

Neutrino and dark matter cosmology with the Lya forest: the interplay between large-scale evolution and small-scale baryonic physics

Solène Chabanier

(Lawrence Berkeley National Lab, previously CEA Saclay)

Collaborators: Zarija Lukic, Nathalie Palanque-Delabrouille, Christophe Yèche, Frédéric Bournaud, Yohan Dubois ..

Neutrino and dark matter cosmology with the Lya forest: *the interplay between large-scale evolution and small-scale baryonic physics*

1- Open issues in the Standard Cosmological model

2- Measurements of the Lya forest 1D power spectrum

3- AGN feedback impact on the Lya forest

4- Cosmological results

Massive neutrinos in the Standard Cosmological model

Neutrino oscillation — Evidences for physics beyond the standard model

• Mass eigenstates $m_{1,2,3}$ and flavor eigenstates $m_{e,\mu,\tau}$

Solar neutrinos: $\delta m^2 = m_2^2 - m_1^2 \sim 7.5 \cdot 10^{-5} \text{ eV}^2$ Atmospheric neutrinos: $|\Delta m^2| = |m_3^2 - \left(\frac{m_1 + m_2}{2}\right)^2 |\sim 2.4 \cdot 10^{-3} \text{ eV}^2$

• Two possible mass patterns:

Massive neutrinos in the Standard Cosmological model

Cosmological implications

- Particle-physics bounds on neutrino masses: 0.06 eV < $\sum m_{\nu}$ < 3eV \longrightarrow 0.15 % < Ω_{ν} < 15 %
- Relativistic up to $z_{NR} \gg z_{rec}$ $\nu \sim \gamma$
- Non-relativistic today: $u \sim \,$ dark matter with large velocity dispersion

free-stream and smooth-out small scale fluctuations

Suppression of small scales

u are the most abundant particles after γ

Massive neutrinos in the Standard Cosmological model

Cosmological implications

Wavenumber k [h/Mpc]

The Lya forest is sensitive to: - the maximal suppression - the redshift dependence

Warm dark matter

- Small-scale challenges of the cold dark matter model
 - The Missing Satellite problem
 - The Cusp-Core problem
 - The Too-Big-to-Fail problem
- Exotic model: the warm dark matter model
 - Non-negligible velocity dispersion
 - Free-streaming length ~ galaxy scale
 - Suppress small-scale fluctuation while keeping large-scale CDM predictions

Matter power spectrum: P(k) [WDM]/ P(k) [CDM]

Wavenumber k [h/Mpc]

Warm dark matter particle induce a power cut-off in the matter power spectrum

Neutrino and dark matter cosmology with the Lya forest:

the interplay between large-scale evolution and small-scale baryonic physics

1- Open issues in the Standard Cosmological model

2- Measurements of the Lya forest 1D power spectrum

3- AGN feedback impact on the Lya forest

4- Cosmological results

The Lya forest

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift quasars
- Low density IGM acts as a proxy of dark matter density at small scales

Matter power spectrum at z = 0

Chabanier et al. 2019b

BCCP, 03/09/21

The BOSS/eBOSS spectroscopic surveys

<image>

Credits: A. Raichoor

- (extended)-Baryonic Oscillation Spectroscopic survey
- 2.5m Sloan telescope (New Mexico)
- Survey area: 10,000 deg²
- Redshifts: 1,000 fibers
- Four tracers of matter: blue galaxies, red galaxies, low-z QSOs and high-z QSOs (for Lya forest)
 - → 3D map of ~2 million galaxies and quasars covering 11 billion years of cosmic time

The SDSS telescope

Data selection

- ~43,000 quasar spectra out of 200,000 in **DR14** with $2.1 \le z_{Lv\alpha} \le 4.7$
- Selection based over
 - Noise (SNR > 2)
 - Resolution (< 85 km/s) probe small-scale fluctuations
 - Quality (no high-density absorbers)

Increase precision of measurements

Solène Chabanier

Analysis method based on McDonald+06

• Transmitted flux fraction $\delta_F = \frac{f(\lambda)}{C_q(\lambda)} - 1$ Bautista+17, du Mas des Bourboux+17 Unabsorbed spectrum

Absorbed spectrum

• Flux power spectrum $P_F = FFT^2(\delta_F) = FFT(\xi_F)$

Palanque-Delabrouille+13, Chabanier+19

Analysis method

if > 1: systematics dominate

Final measurements of eBOSS $P_{Ly\alpha}$

Unprecedented level of precision (<1% at low z):

