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Fig. 3. Hubble constant as a function of the measured velocity disper-
sion of the main lens. The horizontal lines indicate the latest H0LiCOW
2019 (dotted orange, Wong et al. 2019) and Planck (dashed blue,
Planck Collaboration 2018) results along with the 1� uncertainties.

5.2. Dependency on intrinsic parameters of the deflector

traced by the velocity dispersion

An additional potential concern is whether systematic di↵er-
ences between our assumptions and the internal structure of
early-type galaxies could give rise to measurable biases. For
example, the so-called "tilt" of the fundamental mass plane is
believed to arise primarily from the increase in dark-to-stellar
matter ratio, a systematic change in stellar initial mass function
with galaxy stellar mass, and possibly a small subdominant con-
tribution from systematic variations in stellar orbits anisotropy
(Auger et al. 2010; Cappellari 2016). The stellar initial mass
function is not a concern in the TDCOSMO analysis, since the
stellar mass to light in the composite models is a free parameter.
However, in principle the other two sources of "tilt" could intro-
duce a potential systematic e↵ect in TDCOSMO analysis, where
each system is analyzed independently and with the same priors,
rather than with priors that depend on the stellar mass.

In Fig. 3 we show the inferred H0 as a function of stellar ve-
locity dispersion, a redshift independent proxy of position along
the fundamental plane. No trend is found, indicating that any
residual velocity dispersion dependent bias is smaller than the
measurement uncertainties, and thus not significant at this stage.
As for the plots shown in the previous (and next) section, this
sanity test should be repeated as the sample size and individual
measurement precision increase.

5.3. Dependency on the external convergence and lens

redshift

In the previous sections, the focus is on how the lens velocity
dispersion influences H0 measurements. But there is also an ex-
ternal contribution of all objects along the line of sight to the
main lensing potential. This external convergence, ext, is esti-
mated in all TDCOSMO systems from galaxy counts, in com-
bination with spectroscopy for obtaining redshifts for galaxies
and quantifying coherent structures (e.g., groups and clusters).
Tihhonova et al. (2018) showed that this measurement is com-
patible with the constraints obtained on ext with weak lensing.
ext is directly related to the time-delay distance D�t, as shown
in Equation (7). Similarly, the e↵ect of the external convergence

Fig. 4. Measured Hubble constant, before (upper panel) and after (lower
panel) correction for the mass along the line of sight as a function of the
estimated external convergence. H

uncorr
0 and H

corr
0 are related according

to Equation (15). The dashed black lines show the best linear fit, and
the shaded grey envelopes correspond to the 1� uncertainties. The dot-
ted blue lines represent the relation expected from the theory between
H

uncorr
0 , H

corr
0 and ext.

on the inferred H0 can be written as :

H
uncorr
0 =

H
corr
0

(1 � ext)
, (15)

where H
uncorr
0 (Hcorr

0 ) is the value of H0 before (after) correc-
tion from ext. The e↵ect of this external MST can be mitigated
by directly inferring ext. To test the presence of residual ex-
ternal Mass-Sheet Degeneracy (MSD) not entirely removed by
the measurement of ext, we investigate the presence of corre-
lation between the estimated ext and the inferred H0 value for
the seven lenses of the TDCOSMO sample. The top panel of
Fig. 4 shows the relation between the H0 measurements before
correction for the mass along the line of sight, i.e. H

uncorr
0 and

the estimated convergence. A trend is visible between these two
quantities indicating that the measurement is indeed sensitive to
the lens environment. If no correction is applied, the lenses lo-
cated in over-dense regions (positive ext) tend to have a higher
H

uncorr
0 than lenses in under-dense regions (negative ext). We fit

a linear model to the un-corrected data, and measure a slope of
a

uncorr = 90.0± 32.1 km s�1 Mpc�1, well compatible with the ex-
pected slope of a

uncorr = H
corr
0 = 73.7 km s�1 Mpc�1.
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VI. SUMMARY

In the e↵ort to determine the Hubble parameter H0 us-
ing strong lensing time delays, a key challenge is the mass
sheet degeneracy (MSD). The MSD can be naturally as-
sociated with two physical phenomena: cosmological weak
lensing (“external convergence” or “external MSD”); and
the possibility of a core component in the lens object (“in-
ternal MSD”). Well known methods to alleviate the MSD
are: (i) the combination of imaging data with stellar kine-
matics, (ii) the use of ray tracing simulations to obtain an
observationally-informed theoretical prior on external weak
lensing, and (iii) the study of systems containing more than
one strongly-lensed source.

In this paper we discussed some issues related to the
MSD. In Sec. III, regarding the use of kinematics, we noted
that the relation between kinematics constraints and imag-
ing data involves a combination of weak lensing terms
that includes all of the observer-source, observer-lens, and
source-lens segments of the line of sight (LOS). Neglect-
ing the source-lens and observer-lens convergence terms –
a common practice in current analyses – could lead to a
bias of the order of a few percent in the inference of H0

from time delays. It is possible to account for the e↵ect by
adding the observer-lens and lens-source terms as nuisance
parameters in the combined imaging+kinematics likelihood.

In Sec. IV we noted that the neglect of the source-lens
and observer-lens LOS contributions also a↵ects ray tracing
methods. Here too, omitting some of the LOS terms should
bias the H0 inference. It should be possible to extract priors
for all of the LOS terms, and not only the observer-source
one, from ray tracing.

As we review in Sec. II, the MSD is not broken by the
availability of multiple sources in the imaging analyses. In
Sec. V we considered what multiple sources do allow one to
measure, which is di↵erential convergence between di↵er-
ent sources. Interestingly, weak di↵erential external conver-
gence complicates attempts to resolve the internal MSD,
even if the internal core e↵ect is parameterically larger
than the weak lensing terms. The problem is that mul-
tiple sources are only useful against the internal MSD to
the extent that they come with significantly di↵erent an-
gular diameter distances; in practice, however, the angular
diameter distances in typical multi-source systems used in
cosmography are similar to the 10% level.

In App. B we described a non-perturbative calculation of
cosmological external convergence, that allows us to provide
rough estimate of the expected size of the e↵ect, as well as
estimates of statistical correlations between di↵erent con-
vergence terms. Our calculation suggests (what we think is)
a natural approximate way to account for non-linear matter
power spectra entering in correlation functions at di↵erent
values of the cosmic time variable.
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Appendix A: The lens equation with weak lensing

In this appendix we review the derivation of the weak
lensing e↵ects in the lens equation. These results are
known [40, 41, 44, 45, 47, 57–59], and we include them
here for completeness of the main text. Let us suppose that
we have a strong deflector located at a comoving distance
⌘l. We can split the gravitational potential as

�(~�(⌘), ⌘) = �̃(~�(⌘l), ⌘l)�(⌘ � ⌘l) + �t(~�(⌘), ⌘), (A1)

where �t(�(⌘), ⌘) is the weak gravitational potential as-
sociated to weak lensing e↵ects, and �̃ is the gravitational
potential of the main deflector. We can implement the tidal
approximation on �t by setting

�t(~�(⌘), ⌘) ⇡ �t(0, ⌘) + �i@i�t(0, ⌘). (A2)

The lens equation may be written as [76]

�i(⌘) = ✓i � 2

Z ⌘

0
d⌘0
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0

⌘⌘0
@i�(~�(⌘

0), ⌘0). (A3)

Within the tidal approximation, Eq. (A2), we can write

�i(⌘l) = ✓i � 2
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The second term on the RHS of Eq. (A4) is an unobserv-
able overall shift of the deflection angle (independent of ~✓),
which can be reabsorbed in the source coordinates. Defining

Mij(⌘1, ⌘2) := 2

Z ⌘2

⌘1

d⌘0
(⌘2 � ⌘

0)(⌘0 � ⌘1)

(⌘2 � ⌘1)⌘
02

@i@j�t(0, ⌘
0),

(A5)

we expect Mij terms to be small as long as we are dealing
with weak fields and maintain only terms at first order in
these quantities. In particular, for ⌘ < ⌘l, substituting

�i(⌘) = ✓i � 2
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0
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Fig. 3. Hubble constant as a function of the measured velocity disper-
sion of the main lens. The horizontal lines indicate the latest H0LiCOW
2019 (dotted orange, Wong et al. 2019) and Planck (dashed blue,
Planck Collaboration 2018) results along with the 1� uncertainties.

5.2. Dependency on intrinsic parameters of the deflector

traced by the velocity dispersion

An additional potential concern is whether systematic di↵er-
ences between our assumptions and the internal structure of
early-type galaxies could give rise to measurable biases. For
example, the so-called "tilt" of the fundamental mass plane is
believed to arise primarily from the increase in dark-to-stellar
matter ratio, a systematic change in stellar initial mass function
with galaxy stellar mass, and possibly a small subdominant con-
tribution from systematic variations in stellar orbits anisotropy
(Auger et al. 2010; Cappellari 2016). The stellar initial mass
function is not a concern in the TDCOSMO analysis, since the
stellar mass to light in the composite models is a free parameter.
However, in principle the other two sources of "tilt" could intro-
duce a potential systematic e↵ect in TDCOSMO analysis, where
each system is analyzed independently and with the same priors,
rather than with priors that depend on the stellar mass.

In Fig. 3 we show the inferred H0 as a function of stellar ve-
locity dispersion, a redshift independent proxy of position along
the fundamental plane. No trend is found, indicating that any
residual velocity dispersion dependent bias is smaller than the
measurement uncertainties, and thus not significant at this stage.
As for the plots shown in the previous (and next) section, this
sanity test should be repeated as the sample size and individual
measurement precision increase.

5.3. Dependency on the external convergence and lens

redshift

In the previous sections, the focus is on how the lens velocity
dispersion influences H0 measurements. But there is also an ex-
ternal contribution of all objects along the line of sight to the
main lensing potential. This external convergence, ext, is esti-
mated in all TDCOSMO systems from galaxy counts, in com-
bination with spectroscopy for obtaining redshifts for galaxies
and quantifying coherent structures (e.g., groups and clusters).
Tihhonova et al. (2018) showed that this measurement is com-
patible with the constraints obtained on ext with weak lensing.
ext is directly related to the time-delay distance D�t, as shown
in Equation (7). Similarly, the e↵ect of the external convergence

Fig. 4. Measured Hubble constant, before (upper panel) and after (lower
panel) correction for the mass along the line of sight as a function of the
estimated external convergence. H

uncorr
0 and H

corr
0 are related according

to Equation (15). The dashed black lines show the best linear fit, and
the shaded grey envelopes correspond to the 1� uncertainties. The dot-
ted blue lines represent the relation expected from the theory between
H

uncorr
0 , H

corr
0 and ext.

on the inferred H0 can be written as :

H
uncorr
0 =

H
corr
0

(1 � ext)
, (15)

where H
uncorr
0 (Hcorr

0 ) is the value of H0 before (after) correc-
tion from ext. The e↵ect of this external MST can be mitigated
by directly inferring ext. To test the presence of residual ex-
ternal Mass-Sheet Degeneracy (MSD) not entirely removed by
the measurement of ext, we investigate the presence of corre-
lation between the estimated ext and the inferred H0 value for
the seven lenses of the TDCOSMO sample. The top panel of
Fig. 4 shows the relation between the H0 measurements before
correction for the mass along the line of sight, i.e. H

uncorr
0 and

the estimated convergence. A trend is visible between these two
quantities indicating that the measurement is indeed sensitive to
the lens environment. If no correction is applied, the lenses lo-
cated in over-dense regions (positive ext) tend to have a higher
H

uncorr
0 than lenses in under-dense regions (negative ext). We fit

a linear model to the un-corrected data, and measure a slope of
a

uncorr = 90.0± 32.1 km s�1 Mpc�1, well compatible with the ex-
pected slope of a

uncorr = H
corr
0 = 73.7 km s�1 Mpc�1.
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Fig. 3. Hubble constant as a function of the measured velocity disper-
sion of the main lens. The horizontal lines indicate the latest H0LiCOW
2019 (dotted orange, Wong et al. 2019) and Planck (dashed blue,
Planck Collaboration 2018) results along with the 1� uncertainties.

5.2. Dependency on intrinsic parameters of the deflector

traced by the velocity dispersion

An additional potential concern is whether systematic di↵er-
ences between our assumptions and the internal structure of
early-type galaxies could give rise to measurable biases. For
example, the so-called "tilt" of the fundamental mass plane is
believed to arise primarily from the increase in dark-to-stellar
matter ratio, a systematic change in stellar initial mass function
with galaxy stellar mass, and possibly a small subdominant con-
tribution from systematic variations in stellar orbits anisotropy
(Auger et al. 2010; Cappellari 2016). The stellar initial mass
function is not a concern in the TDCOSMO analysis, since the
stellar mass to light in the composite models is a free parameter.
However, in principle the other two sources of "tilt" could intro-
duce a potential systematic e↵ect in TDCOSMO analysis, where
each system is analyzed independently and with the same priors,
rather than with priors that depend on the stellar mass.

In Fig. 3 we show the inferred H0 as a function of stellar ve-
locity dispersion, a redshift independent proxy of position along
the fundamental plane. No trend is found, indicating that any
residual velocity dispersion dependent bias is smaller than the
measurement uncertainties, and thus not significant at this stage.
As for the plots shown in the previous (and next) section, this
sanity test should be repeated as the sample size and individual
measurement precision increase.

