DE LA RECHERCHE À L'INDUSTRIE

Toward Precision Cosmology with the 1D Power Spectrum from Lya Forests

Solène Chabanier (CEA Paris Saclay) Nathalie Palanque-Delabrouille, Frédéric Bournaud

Toward Precision Cosmology with the 1D Power Spectrum from Lya Forests

I - The Lya Forest in Cosmology

II-1D Power Spectrum Analysis

III- AGN feedback impact

IV- Cosmological analysis

• Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs
- Low density IGM acts as a proxy of dark matter density

Lya forest is useful for cosmology

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs ullet
- Low density IGM acts as a proxy of dark matter density

Lya forest is useful for cosmology

De Sainte-Agathe et al. 2019

Solène Chabanier

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs
- Low density IGM acts as a proxy of dark matter density

Lya forest is useful for cosmology

Wavenumber $k \ [h/Mpc]$

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs
- Low density IGM acts as a proxy of dark matter density

Lya forest is useful for cosmology

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs
- Low density IGM acts as a proxy of dark matter density

Lya forest is useful for cosmology

1D correlation (small scales $\sim 1Mpc/h$)

Credits: A. Borde

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs
- Low density IGM acts as a proxy of dark matter density

Lya forest is useful for cosmology

1D correlation (small scales $\sim 1Mpc/h$)

Step-like power suppression with active neutrinos

- Neutral hydrogen absorptions in the IGM along the line of sight of high redshift QSOs
- Low density IGM acts as a proxy of dark matter density

Lya forest is useful for cosmology

Solène Chabanier

Toward Precision Cosmology with the 1D Power Spectrum from Lya Forests

I - The Lya Forest in Cosmology

II-1D Power Spectrum Analysis

III- AGN feedback impact

IV- Cosmological analysis

The SDSS BOSS/eBOSS spectroscopic surveys

- 2.5m Sloan telescope (New Mexico)
- Survey area: $10,000 \text{ deg}^2$

The SDSS BOSS/eBOSS spectroscopic surveys

Data selection

- 43,000 spectra out of 190,000 of DR14 eBOSS
- Selected over
 - SNR to reduce statistical uncertainty
 - Resolution < 85 km/s
 - quality (no high density absorbers)

Solène Chabanier

Solène Chabanier

Solène Chabanier

Solène Chabanier

We are now systematic limited

Final measurements DR14 eBOSS

Chabanier, Palanque-Delabrouille, Yèche et al. 2019

Comparison DR14 eBOSS / DR9 BOSS

• Significant decrease of data-related uncertainties

gain of 2 on statistical power improved census of systematics

• One extra redshift bin

Significant decrease of data-related uncertainties...

we need an improvement of theoretical predictions from simulations

AGN feedback

galactic winds

Toward Precision Cosmology with the 1D Power Spectrum from Lya Forests

I - The Lya Forest in Cosmology

II-1D Power Spectrum Analysis

III- AGN feedback impact

IV- Cosmological analysis

Matter Power Spectrum: Chisari et al. 2018

DM density profile: Peirani et al. 2017

Hydrodynamical cosmological simulations

Vogelsberger et al. 2019

The HorizonAGN simulation

Cosmological hydrodynamical simulation run with the Adaptative Mesh Refinement (AMR) code RAMSES (*Teyssier 2002*)

Grid

The HorizonAGN simulation

- Cosmological hydrodynamical simulation run with the Adaptative Mesh Refinement (AMR) code RAMSES (Teyssier 2002)
- Run to z = 0.2 using 4 Million CPU hours
- <u>Box size</u>: $L_{box} = 100 Mpc h^{-1}$ with WMAP 7 cosmology
- <u>Cell size</u> = $1 kpc h^{-1}$ to $100 kpc h^{-1}$
- Included physics: Gas cooling with contribution from metals
 - Heating from a uniform UV background
 - Stellar formation
 - Stellar feedback: release mass, energy and metals
 - AGN feedback
- Companion simulation Horizon-noAGN

gas density temperature gas metallicity

• Black hole are sink particles which can accrete gas at the Bondi-Hoyle accretion rate:

$$M_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{(\overline{c}_s^2 + \overline{u}^2)^{3/2}}$$

 $\label{eq:loss} \begin{aligned} \pmb{\alpha} & \text{boost factor, accounts for not resolving the accretion disk} \\ & \left\{ \begin{array}{c} (\rho \, / \, \rho_0)^2 & \text{if} & \rho > \rho_0 \\ & 1 & \text{otherwhise} \end{array} \right. \end{aligned}$

• Black hole are sink particles which can accrete gas the Bondi-Hoyle accretion rate:

$$M_{BH}^{\cdot} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{\left(\overline{c}_s^2 + \overline{u}^2\right)^{3/2}}$$

• AGN feedback proceeds in two modes:

- Quasar mode: high-z universe, emit large amount of radiations, photo-ionize and heat gas

