Massive galaxy (and black hole) formation in the early Universe

Chris Carilli (NRAO)

Berkeley, February 10, 2009

- Intro: telescopes, techniques, massive galaxies, and quasars
- Massive galaxy and SMBH formation within 1 Gyr of the Big Bang: gas, dust, and star formation in quasar host galaxies at $z\sim6$
- Future: probing normal galaxy formation with the next generation telescopes
- [sBzK galaxies: the 'dawn of downsizing' during the epoch galaxy assembly $(z \sim 2)$]

Collaborators: Ran Wang, Walter, Menten, Cox, Bertoldi, Omont, Strauss, Fan, Wagg, Riechers, Neri

Plateau de Bure Interferometer High res imaging at 90 to 230 GHz rms < 0.1mJy, res < 0.5"

Very Large Array

30' field at 1.4 GHz

rms<10uJy, 1" res

High res imaging at 20 to 50 GHz rms < 0.1 mJy, res < 0.2"

30' field at 250 GH, rms < 0.3 mJy

Pushing back to first galaxies

MAMBO at 30m

Spectroscopic imaging of molecular gas, fuel for star formation in galaxies: gas mass, ISM conditions, dynamics

Fine structure lines: dominant ISM gas coolant

>Dust + synchrotron imaging: cm-tomm SEDs => obscuration-free star formation rates, ISM conditions, AGN Massive galaxy and SMBH formation at z~6: gas, dust, and star formation in quasar hosts

Why quasar hosts?

- Spectroscopic redshifts
- Extreme (massive) systems

 $M_B < -26 =>$

 $L_{bol} > 1e14 L_{o}$

 $M_{BH} > 1e9 M_o$

Rapidly increasing samples:
 z>5: > 100
 z>6: > 20

 Pushing into the tail-end of cosmic reionization => sets benchmark for first luminous structure formation

•GP effect => study of 'first light' is restricted to $\lambda_{obs} > 1um$

QSO host galaxies – MBH -- Mbulge relation

- Most (all?) low z spheroidal galaxies have SMBH
- 'Causal connection between SMBH and spheroidal galaxy formation'
- Luminous high z QSOs have massive host galaxies (1e12 Mo)

Galaxy formation as function of M_{*}

=> Massive galaxies form most of their stars at high z

Old, massive galaxies at high redshift: $z_{form} > 10$? Wiklind et al.

M_{*} = 2e11 M_o, z=5.2, age = 1Gyr

• 1/3 of luminous QSOs have $S_{250} > 2 \text{ mJy}$, *independent of redshift* from z=1.5 to 6.4

• $L_{FIR} \sim 1e13 L_{o} \sim 0.1 L_{bol}$: Dust heating by starburst or AGN?

- Massive gas reservoirs > 10¹⁰ M_o
- SFR > 1000 M_o/yr
- Detect dust ~ 1hr, CO in 10hr

Pushing into reionization: Host galaxy of J1148+5251 at z=6.42

- Highest redshift SDSS QSO (tuniv = 870Myr)
- $L_{bol} = 1e14 L_{o}$
- Black hole: $\sim 3 \times 10^9$ Mo (Willot etal.)
- Gunn Peterson trough (Fan etal.)

Dust formation?

AGB Winds $\geq 1.4e9yr > t_{univ} = 0.87e9yr$

=> dust formation associated with high mass star formation?

Dust formation at t_{univ}<1Gyr

Extinction toward z=6.2 QSO and 6.3 GRB ~ starburst model => larger, silicate + amorphous carbon dust grains (vs. eg. graphite) formed in core collapse SNe?

Stratta, Dwek, Maiolino, Shull, Nozawa...