5.3. Dependency on the external convergence and lens

redshift

In the previous sections, the focus is on how the lens velocity
dispersion influences H0 measurements. But there is also an ex-
ternal contribution of all objects along the line of sight to the
main lensing potential. This external convergence, ext, is esti-
mated in all TDCOSMO systems from galaxy counts, in com-
bination with spectroscopy for obtaining redshifts for galaxies
and quantifying coherent structures (e.g., groups and clusters).
Tihhonova et al. (2018) showed that this measurement is com-
patible with the constraints obtained on ext with weak lensing.
ext is directly related to the time-delay distance D�t, as shown
in Equation (7). Similarly, the e↵ect of the external convergence

Fig. 4. Measured Hubble constant, before (upper panel) and after (lower
panel) correction for the mass along the line of sight as a function of the
estimated external convergence. H

uncorr
0 and H

corr
0 are related according

to Equation (15). The dashed black lines show the best linear fit, and
the shaded grey envelopes correspond to the 1� uncertainties. The dot-
ted blue lines represent the relation expected from the theory between
H

uncorr
0 , H

corr
0 and ext.

on the inferred H0 can be written as :

H
uncorr
0 =

H
corr
0

(1 � ext)
, (15)

where H
uncorr
0 (Hcorr

0 ) is the value of H0 before (after) correc-
tion from ext. The e↵ect of this external MST can be mitigated
by directly inferring ext. To test the presence of residual ex-
ternal Mass-Sheet Degeneracy (MSD) not entirely removed by
the measurement of ext, we investigate the presence of corre-
lation between the estimated ext and the inferred H0 value for
the seven lenses of the TDCOSMO sample. The top panel of
Fig. 4 shows the relation between the H0 measurements before
correction for the mass along the line of sight, i.e. H

uncorr
0 and

the estimated convergence. A trend is visible between these two
quantities indicating that the measurement is indeed sensitive to
the lens environment. If no correction is applied, the lenses lo-
cated in over-dense regions (positive ext) tend to have a higher
H

uncorr
0 than lenses in under-dense regions (negative ext). We fit

a linear model to the un-corrected data, and measure a slope of
a

uncorr = 90.0± 32.1 km s�1 Mpc�1, well compatible with the ex-
pected slope of a

uncorr = H
corr
0 = 73.7 km s�1 Mpc�1.
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of the i-th source and of the lens, respectively. Notice that
we can write

~↵i(~✓) = Ci~↵1(~✓) , Ci :=
dA(z1, 0) dA(zi, zl)

dA(zi, 0) dA(z1, zl)
. (4)

That is, the deflection angle a↵ecting the i-th source is
a scaled version of the deflection angle a↵ecting the 1st
source. When we discuss the internal lens model in what
follows it would be convenient to highlight ~↵1, understand-
ing that ~↵i follows by Eq. (4).

In writing ~↵(~✓) we think of the main deflector as a lo-
calised concentration of mass (localised compared with cos-
mological distances), assuming that ↵(~✓) ! 0 for |~✓| much
larger than the Einstein angle of the system, |~✓E|, defined
via

~↵(~✓E) = ~✓E. (5)

Weak lensing from large scale structure in the intervening
space between the sources, the lens, and the observer, mod-
ifies the lens equation by introducing external convergence
and shear. These modifications must be taken into account
in lensing analyses [56]. In the tidal approximation, the lens
equation becomes [41, 44, 45, 47, 57–59] (see also App. A)

~�i = (1� 
s
i)(I+ �s

i)~✓

�(1� 
ls
i )(I+ �ls

i )Ci~↵1((1� 
l)(I+ �l)~✓),

(6)

where ri are external convergence factors for source i,

�r
i = �

✓
�
r,i
1 �

r,i
2

�
r,i
2 ��

r,i
1

◆
(7)

is the reduced shear matrix, and the superscript r = l, s, ls
indicates observer-lens, observer-source, and lens-source
lines of sight.

Compared with the internal convergence i, which is
of order unity near the Einstein angle i(~✓E,i) = O(1),
the weak lensing terms are small, typically in the range
|�

r,i
|, |

r
i| ⇠ 0.01� 0.1. In App. B we estimate their mag-

nitude; a typical result is illustrated in Fig. 1. We show the
root mean square (RMS) values of l,s,ls, which are cos-
mological random variables. The shear terms �l,s,ls1,2 scale
similarly. For coherence with the tidal approximation, in the
following we will mostly keep first order in r,i, �r,i1,2. We
assume that the large-scale structure producing the weak
lensing is distributed over cosmological scales & 1 Mpc
(compared with the galactic scale ⌧ 1 Mpc of the primary
lens that produces ~↵i), thus the weak lensing terms are ap-
proximated as constants over the angular range containing
the strong lensing image information.

For simplicity of notation, we define

(1� 
r
i)(I+ �r

i) ' I� (Iri � �r
i) =: I�M

r
i . (8)

Note that M s
i and M

ls
i carry the source label i, while M

l

is common to all sources. With this notation, we can write
a weak lensing-modified lens equation as

~�i = ~✓ � ~̃↵i(~✓), (9)

~̃↵i(~✓) = (I�M
ls
i )Ci~↵1((I�M

l)~✓) +M
s
i
~✓. (10)

FIG. 1. RMS external convergence terms, for lens redshift
zl = 0.59, presented as functions of the source redshift zs. The
orange band around 

s shows a rough estimate of the theoretical
uncertainty, obtained by varying the cuto↵ of the matter power
spectrum calculation from kcuto↵ = 5 Mpc�1 to 20 Mpc�1; the
default in the calculation is 10 Mpc�1. Modifying kcuto↵ has a
similar e↵ect on the other weak convergence terms in the plot.
Details of the calculation are given in App. B. Note that this
plot is not expected to be accurate beyond the O(1) level. More
accurate results would require ray tracing techniques to capture
bias from excess of structure along the LOS [47–55]. Code: �.

The modified deflection angle ~̃↵ contains a mixture of terms,
some local to the lens and some coming from weak lensing.
Thus ~̃↵(~✓), in general, does not decay at large |✓|; instead,
it satisfies ~̃↵i(~✓) ! M

s
i
~✓.

The time delay between images A and B (associated,
e.g., to a time-variable quasar) of source i is [45, 58, 60, 61]
(see also App. A)

�t
i
AB = D

i
dt �⌧

i
AB , (11)

�⌧ iAB =
1

2
~✓
T
A

�
I�M

s
i �M

l +M
ls
i

�
~✓A

� ~�
T
�
I�M

l +M
ls
i

�
~✓A �  i((I�M

l)~✓A)

� {A $ B}. (12)

Here D
i
dt is the time-delay distance [62],

D
i
dt := (1 + zl)

dA(zl, 0)dA(zi, 0)

dA(zi, zl)
/

1

H0
, (13)

and  i(~✓) = Ci 1(~✓) is the intrinsic lensing potential, de-
fined via ~r i(~✓) = ~↵i(~✓). In this analyses we do not ex-
plore the possibility of obtaining time-delay data for more
than one source. Thus, we will drop the source index i on
�⌧AB .
The MSD a↵ecting the lensing reconstruction prob-

lem [63] is usually represented by replacing, in Eq. (9),

~�i 7�!
~�
�
i = �~�i, (14)

~̃↵i(~✓) 7�! ~̃↵
�
i (~✓) = �~̃↵i(~✓) + (1� �)~✓, (15)

where � is an arbitrary real parameter. (More general
degeneracies exist [64–66], but for our main points it is

We can try to roughly estimate this, 
but a real estimate probably needs 
ray-tracing calibrated to characteristic 
field of the individual lens

zl = 0.59
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Fig. 3. Hubble constant as a function of the measured velocity disper-
sion of the main lens. The horizontal lines indicate the latest H0LiCOW
2019 (dotted orange, Wong et al. 2019) and Planck (dashed blue,
Planck Collaboration 2018) results along with the 1� uncertainties.

5.2. Dependency on intrinsic parameters of the deflector

traced by the velocity dispersion

An additional potential concern is whether systematic di↵er-
ences between our assumptions and the internal structure of
early-type galaxies could give rise to measurable biases. For
example, the so-called "tilt" of the fundamental mass plane is
believed to arise primarily from the increase in dark-to-stellar
matter ratio, a systematic change in stellar initial mass function
with galaxy stellar mass, and possibly a small subdominant con-
tribution from systematic variations in stellar orbits anisotropy
(Auger et al. 2010; Cappellari 2016). The stellar initial mass
function is not a concern in the TDCOSMO analysis, since the
stellar mass to light in the composite models is a free parameter.
However, in principle the other two sources of "tilt" could intro-
duce a potential systematic e↵ect in TDCOSMO analysis, where
each system is analyzed independently and with the same priors,
rather than with priors that depend on the stellar mass.

In Fig. 3 we show the inferred H0 as a function of stellar ve-
locity dispersion, a redshift independent proxy of position along
the fundamental plane. No trend is found, indicating that any
residual velocity dispersion dependent bias is smaller than the
measurement uncertainties, and thus not significant at this stage.
As for the plots shown in the previous (and next) section, this
sanity test should be repeated as the sample size and individual
measurement precision increase.

5.3. Dependency on the external convergence and lens

redshift

In the previous sections, the focus is on how the lens velocity
dispersion influences H0 measurements. But there is also an ex-
ternal contribution of all objects along the line of sight to the
main lensing potential. This external convergence, ext, is esti-
mated in all TDCOSMO systems from galaxy counts, in com-
bination with spectroscopy for obtaining redshifts for galaxies
and quantifying coherent structures (e.g., groups and clusters).
Tihhonova et al. (2018) showed that this measurement is com-
patible with the constraints obtained on ext with weak lensing.
ext is directly related to the time-delay distance D�t, as shown
in Equation (7). Similarly, the e↵ect of the external convergence

Fig. 4. Measured Hubble constant, before (upper panel) and after (lower
panel) correction for the mass along the line of sight as a function of the
estimated external convergence. H

uncorr
0 and H

corr
0 are related according

to Equation (15). The dashed black lines show the best linear fit, and
the shaded grey envelopes correspond to the 1� uncertainties. The dot-
ted blue lines represent the relation expected from the theory between
H

uncorr
0 , H

corr
0 and ext.

on the inferred H0 can be written as :

H
uncorr
0 =

H
corr
0

(1 � ext)
, (15)

where H
uncorr
0 (Hcorr

0 ) is the value of H0 before (after) correc-
tion from ext. The e↵ect of this external MST can be mitigated
by directly inferring ext. To test the presence of residual ex-
ternal Mass-Sheet Degeneracy (MSD) not entirely removed by
the measurement of ext, we investigate the presence of corre-
lation between the estimated ext and the inferred H0 value for
the seven lenses of the TDCOSMO sample. The top panel of
Fig. 4 shows the relation between the H0 measurements before
correction for the mass along the line of sight, i.e. H

uncorr
0 and

the estimated convergence. A trend is visible between these two
quantities indicating that the measurement is indeed sensitive to
the lens environment. If no correction is applied, the lenses lo-
cated in over-dense regions (positive ext) tend to have a higher
H

uncorr
0 than lenses in under-dense regions (negative ext). We fit

a linear model to the un-corrected data, and measure a slope of
a

uncorr = 90.0± 32.1 km s�1 Mpc�1, well compatible with the ex-
pected slope of a

uncorr = H
corr
0 = 73.7 km s�1 Mpc�1.
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FIG. 5. Comparing the probability distribution obtained in ray tracing [51] (blue bar histograms) with our computation, in linear theory
(solid orange) and with the non-linear approximation (solid green: kcuto↵ = 10 Mpc�1, dashed green: kcuto↵ = 5and 20 Mpc�1).
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FIG. 5. Comparing the probability distribution obtained in ray tracing [51] (blue bar histograms) with our computation, in linear theory
(solid orange) and with the non-linear approximation (solid green: kcuto↵ = 10 Mpc�1, dashed green: kcuto↵ = 5and 20 Mpc�1).
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enough that we restrict ourselves to Eqs. (14-15).) Image
coordinates ~✓ and magnification ratios are invariant under
Eqs. (14-15). However, time delays are a↵ected, and there-
fore, so is the inference of H0.

Eqs. (14-15) imply a degeneracy in the modeling of weak
lensing data, coupled with a reparameterization of the model
describing the “intrinsic” deflection angle ~↵1. Infinitely
many di↵erent reparameterizations of M r

i and ~↵1 can pro-
duce Eqs. (14-15). In considering these possibilities we as-
sume that lens and source redshifts are measured perfectly,
so the cosmological functions Ci are known without appre-
ciable uncertainty (given a cosmological model).

