On the causal origin of properties of dark matter halos and galaxies

Corentin Cadiou | Cosmology Seminar @ Berkeley With A. Pontzen & H. Peiris: 2012.02201, 2107.03407

Galaxy formation

edits: L. Cortese (ICRAR/UWA) and Sloan Digital Sky Survey

[L. Cortese; SDSS.]

Origin of morphological diversity at fixed mass?

Galaxy formation

 $\log(M_s/M_{sun}) = 12.1$

 $\log(M_s/M_{sun}) = 13.0$

Origin of morphological diversity at fixed mass?

Galaxy formation

 $\log(M_{\star}/M_{\rm sun}) = 12.1$

 $\log(M_s/M_{sun}) = 13.0$

Origin of morphological diversity at fixed mass? How to explain environmental effects?

Tillson+15 Cadiou+21c High-*z*, most of the gas + AM flows along filamentary structures... connected to cosmic web

[also Dekel & Birboim 06, Danovich+16]

Environmental effects:

Environmental effects:

 source of "pollution" in weak lensing surveys
 ⇒ intrinsic alignment

 source of "pollution" in weak lensing surveys
 ⇒ intrinsic alignment

 extra parameters in semianalytical models
 ⇒ galaxy-halo correlation

Halo Mass M_h [M_☉]

The origin of angular momentum

$$\mathbf{L}_{ ext{lin.}} \propto \int_{igodot} \mathrm{d}^3 q (\mathbf{q} - ar{\mathbf{q}}) imes
abla \phi$$

$$\mathbf{L}_{\text{lin.}} \propto \int_{\mathbb{O}} \mathrm{d}^3 q \mathbf{q} - \bar{\mathbf{q}} \times \nabla \phi$$
Position w.r.t. center

z = 100 z = 0

$$\mathbf{L}_{\text{lin.}} \propto \int_{\mathcal{O}} \mathrm{d}^{3}q \mathbf{q} - \bar{\mathbf{q}} \times \nabla \phi$$
Position w.r.t. center Velocity

[White 84]

z = 100 z = 0

[Genetic modifications: Roth+16, see also Rey&Pontzen 18, Stopyra+¹²0]

z = 100 z = 0

[Genetic modifications: Roth+16, see also Rey&Pontzen 18, Stopyra+¹²0]

z = 100 z = 0

[Genetic modifications: Roth+16, see also Rey&Pontzen 18, Stopyra+¹²20]

z = 100 z = 0

[Genetic modifications: Roth+16, see also Rey&Pontzen 18, Stopyra+¹²20]

• Angular momentum of individual regions *can* be predicted accurately.

[On patch boundaries: see Lucie-Smith+¹₁₈]

- Angular momentum of individual regions *can* be predicted accurately.
- AM of *halos* ⇒ requires boundaries of patch

$$\mathbf{L}_{ ext{lin.}} \propto \int \mathrm{d}^3 q (\mathbf{q} - ar{\mathbf{q}}) imes
abla \phi$$

- Angular momentum of individual regions *can* be predicted accurately.
- AM of *halos* ⇒ requires boundaries of patch

$$\mathbf{L}_{ ext{lin.}} \propto \int \mathrm{d}^3 q (\mathbf{q} - ar{\mathbf{q}}) imes
abla \phi$$

- Angular momentum of individual regions *can* be predicted accurately.
- AM of *halos* ⇒ requires boundaries of patch

Wechsler & Tinker 18

 $M_{\star}/M_{
m h} \ll \Omega_b/\Omega_m$ \Rightarrow baryons & DM stem from different regions

different regions

 $M_{\star}/M_{
m h} \ll \Omega_b/\Omega_m$ \Rightarrow baryons & DM stem from different regions Baryons more strongly bound \Rightarrow less prone to being ejected

⇒ baryons & DM stem from different regions

Baryons more strongly bound \Rightarrow less prone to being ejected

Baryon angular momentum

Simulations (9Mh @ DiRAC):

- Resolve disk height $\Delta x = 35 \ \mathrm{kpc}$
- + $z\geq 2$, $M_{
 m 200c}=10^{12}~{
 m M}_{\odot}$
- SF + AGN & SN feedback
- Modify l(z = 2)
- **Tracer particles** Cadiou+19

Angular momentum of the baryons / stars within *R*_{vir}

22

• AM of *baryons* originates from initial conditions...

- AM of *baryons* originates from initial conditions...
- can be controlled...