1148+52 z=6.42: Gas detection

- Size ~ 6 kpc
- M(H₂) ~ 2e10 M_o

- FWHM = 305 km/s
- z = 6.419 +/- 0.001
- $M_{gas}/M_{dust} \sim 30 \sim starburst galaxies$

- FIR excess = 50K dust
- Radio-FIR SED follows star forming galaxy
- SFR ~ 3000 Mo/yr

CO excitation ladder

Dense, warm gas: CO thermally excited to 6-5, similar to starburst nucleus

 $T_{\text{kin}} > 70 \ K$

 $n_{H2} > 1e4 \text{ cm}^{-3}$

LFIR vs L'(CO): 'integrated Kennicutt-Schmidt law'

Higher Density Tracers: HCN, HCO⁺

- $n_{cr} > 1e5 \text{ cm}^{-3}$ (vs. $n_{cr}(CO) \sim 10^3 \text{ cm}^{-3}$)
- Dense gas lines 5-10 fainter than CO

HCN: Dense gas directly associated with star forming clouds

•FIR -- HCN = linear relation from GMCs

- SFR per unit dense gas mass ~ constant in
- CO traces all gas

HCN traces dense gas => 'Counting star forming clouds'

=> dense/total gas increases with SFR Kennicutt-Schmidt laws

•CO-FIR lum: FIR \propto L'(CO)^{1.5+/-0.2}

•K-S law: $\Sigma_* \propto \Sigma_g^{1.4+/-0.15}$

•SFR $\propto \rho$ / timescale

•Low density gas tracers: excited in allgas, such that timescale \propto FF time $\propto \rho^{-0.5}$ => SFR $\propto \rho^{1.5}$

•High density gas tracers: only excited in densest gas, such that all clouds have roughly same (critical) density => timescale is same => SFR $\propto \rho^1 \rho_{cr}^{0.5}$

 Predicts departure from linearity for HCN/HCO+ in galaxies where mean density approaches critical density

=> HyLIRG at high z: entire ISM $\sim \rho_{cr}$

CO rotation curves: QSO host galaxy dynamics at high z

2322+1944, z=4.2

Molecular Einstein ring

Riechers et al. 2008

2322+1944 CO rotation curve: lens inversion and QSO host galaxy dynamics

Source Plane

Lens Plane

Riechers + 08

- Galaxy dynamical mass (r<3kpc) \sim 4.4e10 M_o
- M(H₂) ~ 1.7e10 M_o
- $M_{BH} \sim 1.5e9 M_o$ (from MgII lines, Eddington)

Break-down of M_{BH} -- M_{bulge} relation at very high z Use CO rotation curves to get host galaxy dynamical mass

Perhaps black holes form first?

High z quasar hosts vs. Submm galaxies

- Gas mass distribution similar: <M_{H2}> ~ 3e10 M_o
- $\langle V_{QSO} \rangle \sim 300 \text{ km s}^{-1}$
- $<V_{SMG}> \sim 700$ km s⁻¹

=> Quasar hosts preferentially 'face-on': $<\theta_I > \sim 13^\circ$

[CII] 158um

- Dominant ISM gas cooling line
- Traces CNM and PDRs
- z>4 => FS lines observed in (sub)mm bands

J1148+5251 z=6.42

- $L_{[CII]} = 4x10^9 L_0 (L_{[NII]} < 0.1L_{[CII]})$
- SFR ~ 6.5e-6 $L_{[CII]}$ ~ 3000 Mo/yr

'Maximal star forming disk' (Walter + 2009)

- [CII] size ~ 1.5 kpc => SFR/area ~ 1000 M_o yr⁻¹ kpc⁻²
- Maximal starburst: (Thompson, Quataert, Murray 2005)
 - Self-gravitating gas disk
 - Vertical disk support by radiation pressure on dust grains
 - ≻'Eddington limited' SFR/area ~ 1000 M_o yr⁻¹ kpc⁻²
 - ➢ eg. Arp 220 on 100pc scale, Orion on 0.1pc scale

[CII] -- the good and the bad

[CII]/FIR decreases
 rapidly with LFIR (lower
 heating efficiency due to
 charged dust grains?) =>
 luminous starbursts are still
 difficult to detect in C+

- Normal star forming galaxies (eg. LAEs) are not much harder to detect
- Don't pre-select on dust

Bertoldi, Maiolino, Iono, Malhotra

Summary of cm/mm detections at z>5.7: 33 quasars

- Plateau de Bure is routinely detecting 1mJy lines, and 0.1 mJy continuum
- Only direct probe of host galaxies
- 10 in dust => M_{dust} > 1e8 M_o: Dust formation in SNe?
- 5 in CO $=> M_{gas} > 1e10 M_{o}$: Fuel for star formation in galaxies
- 10 at 1.4 GHz continuum: SED => SFR > 1000 M_o/yr (radio loud AGN fraction ~ 6%)
- 2 in [CII] => maximal star forming disk: 1000 M_o yr⁻¹ kpc⁻²