- statistics: QSOs x 3 and optimization of data selection
- systematics: careful investigation of systematic biases and their sources

Neutrino and dark matter cosmology with the Lya forest:

the interplay between large-scale evolution and small-scale baryonic physics

1- Open issues in the Standard Cosmological model

2- Measurements of the Lya forest 1D power spectrum

3- AGN feedback impact on the Lya forest

4- Cosmological results

AGN feedback in cosmology

Supermassive black holes and supernovae expel large amount of gas and energy from the center of galaxies

The fiducial Horizon-AGN simulation

- Cosmological hydrodynamical simulation run with the Adaptative Mesh Refinement (AMR) code RAMSES (*Teyssier 2002*)
- Box size: $L_{box} = 100 Mpc/h$
- Cell size: from 100 kpc/h to 1 kpc/h
- Included physics: Gas cooling with contribution from metals
 - Heating from a uniform UV background
 - Stellar formation
 - Stellar feedback: release mass, energy and metals
 - AGN feedback
 - Companion simulation Horizon-noAGN

gas density temperature gas metallicity

AGN feedback implementation

• Black hole are sink particles which can accrete gas at the Bondi-Hoyle accretion rate:

$$M_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{(\overline{c}_s^2 + \overline{u}^2)^{3/2}}$$

 $\label{eq:loss} \begin{aligned} \pmb{\alpha} & \mbox{boost factor, accounts for not resolving the accretion disk} \\ & \left\{ \begin{array}{c} (\rho \, / \, \rho_0)^2 & \mbox{if} & \rho > \rho_0 \\ & 1 & \mbox{otherwhise} \end{array} \right. \end{aligned}$

AGN feedback implementation

• Black hole are sink particles which can accrete gas at the Bondi-Hoyle accretion rate:

$$M_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{(\overline{c}_s^2 + \overline{u}^2)^{3/2}}$$

- AGN feedback proceeds in two modes:
 - Quasar mode: high-z universe, emit large amount of radiations, photo-ionize and heat gas

Injection of thermal energy

- Radio mode: low-z universe, creation of inflated cavities with strong magnetic fields

Injection of kinetic energy

AGN feedback implementation

• Black hole are sink particles which can accrete gas at the Bondi-Hoyle accretion rate:

$$M_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{(\overline{c}_s^2 + \overline{u}^2)^{3/2}}$$

- AGN feedback proceeds in two modes:
 - Quasar mode: high-z universe, emit large amount of radiations, photo-ionize and heat gas

Injection of thermal energy

- Radio mode: low-z universe, creation of inflated cavities with strong magnetic fields

Injection of kinetic energy

• A fraction ϵ_f of the radiated energy L_r is injected to the medium

 $\Delta E_{IGM} = \epsilon_f L_r$

AGN feedback implementation and calibration: a source of large variability

Vogelsberger et al. 2019

P_{matter}[baryonic processes]/P_{matter}[no baryonic processes]

• Construction of a set of simulations exploring a large range plausible range of feedback models

Variation of feeding and feedback parameters

chosen to span the observable uncertainties of galaxy properties

(1) The Maggorian relation $M_{BH} - M_*$

(2) The mean fraction of gas in galaxies

Stochasticity in the accretion rate	Simulation	α	r _{AGN}	$\epsilon_{ m f}$	
$M_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{1000}$	HAGN	$\begin{cases} (\rho/\rho_0)^2 & \text{if } \rho > \rho_0 \\ 1 & \text{otherwhise} \end{cases}$	Δx	$\left\{ \begin{array}{ccc} 0.1 & \mathrm{if} & \mathrm{radio} \\ 0.15 & \mathrm{if} & \mathrm{quasar} \end{array} \right.$	
$(\overline{c}_s^2 + \overline{u}^2)^{3/2}$	HAGNclp10 HAGNclp100	10% of the time: $10\alpha_{\text{HAGN}}$ 1% of the time: $100\alpha_{\text{HAGN}}$	r _{AGN,HAGN} r _{AGN,HAGN}	€f, HAGN €f, HAGN	
Radius of energy deposition	HAGNr+ HAGNr-	$lpha_{ m HAGN} lpha_{ m HAGN}$	$2\Delta x$ $0.5\Delta x$	€f, HAGN €f, HAGN	
Amount of injected energy	$HAGN\epsilon +$	$lpha_{ m HAGN}$	r _{AGN, HAGN}	$\left\{ \begin{array}{ccc} 3 & \mathrm{if} & \mathrm{radio} \\ 0.45 & \mathrm{if} & \mathrm{quasar} \end{array} \right.$	
$\Lambda E - C I$	$HAGN\epsilon-$	$lpha_{ m HAGN}$	r _{AGN,HAGN}	{ 0.33 if radio 0.05 if quasar	
$\Delta L_{IGM} - \epsilon_f L_r$					

