High-Redshift Astrophysics Using Every Photon

Patrick C. Breysse Johns Hopkins University

With Ely D. Kovetz, Mubdi Rahman, and Marc Kamionkowski UC Berkeley, 10 January 2017

Use all of the photons

Pick a spectral line

Map largescale intensity fluctuations

 $v_{\rm obs} \leftrightarrow z$

Line intensity traces galaxy structure

Li et al. 2016, ApJ, 817,169

Galaxy surveys give detailed properties of brightest galaxies

Intensity maps give statistical properties of all galaxies

21 CM

21 CM

CO

21 CM

CO

CII

Outline

• Formalism

- Power spectrum
- One-point statistics

• Example: CO Intensity Mapping

- Luminosity functions
- Star formation history
- Multiple Lines
 - Foreground contamination
 - Cross-correlations

Formalism

Breysse, P. C., Kovetz, E. D., & Kamionkowski, M. 2014, MNRAS, 443, 3506 Breysse, P. C., Kovetz, E. D., & Kamionkowski, M. 2016, MNRAS Lett., 457, L127 Breysse, P.C., Kovetz, E. D., Behroozi, P. S., Dai, L., Kamionkowski, M., 2016, arXiv:1609.01728

P(k,z) =

P(k,z) =

P(k,z) =

$P(k,z) = \langle T \rangle^2(z) b^2(z) P_m(k,z)$

Convert galaxy spectrum to intensity spectrum

$P(k,z) = \langle T \rangle^2(z) b^2(z) P_m(k,z) + \frac{P_{shot}(z)}{P_m(z)}$

Poisson noise due to discrete emission

$P(k,z) = \langle T \rangle^2(z) b^2(z) P_m(k,z) + P_{\text{shot}}(z)$

$$\langle T \rangle(z) \propto \int L \frac{dn(z)}{dL} dL$$

Line luminosity function

 $P_{\rm shot}(z) \propto \int L^2 \frac{dn(z)}{dL} dL$

$P(k,z) = \langle T \rangle^2(z) b^2(z) P_m(k,z) + P_{\text{shot}}(z)$

$$\langle T \rangle(z) \propto \int L \frac{dn(z)}{dL} dL$$

 $P_{shot}(z) \propto \int L^2 \frac{dn(z)}{dL} dL$

Problem: The power spectrum contains all of the information in a map if and only if the map is Gaussian

Power Spectrum Limitations

Power Spectrum Limitations

Solution: One-Point Statistics

P(D) Analysis

P(D) Analysis

Probability of a voxel to contain exactly N sources

P(D) Analysis ∞ $\mathcal{P}(T) = \sum \mathcal{P}_N(T)\mathcal{P}(N)$ N=0 $\mathcal{P}_N(T) \Leftarrow \frac{dn}{dL}$ Computed from luminosity function

Voxel Intensity Distribution

Voxel Intensity Distribution

Power spectrum gives detailed clustering, integrals over luminosity function

VID gives detailed luminosity function, integrals over clustering

Example: CO Intensity Mapping

- 115 GHz CO(1-0) rotational transition
- Popular tracer of molecular gas and star formation
- Properties at high redshift are very uncertain
- Current experiments targeting atmospheric window at ~30 GHz (z~3)

Breysse, P. C., Kovetz, E. D., & Kamionkowski, M. 2014, MNRAS, 443, 3506

Keating, G. K. et al., 2016, arXiv:1605.03971

~2020 (COMAP)

Cosmic Star Formation History

Star Formation History

Kistler et al. 2009, ApJ 705, L104; Madau & Dickinson 2014, ARA&A, 52, 415

Star Formation History

Breysse et al., 2016, MNRAS 457, L127; Kistler et al. 2009, ApJ 705, L104; Madau & Dickinson 2014, ARA&A, 52, 415

Star Formation History

Breysse et al., 2016, MNRAS 457, L127; Kistler et al. 2009, ApJ 705, L104; Madau & Dickinson 2014, ARA&A, 52, 415

Future

- Reionization
- Cosmological parameter constraints- BAO, etc.
- Redshift space distortions- measure bias?
- Bulk gas motions within galaxies- rotational vs. thermal support

