

A Large Population of High Redshift Galaxy Clusters in the IRAC Shallow Cluster Survey (ISCS)

> M. Brodwin (JPL/Caltech) UC Berkeley Cosmology Seminar November 5, 2006

Collaborators

Core Cluster Search Team:

M. Brodwin (JPL/Caltech)P. R. Eisenhardt (JPL/Caltech)A. H. Gonzalez (U. Florida)S. A. Stanford (UC Davis)D. Stern (JPL/Caltech)

Surveys	Data	PI(s)	
IRAC Shallow Survey	Imaging: 3.6/4.5/5.8/8.0 µm	P. R. Eisenhardt (JPL/Caltech)	
NOAO Deep Wide-Field Survey (NDWFS)	Imaging: Deep B _w /R/I/K	A. Dey (NOAO) B. T. Jannuzi (NOAO)	
FLAMINGOS Extragalactic Survey (FLAMEX)	Imaging: Deep J/K _s	A. H. Gonzalez (U. Florida)	
AGN and Galaxy Evolution Survey (AGES)	Spectroscopy: 20,000 optical spectra	D. Eisenstein (Arizona) C. S. Kochanek (Ohio State) B. T. Jannuzi (NOAO) & S. S. Murray (CfA)	

Outline of Talk

Motivation Survey Description Methodology & Results Implications for Massive Galaxy Formation Next Steps & Summary

Galaxy Evolution I

- Very efficient for galaxy surveys
- Fundamental plane of elliptical galaxies discovered in cluster surveys
- Study effect of dense environment on galaxy evolution (e.g. *T-Σ* relation; Butcher-Oemler Effect; etc.)

Abell 1689 (ACS; Benitez et al.)

Galaxy Evolution I

 Evidence that ellipticals in z<1 clusters form their stars at high-z (z_f~2-5), and evolve passively.

Extend to higher z, closer to the epoch of formation

Stanford, Eisenhardt & Dickinson (1998) see also De Lucia et al. (2004), van Dokkum & van der Marel (astro-ph/0609587)

Galaxy Evolution II

- Growing evidence for early formation of massive field galaxies
- Anti-Hierarchical?
- Role of "dry merging"?

Need unbiased census of massive galaxies at 1 < z < 2

Galaxy Evolution III

- SFR peaks at 1<z<2
- Most of the stellar mass is created in this redshift regime

Galaxy Evolution III

- SFR peaks at 1<z<2
- Most of the stellar mass is created in this redshift regime
- Massive galaxies have much higher specific SFR at z=2

Galaxy Evolution III

- SFR peaks at 1<z<2
- Most of the stellar mass is created in this redshift regime
- Massive galaxies have much higher specific SFR at z=2

Explore connection between ULIRGS and Galaxy Clusters at 1<z<2 ULIRGS ($L_{IR} > 10^{12} L_{\odot}$) at 1 < z < 3

- Massively starforming (> 100 M_☉/yr)
- ~1000x more common than locally
- Highly clustered (r₀ > 10 h⁻¹ Mpc), similar to EROs at these redshifts.

Clusters & Groups at z~0

- Repository for most of the stellar mass in the Universe
- Most clustered structures in the Universe (r₀ ~ 20 h⁻¹ Mpc)

Motivation: Traditional Cluster Surveys

Cosmology I

 "Fair Sample" of Universe, can measure Ω_m directly

Allen et al. (2002)

Motivation: Traditional Cluster Surveys

Cosmology I

- "Fair Sample" of Universe, can measure Ω_m directly
- Compare dN/dM with Press-Schechter prediction

Motivation: Traditional Cluster Surveys

Cosmology I

- "Fair Sample" of Universe, can measure Ω_m directly
- Compare dN/dM with Press-Schechter prediction
- Jointly constrain Ω_m and σ₈ by measuring cluster mass function.

Bahcall et al. (2003)

Motivation: Future Surveys

Cosmology II

Future cosmology constraints

Frank Bertoldi

Motivation: Novel Approach Today

Cosmology III

Primary uncertainty in standard SN Ia cosmology is DUST correction.

