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[L. Cortese; SDSS.]

[Dubois+16]

AGN         no AGN

Origin of morphological diversity at fixed mass?

How to explain environmental effects?

[Kraljic+ in prep]
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Galaxy formation in cosmology: the
role of the environment

Tillson+15

High- , most of the gas + AM flows along filamentary structures…
connected to cosmic web

z
Cadiou+21c

[also Dekel & Birboim 06, Danovich+15]6
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Galaxy formation in cosmology: the
role of the environment

Environmental effects:

source of “pollution” in
weak lensing surveys
⇒ intrinsic alignment
 
extra parameters in semi-
analytical models
⇒ galaxy-halo correlation
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The origin of angular
momentum
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Predicting angular momentum

Angular momentum of individual
regions can be predicted accurately.

16[On patch boundaries: see Lucie-Smith+18]
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Baryon angular momentum

Simulations (9Mh @ DiRAC):

Resolve disk height

, 
SF + AGN & SN feedback
Modify 
Tracer particles
Cadiou+19

Δx = 35 kpc
z ≥ 2 M =200c 10  M12

⊙

l(z = 2)

l ×0 0.66 l ×0 0.8

l ×0 1.2 l ×0 1.5

21

https://s3.amazonaws.com/media-p.slid.es/videos/1468957/zcQAWtD6/0001-1911.mp4


l ×0 1.2 l ×0 1.5

l ×0 0.66 l ×0 0.8 l ×0 0.66 l ×0 0.8

l ×0 1.2 l ×0 1.5

+

Angular momentum of
the baryons / stars

within Rvir
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l ×0 0.66 l ×0 0.8

l ×0 1.2 l ×0 1.5

R1/2

l ×0 1.2 l ×0 1.5

l ×0 0.66 l ×0 0.8
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l ×0 1.2 l ×0 1.5

l ×0 0.66 l ×0 0.8
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l ×0 1.2 l ×0 1.5

l ×0 0.66 l ×0 0.8

AM of baryons originates from initial
conditions…
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l ×0 1.2 l ×0 1.5

l ×0 0.66 l ×0 0.8

AM of baryons originates from initial
conditions…
can be controlled…
and regulate galaxy morphology
Negligible AGN/SN global self-regulation
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Temporary conclusions
angular momentum is predictable

 
boundary of halos in the ICs is a hard problem
⇒ limits practicality of predictions (for now)

 
baryons appear to be simpler!
⇒ good news for weak lensing predictions
⇒ key to understand morphology

 
but why do some objects grow their AM faster/slower?
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The effect of environment on
halo properties
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Distance to filament
Kraljic+18 [see also Laigle15, Song+21,…]

The effect of environment on
halo properties

29



31



What if the galaxy had formed here
instead?
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What if the galaxy had formed here
instead?or here?
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The “splicing” technique

1. Generate ICs

Splicing: equivalent of constraining field at all points in spliced region35
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The “splicing” technique

1. Generate ICs
2. Integrate ( -nody)N

3. Select region of interest
4. Trace back to ICs
5. “Splice”
6. Integrate again

t

Splicing: equivalent of constraining field at all points in spliced region35

https://s3.amazonaws.com/media-p.slid.es/videos/1468957/1WAxb0KL/reference_sequence_no_sphere_30fps.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1468957/JH6HJFj1/sequence_30fps_slowmo.mp4
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(3) Splice a in b
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The causal origin of DM halo concentration

ρ (r) =DM

1 +
R /cvir

r (
R /cvir

r )2
ρ0

Wechsler+02
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The causal origin of DM halo concentration

ρ (r) =DM

1 +
R /cvir

r (
R /cvir

r )2
ρ0

Wechsler+02

Origin of
scatter at fixed 

?Mvir
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41

The causal origin of DM halo concentration



41

The causal origin of DM halo concentration



41

The causal origin of DM halo concentration



41

The causal origin of DM halo concentration



41

Same halo in 10× different environments
Repeat experiment for 7 halos (70 realisations in total)

The causal origin of DM halo concentration
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