assembly through mergers
- starbursts through mergers
- Magorrian relation BH growth
- jet & bubble AGN feedback

125 Mpc/h

z=0 galaxy light

STATISTICS

Do our galaxies have the right distribution and abundance?

< clustering >

< luminosity function >

... and the right colours?

< model >

< SDSS >

Baldry et all. 2005

What we think we don't know

What really shuts down star formation?

(or: how do galaxies evolve across the CMD?) (or: to what degree is AGN even needed?)

- Important, why?
- Current understanding?
- Solutions?

What really shuts down star formation?

(or: how do galaxies evolve across the CMD?) (or: to what degree is AGN even needed?)

- Important, why?
- Current understanding?
- Solutions?

What really shuts down star formation?

(or: how do galaxies evolve across the CMD?) (or: to what degree is AGN even needed?)

- Important, why?
- Current understanding?
- Solutions?

The assembly of massive galaxies?

(or: at what point does DM & baryon growth de-couple?) (or: monolithic or hierarchical? a problem for CDM?)

- Important, why?
- Current understanding?
- Solutions?

The assembly of massive galaxies?

(or: at what point does DM & baryon growth de-couple?) (or: monolithic or hierarchical? a problem for CDM?)

- Important, why?
- Current understanding?
- Solutions?

Satellite galaxy evolution?

v. / V.

Moore et al. 1999

The role of environment?

(or: how important for cosmological measures?) (or: is halo mass the fundamental property?)

Important, why?
Current understanding?
Solutions?

The role of environment?

(or: how important for cosmological measures?) (or: is halo mass the fundamental property?)

- Important, why?
- Current understanding?
- Solutions?

Next generation surveys

Probing dark energy

Weak & strong lensing BOA's

Cluster counts

Supernova

DES: ~300 million galaxies across 5,000 sqdegrees out to z~1.3 in 4 bands (r<24.1).

LSST: billions of galaxies across 20,000 sqdegrees out to z~4 in 6 bands (AB<29.0).

Other surveys/instruments: PanSTARRS, SKA, JWST, GLAST, ... will provide equivalent multi-wavelength data sets.

What can you do with millions/billions of galaxies?

Statistics:

SDSS volume limited catalogue of ~50k galaxies can at most be sub-divided 1-2 more times

Next generation catalogues can be sub-divided multiple times on any property of interest

What can you do with millions/billions of galaxies?

Objects:

Muilt-wavelength catalogues can be cross-correlated and studied together

Rare objects will become commonplace and will be analysed with statistical confidence

Extra-galactic astronomy covers a vast range of disciplines.

These data sets will produce vast amounts of science

(as of 10/4/07) SDSS papers on ADS: 1,726 citations: 31,255

Outlook

- Simple models help interpret the data, and more complex observations require more complex modelling.
- (2) Our understanding of galaxy evolution is still mostly phenomenological.
- (3) Future surveys have the potential to overwhelm us with information, but also answer key questions.