Because of the inhomogeneous term (1��)~✓ in Eq. (15),
it is natural to associate the MSD with a reinterpretation
of the inhomogeneous observer-source weak lensing term in
Eq. (10), via M

s
i 7�! M

s,�
i = �sM

s
i + 1 � �s. However,

the interpretation is coupled to additional degeneracies with
M

ls
i and M

l. It is convenient to parameterize the combined
degeneracy by allowing M

ls
i and M

l to also be adjusted,
alongside an adjustment of the intrinsic lens model and the
modeled source coordinates:

M
s
i 7�! M

s,�
i = �sM

s
i + 1� �s, (16)

M
ls
i 7�! M

ls,�
i = �lsM

ls
i + 1� �ls, (17)

M
l
7�! M

l,� = �lM
l + 1� �l, (18)

~�i 7�!
~�
�
i = �s

~�i, (19)

~↵1(~✓) 7�! ~↵
�
1 (~✓) = �s �

�1
ls ~↵1(�

�1
l
~✓), (20)

 1(~✓) 7�!  
�
1 (~✓) = �s �

�1
ls �l 1(�

�1
l
~✓). (21)

Here �s,�ls, and �l are independent parameters. Note that
Eq. (16) (for example) amounts to si 7�! 

s,�
i = �s

s
i +

(1� �s), �s
i , 7�! �s,�

i = �s�s
i .

Inserting Eqs. (19-21) into Eq. (12), we see that the
dimensionless time delay �⌧AB of the transformed model
changes according to (see [38] for an earlier discussion):

�⌧AB 7�! �⌧�AB = �s�
�1
ls �l�⌧AB . (22)

Thus, a readjustment of the lensing model according to
Eqs. (16-19) entails a reinterpretation of the inferred value
of H0. Since H0 is inferred from the measured time delays
�tAB and the model dimensionless time delay �⌧AB via
H0 / �⌧AB/�tAB , we have:

H0 7�! H
�
0 = �s�

�1
ls �lH0. (23)

We would like to emphasize that the availability of multi-
ple sources does not, by itself, ameliorate the MSD: as far as
imaging information is considered, the modeling degeneracy
expressed by Eqs. (16-21) remains exact. It simply amounts
to a simultaneous reinterpretation of the weak lensing vari-
ables a↵ecting all of the sources. (The same conclusion,
with a di↵erent version of the MSD and a discussion of
intermediate sources as additional strong lenses for back-
ground sources, was reached in Refs. [44, 45].) We return
to this point in Sec. V.

In the absence of a direct measurement of weak lensing
applicable to the field of view of the strong lensing system,

the only way to ameliorate the MSD is by appealing to theo-
retical estimates of the magnitude of weak lensing variables.
For example, a theoretical estimate of the expected possi-
ble magnitude of si , as shown in Fig. 1, could constrain the
conceivable range of 1� �s in Eq. (16): for some systems,
an additive shift of order |1��s| ⇡ 0.1 in si may be di�cult
to justify from a cosmological point of view. In App. B we
estimate some of these theoretical constraints.

III. ON THE USE OF STELLAR KINEMATICS TO
RESOLVE THE MSD

In an imaging analysis, if only a single source is available
(say i = 1), one can use Eqs. (16-18) with the choice

�s =
1

1� s
, �ls =

1

1� ls
, �l =

1

1� l
, (24)

to eliminate all of s, ls, and l from the modeling. For this
reason, the task of extracting lensing information in imaging
data is often performed ignoring external convergence [10–
15]. (The details of how shear is modeled [67] will not be
important for the discussion in this section.)
Suppose we denote the fit result for the “intrinsic deflec-

tion angle” in such an analysis by ~↵model(~✓). By “elimi-
nating external convergence from the equations”, we mean
that the fit looks for a deflection angle model ~↵model(~✓)

which goes to zero at large |~✓|, possibly up to a uniform
shear term �s~✓. Eq. (20) implies that ~↵model(~✓) is related
to the true underlying physical intrinsic deflection angle by

~↵
model(~✓) =

1� 
ls

1� s
~↵((1� 

l)~✓), (25)

where s,ls,l are the true physical values of the weak lensing
terms. Given a measurement of the physical image time
delays, and deriving the dimensionless time delay �⌧model

AB
from ~↵

model, one can extract an inferred result H
model
0 ,

which is related to the truth value H0 by [38]

H
model
0 =

1� 
ls

(1� s)(1� l)
H0. (26)

The usual challenge of the weak lensing MSD for cosmog-
raphy is to constrain the correction factor (1 � 

ls)/[(1 �


s)(1� 

l)] ⇡ 1 + 
s + 

l
� 

ls.
Stellar kinematics is sensitive to the intrinsic mass-per-

radius (M(R)/R) of the lens, and can be used to partially
resolve the MSD. Refs. [10–15] used kinematics to constrain
the MSD, but in these works, weak lensing was only param-
eterised in terms of s, omitting ls and l. The omission
of ls and l biases the inferred value of H0. To explain this
we consider a simplified scenario, where we can inspect the
information content of imaging, time delays, and kinematics
separately.
Suppose that the intrinsic deflection angle of the lens is

given by the power-law (PL) profile (we denote ✓ = |~✓|)

~↵(~✓) =

✓
✓

✓̃E

◆1��PL

~✓. (27)

5

To this, we add some true physical values for 
s,ls,l, so

altogether the imaging data satisfies Eqs. (9-10). Note that
because of weak lensing, the parameter ✓̃E in Eq. (27) is
not equal to the Einstein angle, that we will denote by ✓E.

The imaging part of the data can be summarised as a
measurement of ✓E. We will simplify the discussion by as-
suming that also �PL is accurately determined. The e↵ec-
tive modeling which transforms away the weak lensing terms
would converge onto the model

~↵
model(~✓) =

(1� 
ls)(1� 

l)2��PL

1� s

✓
✓

✓̃E

◆1��PL

~✓

:=

✓
✓

✓E

◆1��PL

~✓. (28)

The relation between the PL parameter ✓̃E and the Einstein
angle ✓E is, therefore,

✓E = ✓̃E


(1� 

ls)(1� 
l)2��PL

1� s

� 1
�PL�1

. (29)

Turning to kinematics, the observable velocity dispersion
for the PL profile is

�
2(✓) = 2G⌃critdA(zl, 0)

p
⇡�

��PL

2

�

�
��PL�1

2

� ✓̃
�PL�1
E ✓

2��PL

=
1� 

s

(1� ls)(1� l)2��PL

dA(zs, 0)

dA(zs, zl)
J(✓E, �PL).

(30)

In the second line we connect our result with Eq. (8) of
Ref. [15] (see also [11, 68]), defining J as a cosmology-
independent function that depends only on imaging ob-
servables. For simplicity, we assume that the velocity
dispersion is isotropic. The product G⌃critdA(zl, 0) =
(1/4⇡)dA(zs, 0)/dA(zs, zl) is independent of H0, and we
assume that it is known without error. Note from the first
line in Eq. (30) that the kinematics measurement of �2 can
be summarised as a measurement of ✓̃E.

Combining the kinematics data (✓̃E via �
2 in Eq. (30))

and the imaging data (✓E in Eq. (29)), one can
obtain a measurement of the weak lensing factorh
(1�ls)(1�l)2��PL

1�s

i 1
�PL�1

= ✓E/✓̃E. This measurement

is not equivalent to a measurement of the MSD factor
(1�

ls)/[(1�
s)(1�

l)] that is needed in order to extract
the true physical value of H0 from the e↵ective model result
H

model
0 in Eq. (26).
Ref. [15] presented a treatment of systematics in recent

cosmographic analyses. There, the following expression was
used to correct for the weak lensing MSD1:

H
inferred
0 = (1� 

ext)Hmodel
0 . (31)

1 See discussion around Eqs.(7-8) and Eq. (16) in [15].

The terms ls,l where e↵ectively set to zero in the modeling,
as they were ignored in both kinematics and imaging. From
Eq. (8) in Ref. [15] and our Eq. (30) it follows that for a
PL density profile, the term 

ext should be identified with

1� 
ext :=

1� 
s

(1� ls)(1� l)2��PL
. (32)

This expression coincides with the discussion in Ref. [68],
cited by [15] for the treatment of kinematics, if we set l =

ls
! 0, in which case 

ext
! 

s.
Combining Eqs. (32), (31), and (26), we conclude that

in Ref. [15] the relation between the inferred value and the
truth value of the Hubble parameter was biased by the fol-
lowing factor:

H
inferred
0

H0
=

1� 
s

(1� ls)(1� l)2��PL

1� 
ls

(1� s)(1� l)

⇡ 1 + (3� �PL)
l
. (33)

IV. ON THE USE OF RAY TRACING TO RESOLVE
THE MSD

Another method to constrain external convergence, used
in Refs. [10–15], is via ray-tracing in simulated data, cali-
brated system by system to the source density of the field
containing the primary lens [47–55].
The correction for external convergence requires all of


s,ls,l to be extracted simultaneously, and applied to the

cosmography analysis via Eq. (26). However, Ref. [10–15]
only used ray tracing to derive the observer-source LOS
term, 

s. This was identified in these analyses with the
parameter ext, that was applied to correct for the e↵ect in
the determination of H0 using Eq. (31), with 

ls,l taken to
vanish2 3.
Therefore we expect that in these analyses, the inferred

value of H0 (corrected by ray tracing for s) is still biased
w.r.t. the truth value of H0, by the amount:

H
inferred
0

H0
=

1� 
ls

1� l
⇡ 1� 

ls + 
l
. (34)

We note that the s,ls,l terms should be considered as sep-
arate (albeit statistically correlated) nuisance parameters in
cosmography. To clarify this point, in Fig. 2 we show an
estimate of the statistics of s and 

ls in a specific example
(see, e.g. [47] and references in and of it for previous stud-
ies). For definiteness, for this example we use the results

2 As an aside, we note that the identification of ext with s ex-
tracted from ray tracing, and the alternative identification of ext

via kinematics as in Eq. (32), are consistent for l = ls = 0, but
generally inconsistent otherwise.

3 The correct definition of ext that incorporates all of s,ls,l was
explicitly written in Ref. [38] (we thank Simon Birrer for drawing
our attention to this fact). However, also in [38], when making
contact with ray tracing priors it was assumed that ext = s; see
Sec. 5.1 there.
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To this, we add some true physical values for 
s,ls,l, so

altogether the imaging data satisfies Eqs. (9-10). Note that
because of weak lensing, the parameter ✓̃E in Eq. (27) is
not equal to the Einstein angle, that we will denote by ✓E.

The imaging part of the data can be summarised as a
measurement of ✓E. We will simplify the discussion by as-
suming that also �PL is accurately determined. The e↵ec-
tive modeling which transforms away the weak lensing terms
would converge onto the model

~↵
model(~✓) =

(1� 
ls)(1� 

l)2��PL

1� s

✓
✓

✓̃E

◆1��PL

~✓

:=

✓
✓

✓E

◆1��PL

~✓. (28)

The relation between the PL parameter ✓̃E and the Einstein
angle ✓E is, therefore,

✓E = ✓̃E


(1� 

ls)(1� 
l)2��PL

1� s

� 1
�PL�1

. (29)

Turning to kinematics, the observable velocity dispersion
for the PL profile is

�
2(✓) = 2G⌃critdA(zl, 0)

p
⇡�

��PL

2

�

�
��PL�1

2

� ✓̃
�PL�1
E ✓

2��PL

=
1� 

s

(1� ls)(1� l)2��PL

dA(zs, 0)

dA(zs, zl)
J(✓E, �PL).

(30)

In the second line we connect our result with Eq. (8) of
Ref. [15] (see also [11, 68]), defining J as a cosmology-
independent function that depends only on imaging ob-
servables. For simplicity, we assume that the velocity
dispersion is isotropic. The product G⌃critdA(zl, 0) =
(1/4⇡)dA(zs, 0)/dA(zs, zl) is independent of H0, and we
assume that it is known without error. Note from the first
line in Eq. (30) that the kinematics measurement of �2 can
be summarised as a measurement of ✓̃E.

Combining the kinematics data (✓̃E via �
2 in Eq. (30))

and the imaging data (✓E in Eq. (29)), one can
obtain a measurement of the weak lensing factorh
(1�ls)(1�l)2��PL

1�s

i 1
�PL�1

= ✓E/✓̃E. This measurement

is not equivalent to a measurement of the MSD factor
(1�

ls)/[(1�
s)(1�

l)] that is needed in order to extract
the true physical value of H0 from the e↵ective model result
H

model
0 in Eq. (26).
Ref. [15] presented a treatment of systematics in recent

cosmographic analyses. There, the following expression was
used to correct for the weak lensing MSD1:

H
inferred
0 = (1� 

ext)Hmodel
0 . (31)

1 See discussion around Eqs.(7-8) and Eq. (16) in [15].

The terms ls,l where e↵ectively set to zero in the modeling,
as they were ignored in both kinematics and imaging. From
Eq. (8) in Ref. [15] and our Eq. (30) it follows that for a
PL density profile, the term 

ext should be identified with

1� 
ext :=

1� 
s

(1� ls)(1� l)2��PL
. (32)

This expression coincides with the discussion in Ref. [68],
cited by [15] for the treatment of kinematics, if we set l =

ls
! 0, in which case 

ext
! 

s.
Combining Eqs. (32), (31), and (26), we conclude that

in Ref. [15] the relation between the inferred value and the
truth value of the Hubble parameter was biased by the fol-
lowing factor:

H
inferred
0

H0
=

1� 
s

(1� ls)(1� l)2��PL

1� 
ls

(1� s)(1� l)

⇡ 1 + (3� �PL)
l
. (33)

IV. ON THE USE OF RAY TRACING TO RESOLVE
THE MSD

Another method to constrain external convergence, used
in Refs. [10–15], is via ray-tracing in simulated data, cali-
brated system by system to the source density of the field
containing the primary lens [47–55].
The correction for external convergence requires all of


s,ls,l to be extracted simultaneously, and applied to the

cosmography analysis via Eq. (26). However, Ref. [10–15]
only used ray tracing to derive the observer-source LOS
term, 

s. This was identified in these analyses with the
parameter ext, that was applied to correct for the e↵ect in
the determination of H0 using Eq. (31), with 

ls,l taken to
vanish2 3.
Therefore we expect that in these analyses, the inferred

value of H0 (corrected by ray tracing for s) is still biased
w.r.t. the truth value of H0, by the amount:

H
inferred
0

H0
=

1� 
ls

1� l
⇡ 1� 

ls + 
l
. (34)

We note that the s,ls,l terms should be considered as sep-
arate (albeit statistically correlated) nuisance parameters in
cosmography. To clarify this point, in Fig. 2 we show an
estimate of the statistics of s and 

ls in a specific example
(see, e.g. [47] and references in and of it for previous stud-
ies). For definiteness, for this example we use the results

2 As an aside, we note that the identification of ext with s ex-
tracted from ray tracing, and the alternative identification of ext

via kinematics as in Eq. (32), are consistent for l = ls = 0, but
generally inconsistent otherwise.