BCCP, 03/09/21

- Construction of a set of simulations exploring a large range plausible range of feedback models
- Variation of feeding and feedback parameters

chosen to span the observable uncertainties of galaxy properties

(1) The Maggorian relation $M_{BH} - M_*$

(2) The mean fraction of gas in galaxies

	$\Delta\sigma_{ m f_{gas}}$	$\Delta\sigma_{ m M_{BH}-M_{*}}$
HAGN	0	0
HAGN_clp10	$< \sigma_{\mathrm{f_{gas}}}$	$\sigma_{ m M_{BH}-M_{*}}$
HAGN_clp100	$\sigma_{ m f_{gas}}$	$\sigma_{ m M_{BH}-M_{*}}$
HAGN_R+	$3\sigma_{\mathrm{f}_{\mathrm{gas}}}$	$2\sigma_{\mathrm{M}_{\mathrm{BH}}-\mathrm{M}_{*}}$
HAGN_R-	$2.7\sigma_{\mathrm{f_{gas}}}$	$3.3\sigma_{ m M_{BH}-M_{*}}$
HAGN_E+	$2.3\sigma_{\mathrm{f_{gas}}}$	$3.5\sigma_{\mathrm{M_{BH}}-\mathrm{M_{*}}}$
HAGN_E-	$2.5\sigma_{\mathrm{f_{gas}}}$	$3.5\sigma_{\mathrm{M_{BH}}-\mathrm{M_{*}}}$

Range of feedback model covered is at the limit of realistic galaxy observables

Impact of AGN feedback on $P_{Ly\alpha}$

Impact of AGN feedback on $P_{Ly\alpha}$: suppression of power ? — Efficient heating

Temperature-density distribution

Impact of AGN feedback on $P_{Ly\alpha}$: suppression of power ? —— Efficient heating

Differences in the flux probability distribution function

1. Open issues

Goal: push resolution in the diffuse IGM (~90% of the simulation volume)
 test systematic effects on the AGN feedback correction

Proposed the Extreme-Horizon as a « Grand Challenge » on the brand new AMD partition of TGCC/Joliot-Curie

Horizon-AGN simulationL = 100 Mpc/hNumber of resolution elements: ~ 4 billion4,096 CPUs4 Mh50 Mpc/h50 Mpc/h4 Mh

• Control simulation Standard-Horizon: at the HAGN resolution in EH volume

Minimal resolu	tion		Minir	nal resolutio	n EH			
SH/HAGN			/					
	*							
comoving grid resolution [kpc/h]	97.6	48.8	24.4	12.2	6.1	3.05	1.52	0.76
physical grid resolution [kpc]	47	23.5	11.7	5.8	2.9	1.5	0.7	0.3
volume fraction (EH) (z = 2)	—	45%	43%	10%	1%	0.04%	<i>z</i> < 2	<i>z</i> < 2
volume fraction (SH) (z = 2)	80%	17%	2%	0.17 %	0.013%	$5 \times 10^{-4}\%$	<i>z</i> < 2	<i>z</i> < 2
volume fraction (HAGN) (z = 2)	77%	19%	2%	0.2 %	0.01%	$6 \times 10^{-4}\%$	z < 2	z < 2
	-		-	-				

27

<image>

The Extreme-Horizon simulation

Extreme-Horizon z ~ 3

Standard-Horizon z ~ 3

The Extreme-Horizon simulation

Resolution effects

Resolution effects on AGN feedback correction

Large effects, especially at small scales $P_{Lv\alpha}$ are not converged in absolute