-----> Injection of **thermal energy** in a sphere of radius $r_{AGN} = \Delta x$

Solène Chabanier

• Black hole are sink particles which can accrete gas the Bondi-Hoyle accretion rate:

$$M_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{(\overline{c}_s^2 + \overline{u}^2)^{3/2}}$$

- AGN feedback proceeds in two modes:
 - Quasar mode: high-z universe, emit large amount of radiations, photo-ionize and heat gas

 \rightarrow Injection of **thermal energy** in a sphere of radius $r_{AGN} = \Delta x$

- Radio mode: low-z universe, creation of inflated cavities with strong magnetic fields

→ Injection of **kinetic energy** in jets of length $r_{AGN} = \Delta x$

• Black hole are sink particles which can accrete gas the Bondi-Hoyle accretion rate:

$$\dot{M}_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \bar{\rho}}{\left(\overline{c_s}^2 + \overline{u}^2\right)^{3/2}}$$

• AGN feedback proceeds in two modes:

- Quasar mode: high-z universe, emit large amount of radiations, photo-ionize and heat gas

 \rightarrow Injection of **thermal energy** in a sphere of radius $r_{AGN} = \Delta x$

- Radio mode: low-z universe, creation of inflated cavities with strong magnetic fields

→ Injection of **kinetic energy** in jets of length $r_{AGN} = \Delta x$

• A fraction ϵ_f of the radiated energy L_r is injected to the medium

$$\Delta E_{IGM} = \epsilon_f L_r$$

The AGN feedback in the HorizonAGN simulation

• Reproduce well scaling relations, mean fraction of gas in galaxies

Solène Chabanier

Credits: Y. Dubois

The Ly α forest in the HorizonAGN simulation

Solène Chabanier

AGN feedback effect on the P1D: redshift dependence

Dubois et al. 2012

AGN feedback effect on the P1D: heating

AGN feedback effect on the P1D: heating

AGN feedback effect on the P1D: gas redistribution

HnoAGN

Solène Chabanier

Simulation	α	r _{AGN}	ϵ_{f}
HAGN	$\begin{cases} (\rho/\rho_0)^2 & \text{if } \rho > \rho_0 \\ 1 & \text{otherwhise} \end{cases}$	Δx	{ 0.1 if radio mode 0.15 if quasar mode
HAGNclp10 HAGNclp100	10% of the time: $10\alpha_{HAGN}$ 1% of the time: $100\alpha_{HAGN}$	r _{AGN,} HAGN r _{AGN,} HAGN	€f, HAGN €f, HAGN
HAGNr+ HAGNr-	$lpha_{ m HAGN}$ $lpha_{ m HAGN}$	$2\Delta x$ $0.5\Delta x$	€f, HAGN €f, HAGN
$HAGN\epsilon +$	$lpha_{ m HAGN}$	r _{AGN,HAGN}	3if radio mode0.45if quasar mode
$HAGN\epsilon-$	$lpha_{ m HAGN}$	r _{AGN,HAGN}	{ 0.33 if radio mode 0.05 if quasar mode

	Simulation	α	r _{AGN}	$\epsilon_{ m f}$
Stochasticity in the accretion ra	<u>te</u> HAGN	$\begin{cases} (\rho/\rho_0)^2 & \text{if } \rho > \rho_0 \\ 1 & \text{otherwhise} \end{cases}$	Δx	{ 0.1 if radio mode 0.15 if quasar mode
$M_{BH} = \frac{4\Pi \alpha G^2 M_{BH}^2 \overline{\rho}}{(\overline{c}_s^2 + \overline{u}^2)^{3/2}}$	HAGNclp10 HAGNclp100	10% of the time: $10\alpha_{HAGN}$ 1% of the time: $100\alpha_{HAGN}$	r _{AGN,HAGN} r _{AGN,HAGN}	€f, HAGN €f, HAGN
	HAGNr+ HAGNr-	$lpha_{ m HAGN}$ $lpha_{ m HAGN}$	$2\Delta x$ $0.5\Delta x$	€f, HAGN €f, HAGN
	$HAGN\epsilon +$	$lpha_{ m HAGN}$	r _{AGN,HAGN}	3if radio mode0.45if quasar mode
	$HAGN\epsilon -$	QUACN	ľagn hagn	0.33 if radio mode

	Simulation	α	r _{AGN}	$\epsilon_{ m f}$
	HAGN	$\begin{cases} (\rho/\rho_0)^2 & \text{if } \rho > \rho_0 \\ 1 & \text{otherwhise} \end{cases}$	Δx	{ 0.1 if radio mode 0.15 if quasar mode
	HAGNclp10 HAGNclp100	10% of the time: $10\alpha_{HAGN}$ 1% of the time: $100\alpha_{HAGN}$	r _{AGN, H} AGN r _{AGN, H} AGN	€f, HAGN €f, HAGN
radius of energy deposition	HAGNr+ HAGNr-	$lpha_{ m HAGN}$ $lpha_{ m HAGN}$	$2\Delta x$ $0.5\Delta x$	€f, HAGN €f, HAGN
	$HAGN\epsilon +$	arhagn	r _{AGN, HAGN}	3if radio mode0.45if quasar mode
	$HAGN\epsilon-$	$lpha_{ m HAGN}$	r _{AGN,HAGN}	{ 0.33 if radio mode 0.05 if quasar mode