- AM of *baryons* originates from initial conditions...
- can be controlled...
- and regulate galaxy morphology

- AM of *baryons* originates from initial conditions...
- can be controlled...
- and regulate galaxy morphology
- *Negligible* AGN/SN global self-regulation

• angular momentum is predictable

• angular momentum is predictable

boundary of halos in the ICs is a *hard* problem
⇒ limits practicality of predictions (for now)

• angular momentum is predictable

boundary of halos in the ICs is a *hard* problem
⇒ limits practicality of predictions (for now)

- *baryons* appear to be simpler!
 - \Rightarrow good news for weak lensing predictions
 - \Rightarrow key to understand morphology

• angular momentum is predictable

boundary of halos in the ICs is a *hard* problem
⇒ limits practicality of predictions (for now)

- *baryons* appear to be simpler!
 - \Rightarrow good news for weak lensing predictions
 - \Rightarrow key to understand morphology

• but why do some objects grow their AM faster/slower?

The effect of environment on halo properties

The effect of environment on halo properties

What if the galaxy had formed here instead?

What if the galaxy had formed here instand?

1. Generate ICs

Generate ICs Integrate (*N*-nody)

Splicing: equivalent of constraining field at all points in spliced region

t

+

Generate ICs
Integrate (*N*-nody)
Select region of interest

+

Generate ICs
Integrate (*N*-nody)
Select region of interest
Trace back to ICs

+

Generate ICs
Integrate (*N*-nody)
Select region of interest
Trace back to ICs
"Splice"

4

Generate ICs
Integrate (*N*-nody)
Select region of interest
Trace back to ICs
"Splice"
Integrate again

(1) Draw field a

Most likely* field f with

- **same** value in spliced region (*a*),
- as close as possible outside (b)

Mathematically f is solution of: f = a in Γ minimizes $Q = (b - f)^{\dagger} \mathbf{C}^{-1} (b - f)$ outside $\mathbf{37}$

(1) Draw field a

Most likely* field f with

- **same** value in spliced region (*a*),
- as close as possible outside (b)

Mathematically f is solution of: f = a in Γ minimizes $Q = (b - f)^{\dagger} \mathbf{C}^{-1} (b - f)$ outside $\mathbf{37}$

Most likely* field f with

- **same** value in spliced region (*a*),
- as close as possible outside (b)

Mathematically f is solution of:

$$f = a ext{ in I}$$

minimizes $Q = (b - f)^{\dagger} \mathbf{C}^{-1} (b - f)$ outside 37

<u>Same halo</u> in 10× different environments Repeat experiment for 7 halos (70 realisations in total)

<u>Same halo</u> in 10× different environments Repeat experiment for 7 halos (70 realisations in total)

<u>Same halo</u> in 10× different environments Repeat experiment for 7 halos (70 realisations in total)

• angular momentum is predictable

- angular momentum is predictable
- *boundary* of halos in the ICs is a *hard* problem
 ⇒ limits practicality of predictions (for now)

- angular momentum is predictable
- *boundary* of halos in the ICs is a *hard* problem
 ⇒ limits practicality of predictions (for now)
- *baryons* can be controlled!
 - ⇒ weak lensing predictions easier than expected?⇒ role in setting morphology

- angular momentum is predictable
- *boundary* of halos in the ICs is a *hard* problem
 ⇒ limits practicality of predictions (for now)
- *baryons* can be controlled!
 - ⇒ weak lensing predictions easier than expected?⇒ role in setting morphology
- environmental effects can have *dramatic* impact on halo formation
 - \Rightarrow 50% of concentration scatter due to env.
 - \Rightarrow similar impact on galaxy formation?

Questions?

• angular momentum is predictable

- angular momentum is predictable
- *boundary* of halos in the ICs is a *hard* problem
 - \Rightarrow limits practicality of predictions (for now)

Questions?

- angular momentum is predictable
- *boundary* of halos in the ICs is a *hard* problem
 ⇒ limits practicality of predictions (for now)
- *baryons* can be controlled!
 - \Rightarrow weak lensing predictions easier than expected?
 - \Rightarrow role in setting morphology

Questions?

- angular momentum is predictable
- *boundary* of halos in the ICs is a *hard* problem
 ⇒ limits practicality of predictions (for now)
- *baryons* can be controlled!
 - \Rightarrow weak lensing predictions easier than expected?
 - \Rightarrow role in setting morphology
- environmental effects can have *dramatic* impact on halo formation
 - \Rightarrow 50% of concentration scatter due to env.
 - \Rightarrow similar impact on galaxy formation?