3 The correct definition of ext that incorporates all of s,ls,l was
explicitly written in Ref. [38] (we thank Simon Birrer for drawing
our attention to this fact). However, also in [38], when making
contact with ray tracing priors it was assumed that ext = s; see
Sec. 5.1 there.
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To this, we add some true physical values for 
s,ls,l, so

altogether the imaging data satisfies Eqs. (9-10). Note that
because of weak lensing, the parameter ✓̃E in Eq. (27) is
not equal to the Einstein angle, that we will denote by ✓E.

The imaging part of the data can be summarised as a
measurement of ✓E. We will simplify the discussion by as-
suming that also �PL is accurately determined. The e↵ec-
tive modeling which transforms away the weak lensing terms
would converge onto the model

~↵
model(~✓) =

(1� 
ls)(1� 

l)2��PL

1� s

✓
✓

✓̃E

◆1��PL

~✓

:=

✓
✓

✓E

◆1��PL

~✓. (28)

The relation between the PL parameter ✓̃E and the Einstein
angle ✓E is, therefore,

✓E = ✓̃E


(1� 

ls)(1� 
l)2��PL

1� s

� 1
�PL�1

. (29)

Turning to kinematics, the observable velocity dispersion
for the PL profile is

�
2(✓) = 2G⌃critdA(zl, 0)

p
⇡�

��PL
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�
��PL�1

2

� ✓̃
�PL�1
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2��PL

=
1� 

s

(1� ls)(1� l)2��PL

dA(zs, 0)

dA(zs, zl)
J(✓E, �PL).

(30)

In the second line we connect our result with Eq. (8) of
Ref. [15] (see also [11, 68]), defining J as a cosmology-
independent function that depends only on imaging ob-
servables. For simplicity, we assume that the velocity
dispersion is isotropic. The product G⌃critdA(zl, 0) =
(1/4⇡)dA(zs, 0)/dA(zs, zl) is independent of H0, and we
assume that it is known without error. Note from the first
line in Eq. (30) that the kinematics measurement of �2 can
be summarised as a measurement of ✓̃E.

Combining the kinematics data (✓̃E via �
2 in Eq. (30))

and the imaging data (✓E in Eq. (29)), one can
obtain a measurement of the weak lensing factorh
(1�ls)(1�l)2��PL

1�s

i 1
�PL�1

= ✓E/✓̃E. This measurement

is not equivalent to a measurement of the MSD factor
(1�

ls)/[(1�
s)(1�

l)] that is needed in order to extract
the true physical value of H0 from the e↵ective model result
H

model
0 in Eq. (26).
Ref. [15] presented a treatment of systematics in recent

cosmographic analyses. There, the following expression was
used to correct for the weak lensing MSD1:

H
inferred
0 = (1� 

ext)Hmodel
0 . (31)

1 See discussion around Eqs.(7-8) and Eq. (16) in [15].

The terms ls,l where e↵ectively set to zero in the modeling,
as they were ignored in both kinematics and imaging. From
Eq. (8) in Ref. [15] and our Eq. (30) it follows that for a
PL density profile, the term 

ext should be identified with

1� 
ext :=

1� 
s

(1� ls)(1� l)2��PL
. (32)

This expression coincides with the discussion in Ref. [68],
cited by [15] for the treatment of kinematics, if we set l =

ls
! 0, in which case 

ext
! 

s.
Combining Eqs. (32), (31), and (26), we conclude that

in Ref. [15] the relation between the inferred value and the
truth value of the Hubble parameter was biased by the fol-
lowing factor:

H
inferred
0

H0
=

1� 
s

(1� ls)(1� l)2��PL

1� 
ls

(1� s)(1� l)

⇡ 1 + (3� �PL)
l
. (33)

IV. ON THE USE OF RAY TRACING TO RESOLVE
THE MSD

Another method to constrain external convergence, used
in Refs. [10–15], is via ray-tracing in simulated data, cali-
brated system by system to the source density of the field
containing the primary lens [47–55].
The correction for external convergence requires all of


s,ls,l to be extracted simultaneously, and applied to the

cosmography analysis via Eq. (26). However, Ref. [10–15]
only used ray tracing to derive the observer-source LOS
term, 

s. This was identified in these analyses with the
parameter ext, that was applied to correct for the e↵ect in
the determination of H0 using Eq. (31), with 

ls,l taken to
vanish2 3.
Therefore we expect that in these analyses, the inferred

value of H0 (corrected by ray tracing for s) is still biased
w.r.t. the truth value of H0, by the amount:

H
inferred
0

H0
=

1� 
ls

1� l
⇡ 1� 

ls + 
l
. (34)

We note that the s,ls,l terms should be considered as sep-
arate (albeit statistically correlated) nuisance parameters in
cosmography. To clarify this point, in Fig. 2 we show an
estimate of the statistics of s and 

ls in a specific example
(see, e.g. [47] and references in and of it for previous stud-
ies). For definiteness, for this example we use the results

2 As an aside, we note that the identification of ext with s ex-
tracted from ray tracing, and the alternative identification of ext

via kinematics as in Eq. (32), are consistent for l = ls = 0, but
generally inconsistent otherwise.

3 The correct definition of ext that incorporates all of s,ls,l was
explicitly written in Ref. [38] (we thank Simon Birrer for drawing
our attention to this fact). However, also in [38], when making
contact with ray tracing priors it was assumed that ext = s; see
Sec. 5.1 there.
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To this, we add some true physical values for 
s,ls,l, so

altogether the imaging data satisfies Eqs. (9-10). Note that
because of weak lensing, the parameter ✓̃E in Eq. (27) is
not equal to the Einstein angle, that we will denote by ✓E.

The imaging part of the data can be summarised as a
measurement of ✓E. We will simplify the discussion by as-
suming that also �PL is accurately determined. The e↵ec-
tive modeling which transforms away the weak lensing terms
would converge onto the model

~↵
model(~✓) =

(1� 
ls)(1� 

l)2��PL
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✓
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✓̃E
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The relation between the PL parameter ✓̃E and the Einstein
angle ✓E is, therefore,

✓E = ✓̃E


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Turning to kinematics, the observable velocity dispersion
for the PL profile is
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(30)

In the second line we connect our result with Eq. (8) of
Ref. [15] (see also [11, 68]), defining J as a cosmology-
independent function that depends only on imaging ob-
servables. For simplicity, we assume that the velocity
dispersion is isotropic. The product G⌃critdA(zl, 0) =
(1/4⇡)dA(zs, 0)/dA(zs, zl) is independent of H0, and we
assume that it is known without error. Note from the first
line in Eq. (30) that the kinematics measurement of �2 can
be summarised as a measurement of ✓̃E.

Combining the kinematics data (✓̃E via �
2 in Eq. (30))

and the imaging data (✓E in Eq. (29)), one can
obtain a measurement of the weak lensing factorh
(1�ls)(1�l)2��PL

1�s

i 1
�PL�1

= ✓E/✓̃E. This measurement

is not equivalent to a measurement of the MSD factor
(1�

ls)/[(1�
s)(1�

l)] that is needed in order to extract
the true physical value of H0 from the e↵ective model result
H

model
0 in Eq. (26).
Ref. [15] presented a treatment of systematics in recent

cosmographic analyses. There, the following expression was
used to correct for the weak lensing MSD1:

H
inferred
0 = (1� 

ext)Hmodel
0 . (31)

1 See discussion around Eqs.(7-8) and Eq. (16) in [15].

The terms ls,l where e↵ectively set to zero in the modeling,
as they were ignored in both kinematics and imaging. From
Eq. (8) in Ref. [15] and our Eq. (30) it follows that for a
PL density profile, the term 

ext should be identified with

1� 
ext :=

1� 
s

(1� ls)(1� l)2��PL
. (32)

This expression coincides with the discussion in Ref. [68],
cited by [15] for the treatment of kinematics, if we set l =

ls
! 0, in which case 

ext
! 

s.
Combining Eqs. (32), (31), and (26), we conclude that

in Ref. [15] the relation between the inferred value and the
truth value of the Hubble parameter was biased by the fol-
lowing factor:
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⇡ 1 + (3� �PL)
l
. (33)

IV. ON THE USE OF RAY TRACING TO RESOLVE
THE MSD

Another method to constrain external convergence, used
in Refs. [10–15], is via ray-tracing in simulated data, cali-
brated system by system to the source density of the field
containing the primary lens [47–55].
The correction for external convergence requires all of


s,ls,l to be extracted simultaneously, and applied to the

cosmography analysis via Eq. (26). However, Ref. [10–15]
only used ray tracing to derive the observer-source LOS
term, 

s. This was identified in these analyses with the
parameter ext, that was applied to correct for the e↵ect in
the determination of H0 using Eq. (31), with 

ls,l taken to
vanish2 3.
Therefore we expect that in these analyses, the inferred

value of H0 (corrected by ray tracing for s) is still biased
w.r.t. the truth value of H0, by the amount:

H
inferred
0

H0
=

1� 
ls

1� l
⇡ 1� 

ls + 
l
. (34)

We note that the s,ls,l terms should be considered as sep-
arate (albeit statistically correlated) nuisance parameters in
cosmography. To clarify this point, in Fig. 2 we show an
estimate of the statistics of s and 

ls in a specific example
(see, e.g. [47] and references in and of it for previous stud-
ies). For definiteness, for this example we use the results

2 As an aside, we note that the identification of ext with s ex-
tracted from ray tracing, and the alternative identification of ext

via kinematics as in Eq. (32), are consistent for l = ls = 0, but
generally inconsistent otherwise.

3 The correct definition of ext that incorporates all of s,ls,l was
explicitly written in Ref. [38] (we thank Simon Birrer for drawing
our attention to this fact). However, also in [38], when making
contact with ray tracing priors it was assumed that ext = s; see
Sec. 5.1 there.
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enough that we restrict ourselves to Eqs. (14-15).) Image
coordinates ~✓ and magnification ratios are invariant under
Eqs. (14-15). However, time delays are a↵ected, and there-
fore, so is the inference of H0.

Eqs. (14-15) imply a degeneracy in the modeling of weak
lensing data, coupled with a reparameterization of the model
describing the “intrinsic” deflection angle ~↵1. Infinitely
many di↵erent reparameterizations of M r

i and ~↵1 can pro-
duce Eqs. (14-15). In considering these possibilities we as-
sume that lens and source redshifts are measured perfectly,
so the cosmological functions Ci are known without appre-
ciable uncertainty (given a cosmological model).

Because of the inhomogeneous term (1��)~✓ in Eq. (15),
it is natural to associate the MSD with a reinterpretation
of the inhomogeneous observer-source weak lensing term in
Eq. (10), via M

s
i 7�! M

s,�
i = �sM

s
i + 1 � �s. However,

the interpretation is coupled to additional degeneracies with
M

ls
i and M

l. It is convenient to parameterize the combined
degeneracy by allowing M

ls
i and M

l to also be adjusted,
alongside an adjustment of the intrinsic lens model and the
modeled source coordinates:

M
s
i 7�! M

s,�
i = �sM

s
i + 1� �s, (16)

M
ls
i 7�! M

ls,�
i = �lsM

ls
i + 1� �ls, (17)

M
l
7�! M

l,� = �lM
l + 1� �l, (18)

~�i 7�!
~�
�
i = �s

~�i, (19)

~↵1(~✓) 7�! ~↵
�
1 (~✓) = �s �

�1
ls ~↵1(�

�1
l
~✓), (20)

 1(~✓) 7�!  
�
1 (~✓) = �s �

�1
ls �l 1(�

�1
l
~✓). (21)

Here �s,�ls, and �l are independent parameters. Note that
Eq. (16) (for example) amounts to si 7�! 

s,�
i = �s

s
i +

(1� �s), �s
i , 7�! �s,�

i = �s�s
i .