Cluster Search Algorithms

Method	Z<1	Z>1		
X-ray	Efficient	Poor (sensitivity); Biased (shocks, concentration)		
Optical (e.g. Red- Sequence)	Efficient	Poor (4000Å break leaves optical window); Biased (against clusters with star formation)		
Multi-λ Photo-z	Efficient	Efficient; Unbiased		
Future				
Sunyaev- Zeldovich	Great Potential; Will S <i>till</i> Require Multi-λ follow-up to calibrate	Great Potential; Will <i>Still</i> Require Multi-λ follow-up to calibrate		

The Spitzer Advantage

Spitzer/IRAC Shallow Survey

 3.6-8.0 µm Spitzer/IRAC survey (Eisenhardt, Stern, Brodwin et al. 2004) covering 8.5 deg² to a 90-sec depth in the NDWFS Boötes field.

	3.6 μm	4.5 μm	5.8 μm	8.0 μm
Vega Mag 5σ (5")	18.6	17.8	15.4	14.9
AB Mag 5σ (5")	21.4	21.1	19.1	19.3
Flux (μJy) 1σ (5")	2.0	2.7	15.6	13.7

Brightness of a Model L* Galaxy

Spitzer Advantage

- Bruzual & Charlot model
 - 0.1 Gyr Burst, $z_f = 3$
 - H₀=70; Ω_M = 0.3; Ω_Λ = 0.7
- Red galaxies quickly fade in optical due to strong Kcorrection
- Near-IR better; hard to get deep, large areas
- Mid-IR best, with flat sensitivity at 0.7 < z < 2+. Wide-field mapping efficient with Spitzer.

Search Method

- Photometric Redshift Probability Functions, P(z), are generated for a flux-limited 4.5µm sample, containing 200,000 galaxies over 8.5 deg², from NDWFS B_wRI and *Spitzer*/IRAC [3.6][4.5] photometry.
- Wavelet detection algorithm, tuned to ~500 kpc scales, is run on the 3D {α,δ,P(z)} catalog, resulting in cluster probability density maps, from which candidates are selected.
- Method is independent of the tightness, <u>or even the</u> <u>presence</u>, of the cluster red-sequence.

Photometric Redshifts

Brodwin et al. (ApJ, 651, 791)

Redshift Probability Functions

Redshift Probability Functions

Confidence Interval	Correct Within Confidence Interval	Observed Fraction	Gaussian Expectation
≤ 1σ	9722 / 13043	74.5%	68.3%
≤ 2 σ	12335 / 13043	94.6%	95.4%
≤ 3σ	12848 / 13043	98.5%	99.7%
> 3 σ	195 / 13043	1.5%	0.3%

Cluster Probability Density Map

AGES is a complete I<20 spec-z survey, with median <z>~0.3. Just look up low-z cluster candidates to confirm them!

AGES is a complete I<20 spec-z survey, with median <z>~0.3. Just look up low-z cluster candidates to confirm them!

AGES is a complete I<20 spec-z survey, with median <z>~0.3. Just look up low-z cluster candidates to confirm them!

Brodwin et al. (ApJ, 651, 791)

Eisenhardt, Brodwin et al. (in prep)

Stanford, Eisenhardt, Brodwin et al. 2005 (ApJ, 634, 129L)

Spectroscopic Confirmation

Keck 2005/2006

- Observed 10 clusters to date
- 8 confirmed with 5+ members within 2000 km/s in the rest-frame (approx ∆z ± 0.015)
- Cl26 and Cl79: Many objects with faint, red continua, no lines
- CI90: Evidence of projection.
 Line-of-sight structure at <u>z =1.46</u>

Subaru 2006 not yet incorporated

ID	Phot-z	<spec-z></spec-z>	#
39	1.00	1.06	7
13	1.09	1.11	8
15	1.11	1.16	5
283	1.18	1.24	7
27	1.17	1.26	7
90	1.36	1.37, 1.46	5, 4
23	1.38	1.37	5
21	1.34	1.41	6
29	1.25		
79	1.41		

Distant Galaxy Cluster IR Survey NASA / JPL-Caltech / M. Brodwin (JPL)

Spitzer Space Telescope • IRAC sig06-015

Galaxy Clusters at 0 < z < 2 in the IRAC Shallow Cluster Survey (ISCS)

Results

- 292 candidate clusters and groups at 0 < z < 2 over 8.5 deg² in Boötes.
- Of these 93 are at z>1, a 6fold increase over the number of confirmed high-z clusters in the literature.