Questions?

Verify that

$$\xi_{\text{lin}}(r) \sim \left\langle \underbrace{\delta(x=d)\delta(x=d+r)}_{\text{in}} \right\rangle$$

is the same in spliced / ref simulation.

Verify that

$$\xi_{
m lin}(r) \sim \left\langle \underbrace{\delta(x=d)}_{
m in} \underbrace{\delta(x=d+r)}_{
m out} \right\rangle$$

is the same in spliced / ref simulation.

Verify that

$$\xi_{
m lin}(r) \sim \left\langle \underbrace{\delta(x=d) \delta(x=d+r)}_{
m in}
ight
angle
ight
angle$$

is the same in spliced / ref simulation.

The origin of high *z* angular momentum I. Torque with cosmic web hot accretion $R_{\rm vir}$ $R_{\rm vir}$ $\kappa_{\rm vir}$ Spin-up by cosmic web cold accretion

The origin of high *z* angular momentum I. Torque with cosmic web hot accretion $R_{\rm vir}$ $R_{\rm vir}$ $\kappa_{\rm vir}$ Spin-up by cosmic web II. Transport at constant AM cold

[Danovich+545]

The origin of high *z* angular momentum I. Torque with cosmic web hot accretion $R_{\rm vir}$ $R_{\rm vir}$ $\kappa_{\rm vir}$ III. Torque down in inner halo Spin-up by cosmic web cold II. Transport at constant AM

[Danovich+15]

The origin of high *z* angular momentum I. Torque with cosmic web hot accretion $R_{\rm vir}$ $R_{\rm vir}$ V. Mixing in inner disk & bulge $R_{ m vir}$ III. Torque down in inner halo Spin-up by cosmic web cold II. Transport at constant AM

[Danovich+15]

Predict pre-accretion AM? Alignment with environment?

III. Torque down in inner halo

Predict pre-accretion AM? Alignment with environment?

Same evolution in cold/hot accretion modes?

III. Torque down in inner halo

I. Torque with cosmic web

Predict pre-accretion AM? Alignment with environment?

II. Transport at constant AM

Same evolution in cold/hot accretion modes?

III. Torque down in inner halo

Origin of torque down (pressure or gravity)? Loss of link with cosmic AM?

I. Torque with cosmic web

Predict pre-accretion AM? Alignment with environment?

II. Transport at constant AM

Same evolution in cold/hot accretion modes?

III. Torque down in inner halo

Origin of torque down (pressure or gravity)? Loss of link with cosmic AM?

IV. Mixing in inner disk & bulge

Fraction that ends up in disk vs. IGM? Influence of galactic physics?

[Danovich+15]

Predict pre-accretion AM? Alignment with environment?

III. Torque down in inner halo

Predict pre-accretion AM? Alignment with environment?

III. Torque down in inner halo

I. Torque with cosmic web

Predict pre-accretion AM? Alignment with environment?

II. Transport at constant AM Same evolution in cold/hot accretion modes?

III. Torque down in inner halo Origin of torque down (pressure or gravity)? Loss of link with cosmic AM?

See Cadiou+21c

I. Torque with cosmic web

Predict pre-accretion AM? Alignment with environment?

II. Transport at constant AM Same evolution in cold/hot accretion modes?

III. Torque down in inner halo

<u>Origin of torque down (pressure or gravity)?</u> Loss of link with cosmic AM?

See Cadiou+21c

IV. Mixing in inner disk & bulge

Fraction that ends up in disk vs. IGM? Influence of galactic physics?

Predict pre-accretion AM? Alignment with environment?

III. Torque down in inner halo

Predict pre-accretion AM? Alignment with environment?

Same evolution in cold/hot accretion modes?

III. Torque down in inner halo

I. Torque with cosmic web

Predict pre-accretion AM? Alignment with environment?

II. Transport at constant AM

Same evolution in cold/hot accretion modes?

III. Torque down in inner halo

Origin of torque down (pressure or gravity)? Loss of link with cosmic AM?

I. Torque with cosmic web

Predict pre-accretion AM? Alignment with environment?

II. Transport at constant AM

Same evolution in cold/hot accretion modes?

III. Torque down in inner halo

Origin of torque down (pressure or gravity)? Loss of link with cosmic AM?

IV. Mixing in inner disk & bulge Fraction that ends up in disk vs. IGM?

Influence of galactic physics?