Inserting Eqs. (19-21) into Eq. (12), we see that the
dimensionless time delay �⌧AB of the transformed model
changes according to (see [38] for an earlier discussion):

�⌧AB 7�! �⌧�AB = �s�
�1
ls �l�⌧AB . (22)

Thus, a readjustment of the lensing model according to
Eqs. (16-19) entails a reinterpretation of the inferred value
of H0. Since H0 is inferred from the measured time delays
�tAB and the model dimensionless time delay �⌧AB via
H0 / �⌧AB/�tAB , we have:

H0 7�! H
�
0 = �s�

�1
ls �lH0. (23)

We would like to emphasize that the availability of multi-
ple sources does not, by itself, ameliorate the MSD: as far as
imaging information is considered, the modeling degeneracy
expressed by Eqs. (16-21) remains exact. It simply amounts
to a simultaneous reinterpretation of the weak lensing vari-
ables a↵ecting all of the sources. (The same conclusion,
with a di↵erent version of the MSD and a discussion of
intermediate sources as additional strong lenses for back-
ground sources, was reached in Refs. [44, 45].) We return
to this point in Sec. V.

In the absence of a direct measurement of weak lensing
applicable to the field of view of the strong lensing system,

the only way to ameliorate the MSD is by appealing to theo-
retical estimates of the magnitude of weak lensing variables.
For example, a theoretical estimate of the expected possi-
ble magnitude of si , as shown in Fig. 1, could constrain the
conceivable range of 1� �s in Eq. (16): for some systems,
an additive shift of order |1��s| ⇡ 0.1 in si may be di�cult
to justify from a cosmological point of view. In App. B we
estimate some of these theoretical constraints.

III. ON THE USE OF STELLAR KINEMATICS TO
RESOLVE THE MSD

In an imaging analysis, if only a single source is available
(say i = 1), one can use Eqs. (16-18) with the choice

�s =
1

1� s
, �ls =

1

1� ls
, �l =

1

1� l
, (24)

to eliminate all of s, ls, and l from the modeling. For this
reason, the task of extracting lensing information in imaging
data is often performed ignoring external convergence [10–
15]. (The details of how shear is modeled [67] will not be
important for the discussion in this section.)
Suppose we denote the fit result for the “intrinsic deflec-

tion angle” in such an analysis by ~↵model(~✓). By “elimi-
nating external convergence from the equations”, we mean
that the fit looks for a deflection angle model ~↵model(~✓)

which goes to zero at large |~✓|, possibly up to a uniform
shear term �s~✓. Eq. (20) implies that ~↵model(~✓) is related
to the true underlying physical intrinsic deflection angle by

~↵
model(~✓) =

1� 
ls

1� s
~↵((1� 

l)~✓), (25)

where s,ls,l are the true physical values of the weak lensing
terms. Given a measurement of the physical image time
delays, and deriving the dimensionless time delay �⌧model

AB
from ~↵

model, one can extract an inferred result H
model
0 ,

which is related to the truth value H0 by [38]

H
model
0 =

1� 
ls

(1� s)(1� l)
H0. (26)

The usual challenge of the weak lensing MSD for cosmog-
raphy is to constrain the correction factor (1 � 

ls)/[(1 �


s)(1� 

l)] ⇡ 1 + 
s + 

l
� 

ls.
Stellar kinematics is sensitive to the intrinsic mass-per-

radius (M(R)/R) of the lens, and can be used to partially
resolve the MSD. Refs. [10–15] used kinematics to constrain
the MSD, but in these works, weak lensing was only param-
eterised in terms of s, omitting ls and l. The omission
of ls and l biases the inferred value of H0. To explain this
we consider a simplified scenario, where we can inspect the
information content of imaging, time delays, and kinematics
separately.
Suppose that the intrinsic deflection angle of the lens is

given by the power-law (PL) profile (we denote ✓ = |~✓|)

~↵(~✓) =

✓
✓

✓̃E

◆1��PL

~✓. (27)
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To this, we add some true physical values for 
s,ls,l, so

altogether the imaging data satisfies Eqs. (9-10). Note that
because of weak lensing, the parameter ✓̃E in Eq. (27) is
not equal to the Einstein angle, that we will denote by ✓E.

The imaging part of the data can be summarised as a
measurement of ✓E. We will simplify the discussion by as-
suming that also �PL is accurately determined. The e↵ec-
tive modeling which transforms away the weak lensing terms
would converge onto the model

~↵
model(~✓) =

(1� 
ls)(1� 

l)2��PL

1� s

✓
✓

✓̃E

◆1��PL

~✓

:=

✓
✓

✓E

◆1��PL

~✓. (28)

The relation between the PL parameter ✓̃E and the Einstein
angle ✓E is, therefore,

✓E = ✓̃E


(1� 

ls)(1� 
l)2��PL

1� s

� 1
�PL�1

. (29)

Turning to kinematics, the observable velocity dispersion
for the PL profile is

�
2(✓) = 2G⌃critdA(zl, 0)

p
⇡�

��PL

2

�

�
��PL�1

2

� ✓̃
�PL�1
E ✓

2��PL

=
1� 

s

(1� ls)(1� l)2��PL

dA(zs, 0)

dA(zs, zl)
J(✓E, �PL).

(30)

In the second line we connect our result with Eq. (8) of
Ref. [15] (see also [11, 68]), defining J as a cosmology-
independent function that depends only on imaging ob-
servables. For simplicity, we assume that the velocity
dispersion is isotropic. The product G⌃critdA(zl, 0) =
(1/4⇡)dA(zs, 0)/dA(zs, zl) is independent of H0, and we
assume that it is known without error. Note from the first
line in Eq. (30) that the kinematics measurement of �2 can
be summarised as a measurement of ✓̃E.

Combining the kinematics data (✓̃E via �
2 in Eq. (30))

and the imaging data (✓E in Eq. (29)), one can
obtain a measurement of the weak lensing factorh
(1�ls)(1�l)2��PL

1�s

i 1
�PL�1

= ✓E/✓̃E. This measurement

is not equivalent to a measurement of the MSD factor
(1�

ls)/[(1�
s)(1�

l)] that is needed in order to extract
the true physical value of H0 from the e↵ective model result
H

model
0 in Eq. (26).
Ref. [15] presented a treatment of systematics in recent

cosmographic analyses. There, the following expression was
used to correct for the weak lensing MSD1:

H
inferred
0 = (1� 

ext)Hmodel
0 . (31)

1 See discussion around Eqs.(7-8) and Eq. (16) in [15].

The terms ls,l where e↵ectively set to zero in the modeling,
as they were ignored in both kinematics and imaging. From
Eq. (8) in Ref. [15] and our Eq. (30) it follows that for a
PL density profile, the term 

ext should be identified with

1� 
ext :=

1� 
s

(1� ls)(1� l)2��PL
. (32)

This expression coincides with the discussion in Ref. [68],
cited by [15] for the treatment of kinematics, if we set l =

ls
! 0, in which case 

ext
! 

s.
Combining Eqs. (32), (31), and (26), we conclude that

in Ref. [15] the relation between the inferred value and the
truth value of the Hubble parameter was biased by the fol-
lowing factor:

H
inferred
0

H0
=

1� 
s

(1� ls)(1� l)2��PL

1� 
ls

(1� s)(1� l)

⇡ 1 + (3� �PL)
l
. (33)

IV. ON THE USE OF RAY TRACING TO RESOLVE
THE MSD

Another method to constrain external convergence, used
in Refs. [10–15], is via ray-tracing in simulated data, cali-
brated system by system to the source density of the field
containing the primary lens [47–55].
The correction for external convergence requires all of


s,ls,l to be extracted simultaneously, and applied to the

cosmography analysis via Eq. (26). However, Ref. [10–15]
only used ray tracing to derive the observer-source LOS
term, 

s. This was identified in these analyses with the
parameter ext, that was applied to correct for the e↵ect in
the determination of H0 using Eq. (31), with 

ls,l taken to
vanish2 3.
Therefore we expect that in these analyses, the inferred

value of H0 (corrected by ray tracing for s) is still biased
w.r.t. the truth value of H0, by the amount:

H
inferred
0

H0
=

1� 
ls

1� l
⇡ 1� 

ls + 
l
. (34)

We note that the s,ls,l terms should be considered as sep-
arate (albeit statistically correlated) nuisance parameters in
cosmography. To clarify this point, in Fig. 2 we show an
estimate of the statistics of s and 

ls in a specific example
(see, e.g. [47] and references in and of it for previous stud-
ies). For definiteness, for this example we use the results

2 As an aside, we note that the identification of ext with s ex-
tracted from ray tracing, and the alternative identification of ext

via kinematics as in Eq. (32), are consistent for l = ls = 0, but
generally inconsistent otherwise.

3 The correct definition of ext that incorporates all of s,ls,l was
explicitly written in Ref. [38] (we thank Simon Birrer for drawing
our attention to this fact). However, also in [38], when making
contact with ray tracing priors it was assumed that ext = s; see
Sec. 5.1 there.
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To this, we add some true physical values for 
s,ls,l, so

altogether the imaging data satisfies Eqs. (9-10). Note that
because of weak lensing, the parameter ✓̃E in Eq. (27) is
not equal to the Einstein angle, that we will denote by ✓E.

The imaging part of the data can be summarised as a
measurement of ✓E. We will simplify the discussion by as-
suming that also �PL is accurately determined. The e↵ec-
tive modeling which transforms away the weak lensing terms
would converge onto the model

~↵
model(~✓) =

(1� 
ls)(1� 

l)2��PL

1� s

✓
✓

✓̃E

◆1��PL

~✓

:=

✓
✓

✓E

◆1��PL

~✓. (28)

The relation between the PL parameter ✓̃E and the Einstein
angle ✓E is, therefore,

✓E = ✓̃E


(1� 

ls)(1� 
l)2��PL

1� s

� 1
�PL�1

. (29)

Turning to kinematics, the observable velocity dispersion
for the PL profile is

�
2(✓) = 2G⌃critdA(zl, 0)

p
⇡�

��PL

2

�

�
��PL�1

2

� ✓̃
�PL�1
E ✓

2��PL

=
1� 

s

(1� ls)(1� l)2��PL

dA(zs, 0)

dA(zs, zl)
J(✓E, �PL).

(30)

In the second line we connect our result with Eq. (8) of
Ref. [15] (see also [11, 68]), defining J as a cosmology-
independent function that depends only on imaging ob-
servables. For simplicity, we assume that the velocity
dispersion is isotropic. The product G⌃critdA(zl, 0) =
(1/4⇡)dA(zs, 0)/dA(zs, zl) is independent of H0, and we
assume that it is known without error. Note from the first
line in Eq. (30) that the kinematics measurement of �2 can
be summarised as a measurement of ✓̃E.

Combining the kinematics data (✓̃E via �
2 in Eq. (30))

and the imaging data (✓E in Eq. (29)), one can
obtain a measurement of the weak lensing factorh
(1�ls)(1�l)2��PL

1�s

i 1
�PL�1

= ✓E/✓̃E. This measurement

is not equivalent to a measurement of the MSD factor
(1�

ls)/[(1�
s)(1�

l)] that is needed in order to extract
the true physical value of H0 from the e↵ective model result
H

model
0 in Eq. (26).
Ref. [15] presented a treatment of systematics in recent

cosmographic analyses. There, the following expression was
used to correct for the weak lensing MSD1:

H
inferred
0 = (1� 

ext)Hmodel
0 . (31)

1 See discussion around Eqs.(7-8) and Eq. (16) in [15].

The terms ls,l where e↵ectively set to zero in the modeling,
as they were ignored in both kinematics and imaging. From
Eq. (8) in Ref. [15] and our Eq. (30) it follows that for a
PL density profile, the term 

ext should be identified with

1� 
ext :=

1� 
s

(1� ls)(1� l)2��PL
. (32)

This expression coincides with the discussion in Ref. [68],
cited by [15] for the treatment of kinematics, if we set l =

ls
! 0, in which case 

ext
! 

s.
Combining Eqs. (32), (31), and (26), we conclude that

in Ref. [15] the relation between the inferred value and the
truth value of the Hubble parameter was biased by the fol-
lowing factor:

H
inferred
0

H0
=

1� 
s

(1� ls)(1� l)2��PL

1� 
ls

(1� s)(1� l)

⇡ 1 + (3� �PL)
l
. (33)

IV. ON THE USE OF RAY TRACING TO RESOLVE
THE MSD

Another method to constrain external convergence, used
in Refs. [10–15], is via ray-tracing in simulated data, cali-
brated system by system to the source density of the field
containing the primary lens [47–55].
The correction for external convergence requires all of


s,ls,l to be extracted simultaneously, and applied to the

cosmography analysis via Eq. (26). However, Ref. [10–15]
only used ray tracing to derive the observer-source LOS
term, 

s. This was identified in these analyses with the
parameter ext, that was applied to correct for the e↵ect in
the determination of H0 using Eq. (31), with 

ls,l taken to
vanish2 3.
Therefore we expect that in these analyses, the inferred

value of H0 (corrected by ray tracing for s) is still biased
w.r.t. the truth value of H0, by the amount:

H
inferred
0

H0
=

1� 
ls

1� l
⇡ 1� 

ls + 
l
. (34)

We note that the s,ls,l terms should be considered as sep-
arate (albeit statistically correlated) nuisance parameters in
cosmography. To clarify this point, in Fig. 2 we show an
estimate of the statistics of s and 

ls in a specific example
(see, e.g. [47] and references in and of it for previous stud-
ies). For definiteness, for this example we use the results

2 As an aside, we note that the identification of ext with s ex-
tracted from ray tracing, and the alternative identification of ext

via kinematics as in Eq. (32), are consistent for l = ls = 0, but
generally inconsistent otherwise.