Building a giant elliptical galaxy + SMBH at $t_{univ} < 1$ Gyr

- Multi-scale simulation isolating most massive halo in 3 Gpc^3
- Stellar mass ~ 1e12 Mo forms in series (7) of major, gas rich mergers from z~14, with SFR \geq 1e3 Mo/yr
- SMBH of ~ 2e9 Mo forms via
 Eddington-limited accretion + mergers
- Evolves into giant elliptical galaxy in massive cluster (3e15 Mo) by z=0

- Rapid enrichment of metals, dust in ISM (z > 8)
- Rare, extreme mass objects: ~ 100 SDSS z~6 QSOs on entire sky
- Integration times of hours to days to detect HyLIGRs

Pushing to 'normal galaxies' during reionization, eg. $z=5.7 \text{ Ly}\alpha$ galaxies in COSMOS

- SUBARU: Ly $\alpha \implies <$ SFR $> \sim 10 M_o/yr$
- ~ 100 sources in 2 deg⁻² in $\Delta z \sim 5.7$ +/- 0.05

Stacking analysis (100 LAEs)

- MAMBO: $S_{250} < 2mJy => SFR < 300$
- VLA: $S_{1.4} < 2.5 \text{uJy} \Rightarrow SFR < 125$

=> Need order magnitude improvement in sensitivity at radio through submm wavelengths in order to study earliest generation of normal galaxies.

What is EVLA? First steps to the SKA-high

By building on the existing infrastructure, multiply ten-fold the VLA's observational capabilities, including:

•10x continuum sensitivity (<1uJy)</pre>

full frequency coverage (1 to 50 GHz)80x BW (8GHz)

What is ALMA?

North American, European, Japanese, and Chilean collaboration to build & operate a large millimeter/submm array at high altitude site (5000m) in northern Chile -> order of magnitude, or more, improvement in all areas of (sub)mm astronomy, including resolution, sensitivity, and frequency coverage.

- Detect dust emission in 1sec (5 σ) at 250 GHz
- Detect [CII] in minutes
- Detect multiple lines, molecules per band => detailed astrochemistry
- Image dust and gas at sub-kpc resolution gas dynamics, K-S
- LAE, LBGs: detect dust, molecular, and FS lines in 1 to 3 hrs

Arp 220 at z=0

FS lines will be workhorse lines in the study of the first galaxies with ALMA.Study of molecular gas in first galaxies will be done primarily with cm telescopes

Pushing to normal galaxies: continuum

A Panchromatic view of 1st galaxy formation Arp 220 Continuum z=2Arp 220 vs z 0.01 SMA cm: Star formation, 0.001 AGN PdBI ð.0001 Spitzer density 10^{-5} ALMA Flux 10^{-6} (sub)mm Dust, FSL, mol. gas North American Array 10⁻⁷ JWST Near-IR: Stars, ionized gas, AGN 10^{-8} 10¹³ 10¹⁰ 10¹² 10⁸ 10⁹ 10^{14} 10¹¹ Frequency (Hz)

EVLA Status Antenna retrofits now ~ 50% completed. Early science start in Q4 2009, using new correlator: proposal deadline June 1, 2009 for shared-risk obs!! Full receiver complement completed 2012.

Antennas, receivers, correlator in production: best submm receivers and antennas ever!
Site construction well under way: Observation Support Facility, Array Operations Site, antenna pads

Array operations center

Antenna commissioning in progress

•North American ALMA Science Center (C'Ville): support early science Q4 2010, full ops Q4 2012

Star formation history of Universe: dirty little secret

Optical limitations

Dust obscuration: missing earliest, most active phases of galaxy formation

• Only stars and star formation: not (cold) gas => missing the other half of the problem = 'fuel for galaxy formation'

sBzK galaxies (K<20): Star forming galaxies at $z \sim 1.5$ to 2.5

• near-IR selected: $K_{AB} \sim 23$

- Density ~ few $x10^{-4}$ Mpc⁻³ ~ 30x SMG
- $M_* \sim 10^{10}$ to $10^{11} M_o$

Forming 'normal' ellipticals, large spirals?