Differences well below the percent level
 AGN feedback corrections are converged

BCCP, 03/09/21

Impact on cosmological parameters

AGN feedback bias

Feedback calibration and modeling uncertainty

AGN feedback are not negligible given the level of precision reached by Lya data

$$\sigma_{DESI} \ll \sigma_{eBOSS}$$

Neutrino and dark matter cosmology with the Lya forest:

the interplay between large-scale evolution and small-scale baryonic physics

1- Open issues in the Standard Cosmological model

2- Measurements of the Lya forest 1D power spectrum

3- AGN feedback impact on the Lya forest

4- Cosmological results

Sum of neutrino masses

Palanque-Delabrouille et al. 2020

Sum of neutrino masses

Palanque-Delabrouille et al. 2020

Sum of neutrino masses

Palanque-Delabrouille et al. 2020

Warm Dark Matter

- Early decoupled thermal relics:
 - Initially in thermal equilibrium
 - Additional contribution to the effective number of radiative species $\rho_{\rm rad} \propto ({
 m N}_{\rm eff} + \Delta {
 m N}_{\rm eff})
 ho_{\gamma}$
 - Decoupled during the radiation era $T_{dec} \gg 100 \ GeV$ while <code>relativistic</code>

- Sterile neutrinos
- Insensitive to all fundamental interactions except gravity
- Generic production mechanism: through oscillation with standard neutrinos

Direct mapping between the two models: $\Omega_{\rm DM} \cdot m_{\nu_s}^3 \propto m_X^4$ (non-resonant production) Thermal relics mass Sterile neutrino mass

Warm Dark Matter

Strongest limits on warm dark matter models

Non-resonantly produced sterile neutrinos excluded as pure warm dark matter

Unexpected results: Massive compact galaxies

Massive compact and star forming galaxies with the Hubble Space Telescope

588013384338998734 J083833.52+374216.4	588013384341913805 J092600.4+442736.1	587732134315425958 J130128.32+510451.2	587729777439801619 J133711.88-022605.4	587729777446945029 J144231.37-020952
				٠
587729970180522426 J150728.4-023351.2	587732152555864324 J074758+233632.8	587732156853846376 J080816.9+281431.1	587732153639829774 J090918.36+392924.7	587732152033345685 J095618.32+430727.8
*				
			Caro	lamone et al. 20

Effective radius: 1-2 kpc while 10 kpc for the Milky Way

- High redshift galaxies are **more compact** than low-redshift galaxies Daddi et al. 2005, Kriek et al. 2009, Dutton et al. 2011, Elbaz et al. 2018
- Population of **very compact star-forming** galaxies at z=2 : « blue nuggets » *Barro et al. 2013, Williams et al 2014*

Compaction mechanism still highly debated

Extreme-Horizon

Unexpected results: Massive compact galaxies

Stellar mass surface density of a sample of massive galaxies

Standard-Horizon

10kpc

30

At z = 2 in the Extreme-Horizon simulation:

- 1) More compact massive galaxies
- 2) Population of ultra-compact galaxies

BCCP, 03/09/21

3000

300

Stellar mass surface density (M_☉ pc⁻²)

Unexpected results: Massive compact galaxies

Compaction mechanism: improved modeling of cold gas flows accretion

Improved resolution of inflowing gas results in lower angular momentum:

- Accounts for smaller size of massive galaxies in EH
- But is not sufficient to explain Ultra-Compact galaxies

Unexpected results: Massive compact galaxies

Extreme-Horizon z ~ 3

Chabanier at al. 2020b

EH forms earlier low-mass galaxies

Standard-Horizon z ~ 3

ultra-compact: repeated major mergers of low-mass progenitors

independently of feedback mechanisms

Conclusion and prospectives

• The Lya forest is a powerful probe for cosmology

---> Neutrino masses, warm dark matter, expansion, growth

- Unprecedented level of precision of the Lya power spectrum with eBOSS data (1% at low redshifts)
- Major **improvement of theoretical predictions** with hydrodynamical simulations
- Constraints on
 - Neutrino masses: $\sum m_{\nu} < 0.105 \text{ eV}$ from Lya + CMB among the better constraints to date
 - Sterile neutrinos: $m_{\nu_{\rm c}} > 34 \text{ keV}$ outreach previous constraints
 - Formation of ultra-compact galaxies in EH
 - Prospects:
 - Lya power spectrum with DESI data
 - Numerical modeling of the Lya forest construction of grid, 3D power spectrum parametrization, convergence between hydro codes
 - Galaxy formation and evolution models: Can EH help alleviating issues in early-quenching of galaxies (and possibly formation of barred galaxies) ?