3 The correct definition of ext that incorporates all of s,ls,l was
explicitly written in Ref. [38] (we thank Simon Birrer for drawing
our attention to this fact). However, also in [38], when making
contact with ray tracing priors it was assumed that ext = s; see
Sec. 5.1 there.

Instead, post-processing weak lensing 
correction applied in TDCOSMO I and IV 
for the kinematics, was equivalent to setting:

With:

Along with:

Leading to kinematics-induced bias: 

1 − κext →
(1 − κs)(1 − κl)

1 − κls

σ2 → (1 − κext) σ2

H inferred
0 = (1 − κext) Hmodel

0

H inferred
0

H0
≈ 1 − (3 − γPL)κl



Potentially bigger problem: ``internal convergence”

H0 [km/s/Mpc]

SNIa

65 66 67 68 69 70 71 72 73 74 75 76

CMB 

TDCOSMO I  
(Millon 2019)

TDCOSMO IV  
(Birrer 2020)



βλ

θ
αλ

κλ = λκ + 1 − λ

Internal vs. External Convergence 

Internal vs. External Mass Sheet Degeneracy



κλ = λκ + (1 − λ)κc

βλ

θ
αλ

Internal vs. External Convergence 

Internal vs. External Mass Sheet Degeneracy



κλ = λκ + (1 − λ)κc

βλ

θ
αλ

Internal vs. External Convergence 

Internal vs. External Mass Sheet Degeneracy

Schneider, Sluse, 1306.0901
KB, Castorina, Simonović, 2001.07182



4

To make things more concrete we define the �PL family of profiles:

�(~✓)=�PL(~✓) + (1� �)c(~✓). (11)

Here, we take PL to represent the elliptic PL profile as used by H0LiCOW to successfully model the lensing data in
their systems4. The c(~✓) term is chosen to satisfy c(~✓) ⇡ 1 for ✓ < ✓c and to fall faster than PL at ✓ > ✓c. We do
not need to assume that c(~✓) is isotropic, but in what follows for simplicity we will.
As a first example, consider the 3D cored density profile ⇢c(r) =

2
⇡⌃cR

3
c(R

2
c+r

2)�2, where ⌃c is the critical density of

Eq. (4). The convergence for this profile is c(~✓) =
⇣
1 + ✓2

✓2
c

⌘� 3
2
= 1� 3✓2

2✓2
c
+O

⇣
✓4

✓4
c

⌘
and it induces the deflection angle

~↵c(~✓) = ✓̂
2✓2

c
✓

✓
1�

⇣
1 + ✓2

✓2
c

⌘� 1
2

◆
= ~✓

⇣
1� 3✓2

4✓2
c
+O

⇣
✓4

✓4
c

⌘⌘
. Obviously, using this c in Eq. (11) gives an approximate

MSD inside of ✓ < ✓c. We can estimate the corrections to the MSD by comparing the Einstein angle ✓E for PL and
the Einstein angle ✓E� for � in Eq. (11). For simplicity, in this exercise we take PL to be isotropic and given by

PL(~✓) = 3��
2

✓��1
E

✓��1 , for which the deflection angle is ~↵PL(~✓) =
✓��1
E

✓��1
~✓. In the limit ✓c ! 1, the MSD is exact and

✓E = ✓E�. For finite ✓c we find ✓E� = ✓E + �, with � = �
3

4(��1)
1��
�

✓2
E
✓2
c
+ O

⇣
✓4
E
✓4
c

⌘
. From the form of � we can infer

the parametric dependence of the breaking of the MSD. The corrections to the image plane geometry enter at order
✓
2
/✓

2
c , and if � ⇡ 1 (that is, if we only add a small core) are further suppressed by a factor 1� �. Note that for real

systems H0LiCOW find � ⇡ 2 so 1/(� � 1) ⇡ 1 (see Tab. 1).
More generally, if in Eq. (11) we use a core component that can be expanded as c = 1 + a✓

2
/✓

2
c + ... at ✓ < ✓c,

then the leading order image plane corrections to the MSD at ✓ < ✓c scale as (1� �)✓2/✓2c . This scaling remains true
also when the baseline term PL (or whatever other baseline model is considered, e.g. a composite stellar cusp+NFW
model) is anisotropic.
As another example, consider the 3D cored Navarro-Frenk-White (NFW) density profile,

⇢cNFW(r)=
⇢0

(Rc + r)(Rs + r)2
, (12)

which contains 1 extra parameter Rc, defining the core, in addition to the usual NFW density ⇢0 and scale radius
Rs. The convergence cNFW can be computed analytically even though is not particularly illuminating (in App. A we
collect some formulae for profiles that could serve as the core component in �PL models). With proper normalization
such that cNFW(0) = 1 it has the correct characteristics to function as c in Eq. (11). We show cNFW by the dashed
black line in Fig. 1. We have set ✓s = Rs/Dl = 11 and ✓c = 0.5 ✓s, indicated by arrows at the bottom of the plot.
To illustrate the MSD, in Fig. 2 we calculate the lensing geometry and time delays for a toy model of a quasar

sitting in an extended host galaxy. To make things simple we replace the extended host by a circle on the source
plane, centred on the quasar. We first do the lensing exercise for a pure PL model with slope n = 1.95 and ellipticity
parameter q = 0.8, similar to typical H0LiCOW systems. The source plane host “galaxy” is shown by the red circle
in the top panel (source plane). The “quasar” is denoted by magenta cross. The lensed images are shown by red lines
in the bottom panel (image plane). (It is di�cult to see these lines because they lie underneath the green lines of the
�PL model, as explained below.) We calculate the dimensionless time delays �⌧ij at the quasar image positions and
show them next to the bottom panel (magenta, titled PL). The convergence for this PL model (along the ✓x axis) is
shown by the red line in Fig. 1. We have chosen the PL normalisation such that ✓E ⇡ 1.
Next, we consider a �PL model with � = 0.75. The convergence for this �PL model is shown by the blue line in

Fig. 1. The source plane host model as given by the MSD is shown by the green circle in the top panel of Fig. 2. The
quasar is shown by the blue cross. The images are shown by the green line and blue crosses in the bottom panel. As
expected, they sit almost on top of the pure PL. The time delays for the �PL model images are shown next to the
bottom panel (blue, titled �PL). As expected the �PL time delays satisfy �⌧ij,� ⇡ ��⌧ij .

3. IF WE ASSUME H0 FROM CMB/LSS, WHAT DO WE LEARN ABOUT H0LICOW LENSES?

If one used the toy example of Fig. 2 to measure H0, and if, assuming the pure PL model, one found, for example,
H0 = 74 km/s/Mpc, then we expect that the �PL model with � = 0.75 would give acceptable likelihood with

4
The elliptic PL profile is referred to as SPEMD in (Suyu et al. 2017; Bonvin et al. 2019; Birrer et al. 2019; Chen et al. 2019; Wong et al.

2019).

κλ = λκ + (1 − λ)κc
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θ2

θ2
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2

βλ

θ
αλ

θEλ = θE(1 + δ)

KB, Castorina, Simonović, 2001.07182
A core component in lens halos could explain lensing H0 tension.
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Figure 1. Convergence for a �PL model, with � = 0.75 (blue) and � = 0.9 (green). The � = 1 pure PL case is shown in red,
and the cNFW profile is shown in dashed black. A value of � ⇡ 0.9 would bring the H0LiCOW determination of H0 down to
the CMB/LSS value. Note that for H0LiCOW lenses, both lensing and kinematics data reach outward only slightly beyond ✓E ,
and never constrain angles around the value of ✓c chosen in this example.

H0 ⇡ 56 km/s/Mpc. Our choice of � in this example is, of course, an exaggeration. To solve the H0 tension we
only need � ⇡ 0.9. In Tab. 1 we collect some key numbers for six H0LiCOW systems. Taking H0 ⇡ 67 km/s/Mpc
to represent the CMB/LSS measurement, we show in the third column the value of � that is required to bring the
cosmographic H0 from each system down to the CMB/LSS value.

Table 1. Lens systems from Millon et al. (2019). Values for H0 (in km/s/Mpc) are from the PL fit (Fig. 6 in Millon et al.
(2019)). Approximate values for the PL index �, the Einstein radius ✓E , and the NFW scale ✓s were read from PL and composite
NFW+stellar fits reported by papers in the last column.

H0 � = 67/H0 � ✓E [”] ✓s [”] lens redshift zl ref

RXJ1131 76.1+3.6
�4.3 0.88+0.06

�0.04 1.98 1.6 19 0.295 Chen et al. (2016)

PG1115 83.0+7.8
�7.0 0.81+0.07

�0.07 2.18 1.1 17 0.311 Chen et al. (2019)

HE0435 71.7+5.1
�4.6 0.93+0.07

�0.06 1.87 1.2 10 0.4546 Chen et al. (2019)

DESJ0408 74.6+2.5
�2.9 0.9+0.03

�0.03 2 1.9 13 0.6 Shajib et al. (2019)

WFI2033 72.6+3.3
�3.5 0.92+0.05

�0.04 1.95 0.9 11 0.6575 Rusu et al. (2019)

J1206 67.0+5.7
�4.8 1+0.08

�0.08 1.95 1.2 4.7 0.745 Birrer et al. (2019)

Noting that H0LiCOW found adequate fits to the lensing reconstruction with the PL model, and given an estimate
of � for each system from Tab. 1, we can use Eq. (11) with some model for c to investigate the implied physical shape
of the lens galaxies. In Fig. 3 we show the results of this exercise for five systems5, where we use cNFW with ✓s = 11”
and ✓c = 5.5” to play the role of c. For simplicity we ignore the ellipticity q of the PL component. Including it would
shift the PL line by a constant factor of q

��1
2 if we project along the ✓x direction, or q

� ��1
2 if we project along ✓y,

without adjusting c. Typical H0LiCOW lenses have q ⇠ 0.8 and � ⇠ 2.

5
The 6th system – J1206 Birrer et al. (2019) – has � = 1± 0.08, so while it would admit a � ⇠ 0.92 core it is also consistent with no core

component.
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Figure 1. Convergence for a �PL model, with � = 0.75 (blue) and � = 0.9 (green). The � = 1 pure PL case is shown in red,
and the cNFW profile is shown in dashed black. A value of � ⇡ 0.9 would bring the H0LiCOW determination of H0 down to
the CMB/LSS value. Note that for H0LiCOW lenses, both lensing and kinematics data reach outward only slightly beyond ✓E ,
and never constrain angles around the value of ✓c chosen in this example.

H0 ⇡ 56 km/s/Mpc. Our choice of � in this example is, of course, an exaggeration. To solve the H0 tension we
only need � ⇡ 0.9. In Tab. 1 we collect some key numbers for six H0LiCOW systems. Taking H0 ⇡ 67 km/s/Mpc
to represent the CMB/LSS measurement, we show in the third column the value of � that is required to bring the
cosmographic H0 from each system down to the CMB/LSS value.

Table 1. Lens systems from Millon et al. (2019). Values for H0 (in km/s/Mpc) are from the PL fit (Fig. 6 in Millon et al.
(2019)). Approximate values for the PL index �, the Einstein radius ✓E , and the NFW scale ✓s were read from PL and composite
NFW+stellar fits reported by papers in the last column.

H0 � = 67/H0 � ✓E [”] ✓s [”] lens redshift zl ref

RXJ1131 76.1+3.6
�4.3 0.88+0.06

�0.04 1.98 1.6 19 0.295 Chen et al. (2016)

PG1115 83.0+7.8
�7.0 0.81+0.07

�0.07 2.18 1.1 17 0.311 Chen et al. (2019)

HE0435 71.7+5.1
�4.6 0.93+0.07

�0.06 1.87 1.2 10 0.4546 Chen et al. (2019)

DESJ0408 74.6+2.5
�2.9 0.9+0.03

�0.03 2 1.9 13 0.6 Shajib et al. (2019)

WFI2033 72.6+3.3
�3.5 0.92+0.05

�0.04 1.95 0.9 11 0.6575 Rusu et al. (2019)

J1206 67.0+5.7
�4.8 1+0.08

�0.08 1.95 1.2 4.7 0.745 Birrer et al. (2019)

Noting that H0LiCOW found adequate fits to the lensing reconstruction with the PL model, and given an estimate
of � for each system from Tab. 1, we can use Eq. (11) with some model for c to investigate the implied physical shape
of the lens galaxies. In Fig. 3 we show the results of this exercise for five systems5, where we use cNFW with ✓s = 11”
and ✓c = 5.5” to play the role of c. For simplicity we ignore the ellipticity q of the PL component. Including it would
shift the PL line by a constant factor of q

��1
2 if we project along the ✓x direction, or q

� ��1
2 if we project along ✓y,

without adjusting c. Typical H0LiCOW lenses have q ⇠ 0.8 and � ⇠ 2.

