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Modelling inhomogeneities

% Friedmann is an approximation: there exists structure
(galaxies, stars, etc..), and CMB anisotropies

* Consider perturbations about a homogeneous ‘background’
solution

K e.g. write energy density as

p(&,1) = p(t) (1+8(,1))

¥ newtonian mechanics...
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Modelling inhomogeneities

% Friedmann is an approximation: there exists structure
(galaxies, stars, etc..), and CMB anisotropies

* Consider perturbations about a homogeneous ‘background’

solution
K e.g. write energy density as

p(#.1) = p(t) (1 + 8(.1)
\ inhomogeneous

* newtonian mechanics... perturbation



Newtonian cosmology

* Newtonian perturbation theory:

energy density: p(Z,t) = p(t) (1 + 0 (&, t))
velocity: v(Z,t), Newtonian potential: (1)
* Fluid evolution equations
04V - [(1+5)17] — 0
U+ HG+ (0- V)= -V =

* Poisson equation

V20 = 4nGpas
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* Fluid evolution equations

5+ V- {(1+5)q7} =0
= VP

0+ HT+(7-V)T= -V

o(1 4+ 0
* Poisson equation p( )
V20 = 4nGpas
* Linearised fluid equations
§+V-T=0
: _) 1 -
v+ Hi=—-V® — V6P
0

* Poisson equation

V20 = 471G pas
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field equations:




Relativistic inhomogeneities

* General relativity governs dynamics of the universe

* Must use relativity to describe regions of high density, fluids
moving an appreciable fraction of ¢, or large scales

* Einstein’s field equations:

Gy = 8nG1,

Einstein tensor, function of the \A

metric tensor, describes geometry ener%y mo.Ill)lentum tensor,
escribes matter
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ds® = e dr dr



Cosmological perturbations

* How to proceed?

- Fully inhomogeneous solution (extremely difficult in
principle; impossible in practice?)

- Similar to Newtonian case: expand around a homogeneous
solution - Cosmological Perturbation Theory
* Inhomogeneous perturbations to

matter, e.g., energy density p(Z,t) = p(t) (1 + 4(, t))

geometry: metric tensor g, (Z,t) = gl(LOV) (t) +og .l

10









guv (%, 1) = g (t) + 89, (Z, 1)
* Perturbed FLRW metric:

two independent scalars, e.g.

_ [ —28(z,1) y
[59,1“/] | | () az(t)Q\Ij(f7 t)5z] |

or

R Y M B
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(Governing equations

* Fluid equations

6 4+ (1 +w) (Vv —3¥) =3H(w — ¢

v+ H(1 — 3w)v

* Poisson equation

U

p(1

w)

o

O = ()

Vi = —47TGCL2,5[5 — 3H(1 + w)V%]

I3



When Newtonian theory 1s not
enough...
¢ But Newtonian theory cannot model
- perturbations in relativistic species (radiation, neutrinos,...)

- regions of high pressure (eg early universe)

- regions of a comparable size of the horizon

% For the early universe (inflation/CMB) use relativistic pert thy

% Effects of general relativity on initial conditions for N-Body

SIMS (in progress)
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Classical Huids

* Classical fluid dynamics G=V XU

* Euler equation v - (T - ﬁ)@’ — —16P

ot 0

* Evolution:

S . :
g—i:Vx(ﬁxcﬁ) | p2V,0><VP

- ‘source’ term zero if VP and 6,0 are parallel

- i.e. barotropic fluid, no source term

% The inclusion of entropy provides a source for vorticity

Crocco (1937)
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Entropy perturbations

* Adiabatic system 0 = op
e

* Non-adiabatic system allows for entropy perturbations

6__P _5_’0 =ne= 0P = £5p—|— 5Pnad
P P

% Single fluid: require equation of state P = P(p, S)
* Multiple fluids:
- Intrinsic part of each fluid, 0Finer = 0P, — cgﬁ Pa

- Relative part between fluids,

1 : .
0Frel = % Z(C(QX = C%)(p55pa — Padpp)
I o,



Vorticity evolution

* Vorticity tensor, Wyy = 77#&771/5 U[w; 0]
* First order vorticity evolves as

/ 2 _
wlij - SHCSwlw =0 Kodama & Sasaki (1984)

* Reproduces well known result that, in radiation domination,

|w1ijw1ij\ 0.6 CL—2

¢ i.e. in absence of anisotropic stress, no source term: wWi;; = Uis
a solution to the evolution equation
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Beyond linear peturbations

* So far, have considered linear perturbations

* Extend, by expanding as, e.g.,

. . 1 .
p(Z,n) = po(n) + op1(Z,n) + §5p2(:6, n)

* Crucial difference: scalar, vector and tensor perturbations no
longer decouple
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Vorticity evolution: second order

¢ Second order vorticity, w2;;, evolves as

assuming zero first order vorticity.