Cluster Masses

- Large follow-up campaign underway:
 - 0 < z < 1.5:
 - Large spectroscopic campaign (Keck, KPNO, AGES) → Velocity Dispersions
 - z > 1:

■ Deeper IR imaging with Spitzer (IRAC+MIPS) and Palomar (JK) → Stellar masses from SED fitting

• HST \rightarrow Weak (and strong) lensing masses

■ XMM \rightarrow X-ray masses

Cluster Masses

4.5 μ m flux \propto stellar mass at 0.7<z<2

Assume cluster probability density \propto stellar mass & M/L is constant

Cluster Masses

Color Evolution of Galaxy Clusters over 0 < z < 1.5

Methodology

 Identify objects in I - [3.6] CMD which have integrated redshift probability > 0.3 over the 1σ photo-z error interval at the cluster redshift:

$$\int_{z_{\rm cl}-0.06(1+z_{\rm cl})}^{z_{\rm cl}+0.06(1+z_{\rm cl})} P(z) dz \ge 0.3$$

- Apply iterative 3σ clipping
- Adopt simple mean of resulting sample as cluster color at z_{cl}.

Color Evolution of Galaxy Clusters over 0 < z < 1.5

Passive Evolution Model (PE)

- Bruzual & Charlot model
- 0.1 Gyr Burst at z_f = 3, followed by simple passive evolution

H₀=70; Ω_M = 0.3; Ω_Λ = 0.7

Relative to No Evolution

- Mean color clearly bluer than NE model, by 0.5 mag at z=1, and 1.0 mag at z=1.5.
- More massive galaxies older than full sample.

Relative to $z_f = 3$ Model

Points

 All points are brighter than L* at [3.6]

PE Models

- Bruzual & Charlot
- 0.1 Gyr Burst at z_f = [1.5, 2, 3, 4, 5, 100] followed by simple passive evolution

High Resolution Science: Morphologies & Mergers

Data in Hand

Cycle 14 HST/ACS data for 8 z>1 clusters from SNe program (PI: Perlmutter).

 Allocated Time in Spring 2007
 GO-3 Spitzer/IRAC+MIPS joint with HST/ACS in Cycle 15. → Deep IRAC, MIPS, and ACS imaging on 18 z>1 clusters

Cycle 15 HST/NICMOS on 5 z>1.2 clusters

8.6 Billion Light Years

<z=1.11>

8 members: $\sigma = (920 \pm 230)$ km/s (Elston, Gonzalez et al. 2006)

7 members: $\sigma \sim 600$ km/s; preliminary WL mass of ~1-2 x 10^{14} M_{\odot}

<z=1.41>

6 members

Cluster SN Cosmology

Several good SN candidates in z>1 clusters, including this one in <z> = 1.41 cluster:

Next Steps

- Forthcoming deeper Spitzer and HST data will allow us to:
 - Observe the mass assembly history of massive galaxies over 2/3 of the lifetime of the Universe.
 - Measure the evolution of the merger rate and the quantify the dry merger fraction
 - Probe the Cluster/ULIRG connection at the era of peak star formation
 - Measure weak-lensing masses and the mass-richness relation at z>1
 - Constrain the EOS of dark energy from Cluster SNe Ia

Summary

- Using a probabilistic multi-λ (0.4-5µm) photometric redshift technique, we have identified 300 new galaxy clusters and groups, of which almost 100 are at z>1, a <u>6-fold increase</u>.
- To date 8 z > 1 clusters between 1.06 < z < 1.41 have been spectroscopically confirmed with at least 5 members.
- Mean colors of clusters at 0 < z < 1.5 are consistent with simple PE models with high formation redshifts (z_f > 3).
- Evidence of a mass-metallicity relation and/or "downsizing" in clusters at z=1.5
- Incidence of disturbed morphologies increases over the range 1.1 < z < 1.4. Elliptical fraction appears to be decreasing as well. Quantitative results TBD.

- Deep optical (griz) imaging in 2 x 50 deg² Southern APEX, ACT, SPT fields (PI: Joe Mohr)
- Eventual IRAC and NIR \rightarrow will find \geq 3500 clusters and groups to z=2
- Provide redshifts and masses for all SZ clusters
- Direct measurement of σ_8 from z>1 clusters
- Characterize and calibrate SZ selection function to allow studies of precision cosmology

Blanco Cosmology Survey

Survey Status

Thank you!