5
The 6th system – J1206 Birrer et al. (2019) – has � = 1± 0.08, so while it would admit a � ⇠ 0.92 core it is also consistent with no core

component.

KB, Castorina, Simonovic 2020

A&A proofs: manuscript no. mst h0

Table 5: Summary of the model parameters sampled in the hierarchical inference on the TDCOSMO+SLACS sample.

name prior description

Cosmology (Flat ΛCDM)
H0 [km s−1Mpc−1] U([0, 150]) Hubble constant
Ωm N(µ = 0.298,σ = 0.022) current normalized matter density
Mass profile
λint,0 U([0.5, 1.5]) internal MST population mean
αλ U([−1, 1]) slope of λint with reff/θE of the deflector (Eqn. 50)
σ(λint) U(log([0.001, 0.5])) 1-σ Gaussian scatter in the internal MST
Normalization of IFU data
λifu U([0.5, 1.5]) internal MST population constraint from IFU data
σ(λifu) U(log([0.01, 0.5])) 1-σ Gaussian scatter in λifu
Stellar kinematics
〈aani〉 U(log(aani)) for aani in [0.1, 5] scaled anisotropy radius (Eqn. 51, 52)
σ(aani) U(log([0.01, 1])) σ(aani)〈aani〉 is the 1-σ Gaussian scatter in aani
σσP,sys U(log([0.01, 0.5])) systematic uncertainty on σP

SDSS measurements (Eqn. 57)
Line of sight
κext p(κext) of individual lenses (Fig. 6 & 9) external convergence of lenses

Table 6: Marginalized posteriors of our hierarchical Bayesian cosmography inference based on the priors and parameter-
ization specified in Table 5 for a flat ΛCDM cosmology.

Data sets H0 [km s−1Mpc−1] λint,0 αλ σ(λint) aani σ(aani) σσP,sys

TDCOSMO-only 74.5+5.6−6.1 1.02+0.08−0.09 0.00+0.07−0.07 0.01+0.03−0.01 2.32+1.62−1.17 0.16+0.50−0.14 -
TDCOSMO + SLACSIFU 73.3+5.8−5.8 1.00+0.08−0.08 −0.07+0.06−0.06 0.07+0.09−0.05 1.58+1.58−0.54 0.15+0.47−0.13 -
TDCOSMO + SLACSSDSS 67.4+4.3−4.7 0.91+0.05−0.06 −0.04+0.04−0.04 0.02+0.04−0.01 1.52+1.76−0.70 0.28+0.45−0.25 0.06+0.02−0.02
TDCOSMO + SLACSSDSS+IFU 67.4+4.1−3.2 0.91+0.04−0.04 −0.07+0.03−0.04 0.06+0.08−0.04 1.20+0.70−0.27 0.18+0.50−0.15 0.06+0.02−0.02

elliptical galaxies, we would not have to worry about the
internal MST. The approach chosen by our collaboration
(Wong et al. 2020; Shajib et al. 2019; Millon et al. 2019) was
to assume physically motivated mass profiles with degrees
of freedom in their parameters. In particular, the collabora-
tion used two different mass profiles, a power-law elliptical
mass profile, and a composite mass profile separating the
luminous component (with fixed mass-to-light ratio) and a
dark component described as a NFW profile. The good fit
to the data, the small pixellated corrections on the profiles
from the first lens system (Suyu et al. 2010), and the good
agreement of H0 inferred with the two mass profiles was a
positive sanity check on the result (Millon et al. 2019).

In this paper we have taken a different viewpoint, and
asked how much can the mass profiles depart from a power-
law and still be consistent with the data. By phrasing the
question in terms of the MST we can conveniently carry out
the calculations, because the MST leaves the lensing observ-
ables unchanged and therefore it corresponds to minimal
constraints and assumptions, and thus maximal uncertain-
ties with one additional degree of freedom. However, after
the inference, one has to examine the inferred MST trans-
formed profile and evaluate it in comparison with existing
and future data to make sure it is realistic. We know that
the exact MST cannot be the actual answer because profiles
have to go zero density at large radii, but the approximate
MST discussed in Section 2 provides a convenient interpre-
tation with the addition of a cored mass component.

Figure 17 illustrates a cored mass component approxi-
mating the MST inferred from this work, λint = 0.91± 0.04,
in combination with a power-law model inferred from the
population mean of the SLACS analysis by Shajib et al.
(prep).

The analysis presented here guarantees that the inferred
mass profile is consistent with the properties of TDCOSMO
and SLACS lenses. We will discuss below how additional
data may allow us to constrain the models even further
and thus reduce the overall uncertainty while keeping the
assumptions at a minimum.

8.2. Statistical error budget and known systematics

The total error budget of 5% on H0 in our combined TD-
COSMO+SLACS analysis can be traced back to specific
aspects of the data and the uncertainties in the model com-
ponents/assumptions. Fixing λint to a single-valued number
(i.e. λint = 1) is equivalent to assuming a power-law pro-
file and leads to an uncertainty in H0 of 2% (Millon et al.
2019). By subtracting in quadrature 2% from our total un-
certainty, we estimate that the total error contribution of
the MST (λint) to the error budget is 4.5%. Once the MST
is introduced, the uncertainty in the mass profile is dom-
inated by uncertainties in the measurement and modeling
assumptions of the velocity dispersion. The statistical con-
straints on the combined velocity dispersion measurements
of 33 SLACS lenses with SDSS spectroscopy, accounting
for the σσP,sys contribution, and the TDCOSMO spectro-
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Table 5: Summary of the model parameters sampled in the hierarchical inference on the TDCOSMO+SLACS sample.

name prior description

Cosmology (Flat ΛCDM)
H0 [km s−1Mpc−1] U([0, 150]) Hubble constant
Ωm N(µ = 0.298,σ = 0.022) current normalized matter density
Mass profile
λint,0 U([0.5, 1.5]) internal MST population mean
αλ U([−1, 1]) slope of λint with reff/θE of the deflector (Eqn. 50)
σ(λint) U(log([0.001, 0.5])) 1-σ Gaussian scatter in the internal MST
Normalization of IFU data
λifu U([0.5, 1.5]) internal MST population constraint from IFU data
σ(λifu) U(log([0.01, 0.5])) 1-σ Gaussian scatter in λifu
Stellar kinematics
〈aani〉 U(log(aani)) for aani in [0.1, 5] scaled anisotropy radius (Eqn. 51, 52)
σ(aani) U(log([0.01, 1])) σ(aani)〈aani〉 is the 1-σ Gaussian scatter in aani
σσP,sys U(log([0.01, 0.5])) systematic uncertainty on σP

SDSS measurements (Eqn. 57)
Line of sight
κext p(κext) of individual lenses (Fig. 6 & 9) external convergence of lenses

Table 6: Marginalized posteriors of our hierarchical Bayesian cosmography inference based on the priors and parameter-
ization specified in Table 5 for a flat ΛCDM cosmology.

Data sets H0 [km s−1Mpc−1] λint,0 αλ σ(λint) aani σ(aani) σσP,sys

TDCOSMO-only 74.5+5.6−6.1 1.02+0.08−0.09 0.00+0.07−0.07 0.01+0.03−0.01 2.32+1.62−1.17 0.16+0.50−0.14 -
TDCOSMO + SLACSIFU 73.3+5.8−5.8 1.00+0.08−0.08 −0.07+0.06−0.06 0.07+0.09−0.05 1.58+1.58−0.54 0.15+0.47−0.13 -
TDCOSMO + SLACSSDSS 67.4+4.3−4.7 0.91+0.05−0.06 −0.04+0.04−0.04 0.02+0.04−0.01 1.52+1.76−0.70 0.28+0.45−0.25 0.06+0.02−0.02
TDCOSMO + SLACSSDSS+IFU 67.4+4.1−3.2 0.91+0.04−0.04 −0.07+0.03−0.04 0.06+0.08−0.04 1.20+0.70−0.27 0.18+0.50−0.15 0.06+0.02−0.02

elliptical galaxies, we would not have to worry about the
internal MST. The approach chosen by our collaboration
(Wong et al. 2020; Shajib et al. 2019; Millon et al. 2019) was
to assume physically motivated mass profiles with degrees
of freedom in their parameters. In particular, the collabora-
tion used two different mass profiles, a power-law elliptical
mass profile, and a composite mass profile separating the
luminous component (with fixed mass-to-light ratio) and a
dark component described as a NFW profile. The good fit
to the data, the small pixellated corrections on the profiles
from the first lens system (Suyu et al. 2010), and the good
agreement of H0 inferred with the two mass profiles was a
positive sanity check on the result (Millon et al. 2019).

In this paper we have taken a different viewpoint, and
asked how much can the mass profiles depart from a power-
law and still be consistent with the data. By phrasing the
question in terms of the MST we can conveniently carry out
the calculations, because the MST leaves the lensing observ-
ables unchanged and therefore it corresponds to minimal
constraints and assumptions, and thus maximal uncertain-
ties with one additional degree of freedom. However, after
the inference, one has to examine the inferred MST trans-
formed profile and evaluate it in comparison with existing
and future data to make sure it is realistic. We know that
the exact MST cannot be the actual answer because profiles
have to go zero density at large radii, but the approximate
MST discussed in Section 2 provides a convenient interpre-
tation with the addition of a cored mass component.

Figure 17 illustrates a cored mass component approxi-
mating the MST inferred from this work, λint = 0.91± 0.04,
in combination with a power-law model inferred from the
population mean of the SLACS analysis by Shajib et al.
(prep).

The analysis presented here guarantees that the inferred
mass profile is consistent with the properties of TDCOSMO
and SLACS lenses. We will discuss below how additional
data may allow us to constrain the models even further
and thus reduce the overall uncertainty while keeping the
assumptions at a minimum.

8.2. Statistical error budget and known systematics

The total error budget of 5% on H0 in our combined TD-
COSMO+SLACS analysis can be traced back to specific
aspects of the data and the uncertainties in the model com-
ponents/assumptions. Fixing λint to a single-valued number
(i.e. λint = 1) is equivalent to assuming a power-law pro-
file and leads to an uncertainty in H0 of 2% (Millon et al.
2019). By subtracting in quadrature 2% from our total un-
certainty, we estimate that the total error contribution of
the MST (λint) to the error budget is 4.5%. Once the MST
is introduced, the uncertainty in the mass profile is dom-
inated by uncertainties in the measurement and modeling
assumptions of the velocity dispersion. The statistical con-
straints on the combined velocity dispersion measurements
of 33 SLACS lenses with SDSS spectroscopy, accounting
for the σσP,sys contribution, and the TDCOSMO spectro-

Article number, page 26 of 43

Birrer et al 2020 (TDCOSMO IV)

A step towards covering internal MSD (no CMB prior) :

5

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

Figure 1. Convergence for a �PL model, with � = 0.75 (blue) and � = 0.9 (green). The � = 1 pure PL case is shown in red,
and the cNFW profile is shown in dashed black. A value of � ⇡ 0.9 would bring the H0LiCOW determination of H0 down to
the CMB/LSS value. Note that for H0LiCOW lenses, both lensing and kinematics data reach outward only slightly beyond ✓E ,
and never constrain angles around the value of ✓c chosen in this example.

H0 ⇡ 56 km/s/Mpc. Our choice of � in this example is, of course, an exaggeration. To solve the H0 tension we
only need � ⇡ 0.9. In Tab. 1 we collect some key numbers for six H0LiCOW systems. Taking H0 ⇡ 67 km/s/Mpc
to represent the CMB/LSS measurement, we show in the third column the value of � that is required to bring the
cosmographic H0 from each system down to the CMB/LSS value.

Table 1. Lens systems from Millon et al. (2019). Values for H0 (in km/s/Mpc) are from the PL fit (Fig. 6 in Millon et al.
(2019)). Approximate values for the PL index �, the Einstein radius ✓E , and the NFW scale ✓s were read from PL and composite
NFW+stellar fits reported by papers in the last column.

H0 � = 67/H0 � ✓E [”] ✓s [”] lens redshift zl ref

RXJ1131 76.1+3.6
�4.3 0.88+0.06

�0.04 1.98 1.6 19 0.295 Chen et al. (2016)

PG1115 83.0+7.8
�7.0 0.81+0.07

�0.07 2.18 1.1 17 0.311 Chen et al. (2019)

HE0435 71.7+5.1
�4.6 0.93+0.07

�0.06 1.87 1.2 10 0.4546 Chen et al. (2019)

DESJ0408 74.6+2.5
�2.9 0.9+0.03

�0.03 2 1.9 13 0.6 Shajib et al. (2019)

WFI2033 72.6+3.3
�3.5 0.92+0.05

�0.04 1.95 0.9 11 0.6575 Rusu et al. (2019)

J1206 67.0+5.7
�4.8 1+0.08

�0.08 1.95 1.2 4.7 0.745 Birrer et al. (2019)

Noting that H0LiCOW found adequate fits to the lensing reconstruction with the PL model, and given an estimate
of � for each system from Tab. 1, we can use Eq. (11) with some model for c to investigate the implied physical shape
of the lens galaxies. In Fig. 3 we show the results of this exercise for five systems5, where we use cNFW with ✓s = 11”
and ✓c = 5.5” to play the role of c. For simplicity we ignore the ellipticity q of the PL component. Including it would
shift the PL line by a constant factor of q

��1
2 if we project along the ✓x direction, or q

� ��1
2 if we project along ✓y,

without adjusting c. Typical H0LiCOW lenses have q ⇠ 0.8 and � ⇠ 2.