Simulation	α	r _{AGN}	$\epsilon_{ m f}$
HAGN	$\begin{cases} (\rho/\rho_0)^2 & \text{if } \rho > \rho_0 \\ 1 & \text{otherwhise} \end{cases}$	Δx	$\left\{ \begin{array}{ccc} 0.1 & \text{if} \\ 0.15 & \text{if} \\ quasar mode \end{array} \right.$
HAGNclp10 HAGNclp100	10% of the time: $10\alpha_{HAGN}$ 1% of the time: $100\alpha_{HAGN}$	r _{AGN,H} AGN r _{AGN,H} AGN	€f, HAGN €f, HAGN
HAGNr+ HAGNr-	$lpha_{ m HAGN} lpha_{ m HAGN}$	$2\Delta x$ $0.5\Delta x$	€f, HAGN €f, HAGN
HAGN ϵ + HAGN ϵ -	$lpha_{ m HAGN}$ $lpha_{ m HAGN}$	r _{AGN,H} AGN r _{AGN,H} AGN	3if radio mode0.45if quasar mode0.33if radio mode0.05if quasar mode

$$\Delta E_{IGM} = \epsilon_f L_r$$

The set of additional simulations

Parameters chosen to span observational uncertainties

Mean fraction of gas in galaxies

		\mathbf{f}_{gas}	Δf_{gas}
τ	HAGN	0.46	0.0
	HAGNclp10	0.45	$< \sigma_{ m f}$
	HAGNclp100	0.42	σ_{f}
σ	HAGNr+	0.36	$3\sigma_{ m f}$
	HAGNr-	0.57	$2.7\sigma_{\rm f}$
	$HAGN\epsilon +$	0.38	$2.3\sigma_{\mathrm{f}}$
~	$HAGN\epsilon-$	0.56	$2.5\sigma_{\mathrm{f}}$

our set covers a wide range of realistic feedback models

Uncertainties in the feedback model

lowering $r_{AGN} \longrightarrow$ stronger feedback because total amount of injected energy is conserved

Solène Chabanier

Toward Precision Cosmology with the 1D Power Spectrum from Lya Forests

I - The Lya Forest in Cosmology

II-1D Power Spectrum Analysis

III- AGN feedback impact

IV- Cosmological analysis

4- Cosmological Analysis

Active neutrinos constraints

• Lya alone: power suppression + z-dependence

but large degeneracy $\sigma_8 - M_v$

• Lya + CMB: sensitive to amplitude suppression

break degeneracy

4- Cosmological Analysis

Active neutrinos constraints

Palanque-Delabrouille et al. 2015b

Expected DR14 eBOSS + CMB constraints (preliminary results)

 $\sum m_{\nu} < 0.105$ (ev) @95% CL

4- Cosmological Analysis

Thermal relics constraints

DR9 BOSS results

 $\sim m_X$ most constrained by highz

Solène Chabanier

Conclusion

- High potential of Lya forest 3D correlations: expansion - **1D correlations: sensitive to smoothing i.e.** $\sum m_v m_{WDM}$
- Significant decrease of data-related uncertainties

gain of 2 on statistical power improved census of systematics

improvement of theoretical predictions from simulation is needed !

Conclusion

- High potential of Lya forest 3D correlations: expansion
 - 1D correlations: sensitive to smoothing i.e. $\sum m_{v} m_{WDM}$
- Significant decrease of data-related uncertainties

gain of 2 on statistical power improved census of systematics

improvement of theoretical predictions from simulation is needed !

- AGN feedback correction with uncertainty interval spanning a wide range of plausible models
 - suppresses power due to: efficient heating (large scales) heating + mass redistribution (small scales)

Induces 2% bias on n_s

Conclusion

- High potential of Lya forest 3D correlations: expansion
 - **1D** correlations: sensitive to smoothing i.e. $\sum m_v m_{WDM}$
- Significant decrease of data-related uncertainties

gain of 2 on statistical power improved census of systematics

improvement of theoretical predictions from simulation is needed !

- AGN feedback correction with uncertainty interval spanning a wide range of credible models
 - suppresses power due to: efficient heating (large scales) heating + mass redistribution (small scales)

Induces 2% bias on n_s

- Preliminary works give: $\sum m_v < 0.105$ ev @95% CL \longrightarrow slight preference for NH
 - m_x>10 kev @95% CL

factor 2 because of additional zbin and reduced uncertainties

Solène Chabanier

Thank you for your attention