* For vanishing non-adiabatic pressure, vorticity decays as at

first order
Lu et. al. (2009)

* Including entropy gives a non-zero source term

AJC, Malik & Matravers (2009)

* This generalises Crocco’s theorem to an expanding framework

20



Isocurvature/entropy...

* Single (barotropic) fluid systems have zero non-adiabatic
pressure

- single scalar field, in superhorizon limit can be treated as a
barotopic fluid

* Non-adiabatic pressure and entropy perturbations are gauge
invariant, cannot be ‘gauged away’

* Study:

- relative entropy between fluids in the usual cosmic fluid (.e.
baryons, cold dark matter, radiation, neutrinos ...)

= isocurvature perturbations in multi-field inflation model
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... In concordance cosmology

® baryons, CDM have Wy = W, = c="es -0

. S— -
* photons, neutrinos are relativistic: W = w, = c% = - -

* adiabatic initial conditions

4 4 2
6, =0, = -0 = —0. = ——Ck*n?
” 3% = 3 3R

* solve using a modified version of CMBFast

¢ aim: extract isocurvature already present in CMB calculations,
to use as initial condition for vorticity
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... In multi-field inflation

* Consider two field inflation models with Lagrangian density

L/, .
L= (¢ + %) + V(e X)
* Introduce comoving entropy perturbation
H
P

* To compare with comoving curvature perturbation

R=— [j = (¢de + x0x)

Then investigate dynamics of different models...
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Isocurvature: Summary

* Isocurvature is naturally sourced in concordance cosmology by
relative entropy between species

* Two-field inflationary models can produce isocurvature at the
end of inflation

* Future work:

- Modelling reheating perturbatively with decay channels
from fields to matter/radiation, how likely is isocurvature to

survive? Huston & AJC (in progress)

- (Can these realistic isocurvature perturbations generated a
sizeable vorticity?
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Observational signatures

* For linear perturbations, B mode polarisation of the CMB only
produced by tensor perturbations:

- scalar perturbations only produce E mode polarisation
- vectors produce B modes, but decay with expansion

¥ Second order, vector perturbations produced by first order
density and entropy perturbations source B mode polarisation

% Important for current and future CMB polarisation expts
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Magnetic Fields

% Electric and magnetic fields wrt observer ©"”

E" = FiVy, B! = %GWW%VFM

* Governing equations are then Maxwell equations
Fluvin) = 0 ., =gt
=> set of covariant Maxwell equations
* How to include in metric perturbation theory?

- linear perturbations, include ‘half-order, since B* ~ p

- unclear how to extend to higher order perturbation theory
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* So, expand E/B fields using same expansion parameter

1 1 1 1
E“:E{L+§E§‘+6E§’“ B“:Bf+§Bg+ngj

* Maxwell equations at each order: e.g. 1st order
0;B," =0

y | . 9

2o, By = By B (1 2a)

0, E1" = —(j"uyu )

= . . 9 |
EOZ]kCLZajBlk = Elz/ — HE{" (1 — ga) + aJq’

34



* So, expand E/B fields using same expansion parameter

1 1 1 1
E“:Ef+§E§‘+6E§“ B“:Bi‘+§B§’“+gB§‘

* Maxwell equations at each order: e.g. 1st order
0;B," =0

y | . 9

GOZ]kCLQajElk — —Blz/ + /HBlZ (1 — ga)

no source for linear
magnetic field

= . . 9 |
eOZ]kaZC‘?jBlk = Elz/ — HE{" (1 — ga) + aJq’

0, E1" = —(j"uyu )
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* So, expand E/B fields using same expansion parameter

1 1 1 1
E“:Ef+§E5+6E§“ B“:B{’“+§B§‘+EB§“

* Maxwell equations at each order: e.g. 1st order
0;B," =0
y | . 9
6023%16 — —Blz/ + HBlz(l — ga)

no source for linear
magnetic field

= . | 9 |
e%k R %E12(1 = §a) + ady!
similarly at second order...

34

0, E1" = —(j"uyu )



-
o
——

econd order vorticity sourcing
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+% My (2(2By* — Vi%)8; By; + 14By /Moy + 10H$, Vi ; — 8610501 + 20560 — 2Vi'0, Vi,
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econd order vorticity sourcing




* Work to third order, interesting equation is:

0;B3" = —6E1;wo"

/

second order vorticity sourcing magnetic field!!

* Next - in progress (Ellie Nalson et al) - calculate size of this
magnetic field generated; large enough to be seed field?

* Interesting formalism question: how does this compare to
two-parameter perturbation theory?
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Summary

¥ Vorticity generated at second order in perturbation theory
from entropy perturbations

* Entropy perturbations can arise naturally in systems containing
more than one fluid/field

- cosmic fluid containing relativistic/non-relativistic matter

- multi-field inflationary models

% This can source magnetic fields (albeit at third order)



Brown, AJC & Malik (in pre

wvestigate potential of second order vorticity to source
dial magnetic seed fields

Nalson, AJC, Malik (in pre