HST

HST sizes ~ 1 " ~ 9 kpc

■ VLA size ~ 1"

SKA science before the SKA!

- SSFR increases with
 z
- SSFR constant with M_{*}, unlike z<1=> 'pre-downsizing'
- z>1.5 sBzK well above the 'red and dead' galaxy line
- Extinction increases
 with SFR, M_{*}
- <factor 5> UV dust
 correction needs to be
 differential wrt SFR,
 M*

sBzK: not extreme starbursts, but massive gas reservoirs

D/CO[3-2] B/CO[2-1] B/CO[2-1] D/CO[2-1] D/CO[2-1] D/CO[2-1] D/CO[2-1]

Daddi + 2008

- 6 of 6 sBzK detected in CO with Bure
- Gas mass > 10^{10} M_o ~ submm galaxies, but
- SFR < 10% submm gal</p>
- 5 arcmin⁻² (~50x submm galaxies)

- Extreme gas rich galaxies without extreme starbursts
- Gas depletion timescales > 5 x10⁸ yrs

=> secular galaxy formation during the epoch of galaxy assembly

Blind molecular line commensal surveys

EVLA: CO 1-0 at z = 1.4 to 1.9 (48 to 40 GHz)

- FoV ~ 1 arcmin² => ~ 2 or 3 sBzK ($M_* > 10^{10} M_o$)
- rms (10hr, 300 km/s) = 50 uJy => L'(CO) = 1.9e9 K km/s pc²
- 4σ mass limit: $M(H_2) = 3x10^{10} M_o$ (Galactic X factor)

=> Every 'Q-band' full synthesis will have ~ 1 sBzK CO detection

ALMA: CO 2-1 at z = 1.45 to 1.7 (93 to 85 GHz)

- FoV ~ 1 arcmin², but fractional BW (Δz) ~ 1/2 EVLA
- $S_{2-1} \sim 4xS_{1-0}$ (in Jy) and rms (300 km/s) ~ 30uJy
- Mass limit ~ 5x10⁹ M_o

=> Every 'Band 3' full synthesis will have ~ 3 sBzK CO detections

Total SFR in Mo/yr (0.1 to 100 Mo)

- SFR = 3e-10 L_{FIR} (L_o) (42 -- 122um) (Kennicutt 1998, ARAA)
- Only massive stars (>5Mo) => factor 5.6 lower

Radio-FIR correlation: NVSS/IRAS galaxies (Yun + 02)

SFR $(M_0/yr) = 6e-29 L_{1.4} (erg/s/Hz)$

Magic of (sub)mm: distance independent method of studying objects in universe from z=0.8 to 10

Similar for spectral lines (eg. CO) but not as favorable due to:

- a. Modified RJ power law index for lines ~ 2 lines, while for dust ~ 3 to 4
- b. Higher order lines may be subthermally excited due to density limits

Break-down of radio-FIR correlation: inverse Compton losses off CMB?

- Massive gas reservoirs $> 10^{10} M_o > 10 x MW$
- SFR > 1000 M_o/yr

Summary CO Line SEDs

FIR-detected: star forming hosts

Building a giant elliptical galaxy + SMBH at tuniv < 1Gyr

 Multi-scale simulation isolating most massive halo in 3 Gpc^3 (co-mov)

 Stellar mass ~ 1e12 Mo forms in series (7) of major, gas rich mergers from z~14, with SFR ~ 1e3 - 1e4 Mo/yr

SMBH of ~ 2e9 Mo forms via
 Eddington-limited accretion + mergers

 Evolves into giant elliptical galaxy in massive cluster (3e15 Mo) by z=0

Generally consistent with 'downsizing'

z= 12.75 z= 10.32 z= 9.17 10 z= 8.63 z= 8.10 Z= 7.65 Li, Hernquist, Hopkins, Roberston z= 7.00 z= 0.54 z= 4.99 6.5

- Rapid enrichment of metals, dust in ISM (z > 8)
- Rare, extreme mass objects: ~ 100 SDSS z~6 QSOs on entire sky
- Integration times of hours to days to detect HyLIGRs