GIMIC: Galaxies-Intergalactic Medium Interaction Calculation

Robert A. Crain Swinburne University, Melbourne

Research Progress Meeting Lawrence Berkeley National Laboratory October 22nd 2009

Why simulate galaxy formation?

Semi-analytic models proven very successful

Reproduce the cosmic star formation history Reproduce the galaxy population by mass Reproduce the colour-magnitude relation

>but by design adopt severe simplificationsphenomenology doesn't play by the rules

Simulating hydrodynamics more teaches us more

Are (semi-)analytic simplifications appropriate?

Can directly probe interaction of galaxies with intergalactic gas.

Interfaces more directly with observables

The simulator's dynamic range double whammy

Galaxies are much bigger than stars and black holes

Individual supernovae and active galactic nuclei impart galaxy-wide effects

Recourse to phenomenology, on some scale, is inevitable.

Galaxies are much smaller than the large-scale structure

Surveys trace LSS using *millions* of galaxies

Galaxies pollute intergalactic gas with heavy elements on ~Mpc scales

To compete with semi-analytics

Trace volumes of L > 100 Mpc Use resolution of m_gas < 10^7 Msun

Rosette nebula In Monoceros molecular cloud

Millennium Simulation Volume comparable to SDSS at median redshift z~0.1

GIMIC: A novel approach

Aim: trace coevolution of galaxies and IGM in a cosmological context

Follow hundreds of galaxies Large volumes of the IGM Varied cosmological environments

"Simulation in a simulation"

Method: adopt 'zoomed' initial conditions

Take large parent dark matter volume at z=0

Trace back regions of interest to early times

Resample density field with multi-resolution scheme, adding small scale power.

Add gas to high-resolution region and re-run

Six orders of magnitude in length scale

Millennium Volume

L = 500 Mpc/h

GIMIC hi-res region (1 of 5) L ~ 50 Mpc/h GIMIC galaxy (1 of ~1000) force resolution ~500pc

GIMIC: the simulation code

Gadget-3

Domain decomposition optimised for highdynamic range problems (also: Aquarius)

New physics modules: cooling, SF, kinetic feedback (also: Overwhelmingly Large Simulations, OWLS)

Key features

High-density gas (interstellar medium) is single phase

Apply equation of state, *P* = *k.rho*^*gamma* to yield ISM **effective pressure**

Star formation based on density, parametrised by **observables**

Supernova-driven winds triggered locally and not decoupled from hydrodynamical forces

Gas cooling rate considers 11 heavy elements and UV background

Dwarf galaxy with GIMIC/OWLS code

log (Gas density) in [Msun/h / (Mpc/h) ^ 3]

The dark matter halo population

The galaxy population, by stellar mass

The galaxy population, by stellar mass

The star formation rate density

The star formation rate density (mass normalised)

The star formation rate density is hierarchical

Durham semi-analytic model - broken hierarchy

Bower+ '06, with AGN

Dwarf galaxies always dominate Massive galaxies become passive quickly

Bower+ '06, AGN 'off'

Massive galaxies dominate z<3 Qualitatively agrees with GIMIC

An aside on downsizing

Ratio past average : present star formation rate

value > 1, past SFR dominates: passive value < 1, present SFR dominates: active

Massive galaxies become passive earliest

Similar behaviour in GIMIC, w/out AGN

Massive galaxies passive before dwarfs Just not as passive as with AGN

AGN exacerbate (not cause of) shutdown

Baryons (gas, stars) in haloes

Crain+ '07, no cooling, SF or feedback

In non-radiative regime, the haloes accrete ~90% of their cosmic share of baryons

small losses due to assembly shocks self-similar process, no preferred scale

Scales come from non-gravitational physics

Arrow shows halo 'velocity' of 600km/s Below this scale baryons are ejected

Balance of heating & cooling establishes complex thermal structure: tough to observe!

Halo star formation efficiency - SFR per unit total mass

Halo mass is king - yet environment still matters

Case study of hydro benefits: the X-ray halo problem

Analytic galaxy formation models in CDM:

Disc galaxies are common, but fragile

'Easy come, easy go' - must still be forming today

Fuelling by cooling flow from hydrostatic halo gas at virial temperature of 10⁶K

Cooling should be in soft X-ray band, at fluxes readily detected by ROSAT

No detections with ROSAT (e.g. Benson+ '00)

Handful of XMM, Chandra detections, inferred luminosities 1-2dex below predictions

Cited as a problem for CDM

Might it be that model assumptions merely inaccurate? Can test with hydro.

Acid test: Lx - Lk relation

Bottom line: SF and ejection alter hot gas radial profile

Summary

Novel techniques required to keep pace with observations

Use of 'zoomed initial conditions', or 'simulations within simulations' enables well-resolved galaxies to be studied within a cosmological context

Halo mass is key driver of star formation history

The volume-normalised star formation rate differs on multi-Mpc scales by up to $\sim x10$. Driven by halo mass function rather than an environmental effect on galaxies.

The importance of black holes to the cosmic star formation history remains an open, and critical, issue.

Hydro highlights weaknesses in analytic prescriptions

Gas treatments in (semi-)analytic models can be oversimplified, leading to a mis-interpretation of observational findings, e.g. X-ray halo problem.