$P(k,z) = \langle T \rangle^2(z) b^2(z) P_m(k,z) + P_{\text{shot}}(z)$

$$\langle T^2(z) \rangle \propto \int L \frac{dn(z)}{dL} dL$$

$$P_{\rm shot}(z) \propto \int L^2 \frac{dn(z)}{dL} dL$$

Future

- Forecasts for other lines
- Cosmological parameter constraints- BAO, etc.
- Redshift space distortions- measure bias?
- Bulk gas motions within galaxies- rotational vs. thermal support

Using Multiple Lines

Breysse, P. C., Kovetz, E. D., & Kamionkowski, M. 2015, MNRAS, 452, 3408 Breysse, P. C., Rahman M., 2016, arXiv:1606.07820

Using Multiple Lines

- Any intensity map will contain emission from other lines besides target line
- Each frequency bin contains emission from many lines at many redshifts

Juan R. Pardo *et al.* 2007 *ApJ* **661** 250

Foreground Contamination

- Bright lines redshifted into the same frequency band can wash out signal from desired line
- Examples:
 - Cll contaminated by higher-J CO lines
 - Lya contaminated by OII, OIII, Ha

Gong, Y., Silva, M., Cooray, A., \& Santos, M.~G. 2014, ApJ, 785, 72

Cleaning Foregrounds

Blind Masking

- Foreground tends to dominate most in brightest voxels
- Mask out brightest parts of map to get at signal

Targeted Masking

 Use external data set to mask only bright foreground voxels

Breysse, P. C., Kovetz, E. D., & Kamionkowski, M. 2015, MNRAS, 452, 3408

Cleaning Foregrounds

Power spectrum anisotropies

- Foreground spectrum will have different behavior with $(k_{\parallel}, k_{\perp})$ (see e.g. arXiv:1604.05737)
- Cross-correlations
 - Correlate map with an external data set at the same redshift
 - Can be another intensity map or a galaxy survey

Cross-Correlations

Can also use cross correlations to get at information contained in fainter lines

Juan R. Pardo *et al.* 2007 *ApJ* **661** 250

Example: ¹³CO

- Any ¹²CO survey will also contain emission from ¹³CO
- ¹³CO is much fainter than ¹²CO, so ¹²CO dominates any given pixel
- Frequency bins separated by ~1.4 GHz contain ¹²CO and ¹³CO at the same redshift

Cross-Spectrum

- Assume both lines come from the same population of galaxies
- Luminosity L_2 of line 2 is a function of the luminosity of line 1

$$P_{1,2}(k) = \langle T_1 \rangle \langle T_2 \rangle b_1 b_2 P_m(k) + P_{1,2,shot}$$

$$P_{1,2,shot} \propto \int L_1 L_2(L_1) \frac{dn}{dL_1} dL_1$$

- ¹²CO saturates very quickly
- ¹³CO traces deeper into molecular clouds
- Intensity ratio depends on abundance ratio, optical depth

Multiple Lines

Use all of the photons

CO, CII from within galaxies

- CO, CII from within galaxies
- Lyα from around galaxies

- CO, CII from within galaxies
- Lyα from around galaxies
- 21 cm from neutral IGM

- CO, CII from within galaxies
- Lyα from around galaxies
- 21 cm from neutral IGM
- Fainter lines in crosscorrelation

- CO, CII from within galaxies
- Lyα from around galaxies
- 21 cm from neutral IGM
- Fainter lines in crosscorrelation
- Continuum from CIB

- CO, CII from within galaxies
- Lyα from around galaxies
- 21 cm from neutral IGM
- Fainter lines in crosscorrelation
- Continuum from CIB
- Bright sources from galaxy surveys, deep fields

- CO, CII from within galaxies
- Lyα from around galaxies
- 21 cm from neutral IGM
- Fainter lines in crosscorrelation
- Continuum from CIB
- Bright sources from galaxy surveys, deep fields

Summary

- Intensity mapping is a powerful complement to galaxy surveys at high redshifts
- Power spectrum analysis is useful, but adding new one-point statistics formalism dramatically improves luminosity function constraints
- Cross-correlations can let you access even very faint lines, study sub-galactic physics in detail
- In the future- Combining future intensity maps with each other and with galaxy surveys to squeeze the most physics out of every photon

arXiv: 1405.0489 1503.05202 1507.06304 1606.07820 1609.01728