5
The 6th system – J1206 Birrer et al. (2019) – has � = 1± 0.08, so while it would admit a � ⇠ 0.92 core it is also consistent with no core

component.
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Hint from SLACS kinematics? 
(but see comments in KB, Teodori, 2105.10873)
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RE

H0 = 67
NFW (CDM)

Stars

Ultralight DM

20 % of total DM, m = 2.5 × 10−25 eV

Dynamical relaxation consistent at O(1). 
Cosmology OK.

KB, Teodori, 2105.10873

``Internal MSD” may require a non-minimal density profile.

Why would galaxies be non-minimal?

Why should galaxies have a core component?

Why not? (What is dark matter?)

Can think of several reasons.

Dark matter not boring NFW? …a little bit of ultralight dark matter?



Mass models of TDCOSMO lens systems: stars/DM ~ 0.05.

Much below cosmological baryon/DM ratio. 
This is typical, puzzle of missing baryons.

Missing baryons probably in extended CGM.

What is the convergence due to the CGM?
— What is the radial scale of the CGM?

Should have enough mass to make an effect, if mostly within ~50 kpc.
X-ray: NASA/CXC/SAO/S.Randall et al., Optical: SDSS

Werner & Mernier, 2001.10023

``Missing” baryons?

``Internal MSD” may require a non-minimal density profile.

Why would galaxies be non-minimal?

Why should galaxies have a core component?

Why not? (What is dark matter?)

Can think of several reasons.



Summary 

Lensing H0 sensitive to galaxy profile at few % level:  
Feature in the galaxy profile, or breakdown of              ? 

Weak lensing: include all segments of line of sight. 
Lacking in published results. Likely ~ % bias on H0. 

Adding a core to a density profile is an approximate MSD. 
10% core explains the lensing H0 tension? 
  

Could point to interesting dark matter dynamics. 
If we go there, may as well adopt CMB (or SNIa!) prior on H0. 

Ultralight DM (axion-like): 

Vanilla vacuum misalignment. Dynamically makes a core. 
Correct ballpark to solve lensing H0 tension, if 
Dynamical relaxation consistent at O(1) level. 10−25 eV ≲ m ≲ 10−24 eV
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Figure 1. Convergence for a �PL model, with � = 0.75 (blue) and � = 0.9 (green). The � = 1 pure PL case is shown in red,
and the cNFW profile is shown in dashed black. A value of � ⇡ 0.9 would bring the H0LiCOW determination of H0 down to
the CMB/LSS value. Note that for H0LiCOW lenses, both lensing and kinematics data reach outward only slightly beyond ✓E ,
and never constrain angles around the value of ✓c chosen in this example.

H0 ⇡ 56 km/s/Mpc. Our choice of � in this example is, of course, an exaggeration. To solve the H0 tension we
only need � ⇡ 0.9. In Tab. 1 we collect some key numbers for six H0LiCOW systems. Taking H0 ⇡ 67 km/s/Mpc
to represent the CMB/LSS measurement, we show in the third column the value of � that is required to bring the
cosmographic H0 from each system down to the CMB/LSS value.

Table 1. Lens systems from Millon et al. (2019). Values for H0 (in km/s/Mpc) are from the PL fit (Fig. 6 in Millon et al.
(2019)). Approximate values for the PL index �, the Einstein radius ✓E , and the NFW scale ✓s were read from PL and composite
NFW+stellar fits reported by papers in the last column.

H0 � = 67/H0 � ✓E [”] ✓s [”] lens redshift zl ref

RXJ1131 76.1+3.6
�4.3 0.88+0.06

�0.04 1.98 1.6 19 0.295 Chen et al. (2016)

PG1115 83.0+7.8
�7.0 0.81+0.07

�0.07 2.18 1.1 17 0.311 Chen et al. (2019)

HE0435 71.7+5.1
�4.6 0.93+0.07

�0.06 1.87 1.2 10 0.4546 Chen et al. (2019)

DESJ0408 74.6+2.5
�2.9 0.9+0.03

�0.03 2 1.9 13 0.6 Shajib et al. (2019)

WFI2033 72.6+3.3
�3.5 0.92+0.05

�0.04 1.95 0.9 11 0.6575 Rusu et al. (2019)

J1206 67.0+5.7
�4.8 1+0.08

�0.08 1.95 1.2 4.7 0.745 Birrer et al. (2019)

Noting that H0LiCOW found adequate fits to the lensing reconstruction with the PL model, and given an estimate
of � for each system from Tab. 1, we can use Eq. (11) with some model for c to investigate the implied physical shape
of the lens galaxies. In Fig. 3 we show the results of this exercise for five systems5, where we use cNFW with ✓s = 11”
and ✓c = 5.5” to play the role of c. For simplicity we ignore the ellipticity q of the PL component. Including it would
shift the PL line by a constant factor of q

��1
2 if we project along the ✓x direction, or q

� ��1
2 if we project along ✓y,

without adjusting c. Typical H0LiCOW lenses have q ⇠ 0.8 and � ⇠ 2.

5
The 6th system – J1206 Birrer et al. (2019) – has � = 1± 0.08, so while it would admit a � ⇠ 0.92 core it is also consistent with no core

component.
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Figure 1. Convergence for a �PL model, with � = 0.75 (blue) and � = 0.9 (green). The � = 1 pure PL case is shown in red,
and the cNFW profile is shown in dashed black. A value of � ⇡ 0.9 would bring the H0LiCOW determination of H0 down to
the CMB/LSS value. Note that for H0LiCOW lenses, both lensing and kinematics data reach outward only slightly beyond ✓E ,
and never constrain angles around the value of ✓c chosen in this example.

H0 ⇡ 56 km/s/Mpc. Our choice of � in this example is, of course, an exaggeration. To solve the H0 tension we
only need � ⇡ 0.9. In Tab. 1 we collect some key numbers for six H0LiCOW systems. Taking H0 ⇡ 67 km/s/Mpc
to represent the CMB/LSS measurement, we show in the third column the value of � that is required to bring the
cosmographic H0 from each system down to the CMB/LSS value.

Table 1. Lens systems from Millon et al. (2019). Values for H0 (in km/s/Mpc) are from the PL fit (Fig. 6 in Millon et al.
(2019)). Approximate values for the PL index �, the Einstein radius ✓E , and the NFW scale ✓s were read from PL and composite
NFW+stellar fits reported by papers in the last column.
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�0.04 1.95 0.9 11 0.6575 Rusu et al. (2019)

J1206 67.0+5.7
�4.8 1+0.08

�0.08 1.95 1.2 4.7 0.745 Birrer et al. (2019)

Noting that H0LiCOW found adequate fits to the lensing reconstruction with the PL model, and given an estimate
of � for each system from Tab. 1, we can use Eq. (11) with some model for c to investigate the implied physical shape
of the lens galaxies. In Fig. 3 we show the results of this exercise for five systems5, where we use cNFW with ✓s = 11”
and ✓c = 5.5” to play the role of c. For simplicity we ignore the ellipticity q of the PL component. Including it would
shift the PL line by a constant factor of q

��1
2 if we project along the ✓x direction, or q

� ��1
2 if we project along ✓y,

without adjusting c. Typical H0LiCOW lenses have q ⇠ 0.8 and � ⇠ 2.

5
The 6th system – J1206 Birrer et al. (2019) – has � = 1± 0.08, so while it would admit a � ⇠ 0.92 core it is also consistent with no core

component.
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Figure 1. Convergence for a �PL model, with � = 0.75 (blue) and � = 0.9 (green). The � = 1 pure PL case is shown in red,
and the cNFW profile is shown in dashed black. A value of � ⇡ 0.9 would bring the H0LiCOW determination of H0 down to
the CMB/LSS value. Note that for H0LiCOW lenses, both lensing and kinematics data reach outward only slightly beyond ✓E ,
and never constrain angles around the value of ✓c chosen in this example.

H0 ⇡ 56 km/s/Mpc. Our choice of � in this example is, of course, an exaggeration. To solve the H0 tension we
only need � ⇡ 0.9. In Tab. 1 we collect some key numbers for six H0LiCOW systems. Taking H0 ⇡ 67 km/s/Mpc
to represent the CMB/LSS measurement, we show in the third column the value of � that is required to bring the
cosmographic H0 from each system down to the CMB/LSS value.

Table 1. Lens systems from Millon et al. (2019). Values for H0 (in km/s/Mpc) are from the PL fit (Fig. 6 in Millon et al.
(2019)). Approximate values for the PL index �, the Einstein radius ✓E , and the NFW scale ✓s were read from PL and composite
NFW+stellar fits reported by papers in the last column.

H0 � = 67/H0 � ✓E [”] ✓s [”] lens redshift zl ref
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�0.04 1.95 0.9 11 0.6575 Rusu et al. (2019)

J1206 67.0+5.7
�4.8 1+0.08

�0.08 1.95 1.2 4.7 0.745 Birrer et al. (2019)

Noting that H0LiCOW found adequate fits to the lensing reconstruction with the PL model, and given an estimate
of � for each system from Tab. 1, we can use Eq. (11) with some model for c to investigate the implied physical shape
of the lens galaxies. In Fig. 3 we show the results of this exercise for five systems5, where we use cNFW with ✓s = 11”
and ✓c = 5.5” to play the role of c. For simplicity we ignore the ellipticity q of the PL component. Including it would
shift the PL line by a constant factor of q
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2 if we project along the ✓x direction, or q
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2 if we project along ✓y,

without adjusting c. Typical H0LiCOW lenses have q ⇠ 0.8 and � ⇠ 2.
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The 6th system – J1206 Birrer et al. (2019) – has � = 1± 0.08, so while it would admit a � ⇠ 0.92 core it is also consistent with no core

component.
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Figure 4. 3D density: comparison with constraints from kinematics. Solid (dashed) line shows the �PL profile for � = 0.9
(� = 0.75). Shaded band shows the posterior distribution of profiles from the kinematics fit of Cappellari et al. (2015). In this
plot, for concreteness, we set RE = Re. Left: PL+cNFW. Right: PL+cored PL.

host parameters. A full-fledged analysis à-la H0LiCOW, fitting �PL models to the real data, would be needed to truly
quantify the level of the degeneracy. At this point, however, we emphasize that the shape of the profiles in Fig. 3 at
✓ > ✓E comes from our particular choice of c in this example, and is not necessitated by the data.
Finally, let us make a preliminary comparison with constraints from kinematics. Cappellari et al. (2015) presented

an analysis of stellar kinematics in early-type galaxies with stellar masses in the range log10 (M⇤/M�) ⇠ 10.2� 11.7.
These systems may be reasonable analogue systems to H0LiCOW lenses. According to Cappellari et al. (2015), the
total density profiles of all of the analysed galaxies are consistent within the modelling uncertainties with simple PL
all the way from r ⇠ 0.1Re out to r ⇠ 4Re, where Re is the half-light radius. This range of kinematics coverage
is interesting because it overlaps with and extends the range covered by the lensing analyses, which typically probe
r . Re.
In Fig. 4 we compare the 3D density of a �PL model with the profiles found in the galaxy kinematics analysis

of Cappellari et al. (2015). The kinematics constraint, shown for the example of the system NGC4649 (see panel d
of Fig. 4 in Cappellari et al. (2015)), is given by the shaded band that envelopes a collection of 100 profiles obtained
by randomly selecting model parameters from the posterior distribution of the fit. The �PL models for � = 0.9 and
� = 0.75 are shown by solid and dashed lines, respectively. In the left panel we show the 3D equivalent of the cNFW
model considered in Figs. 1 and 2. In this example, the PL component in the �PL model is chosen to have6 � = 2.25.
In the right panel we show an example where the core component of the �PL model is chosen to be a cored PL

function ⇢c /
�
R

2
c + r

2
�� 3

2 (see App. A for details). In both examples we assumed ✓E = ✓e = Re/Dl.
The comparison of �PL models to the results from Cappellari et al. (2015) should be regarded with caution, as the

family of dark matter density profiles considered in Cappellari et al. (2015) was restricted to a generalised NFW form
that does not overlap with the �PL shape. With that in mind, we take Fig. 4 to suggest that currently, constraints
from kinematics most likely cannot exclude �PL with � ⇠ 0.9, which is the range of � that would be implied from
cosmography if one calibrated H0 from CMB/LSS data. This said, PL-core combinations with, e.g. � = 0.75 could
perhaps be constrained by data, motivating a dedicated kinematics analysis specifically designed to test �PL profiles.

4. DISCUSSION AND SUMMARY

Lensing data alone cannot resolve the mass sheet degeneracy. Therefore, we think that the likelihood function in
the cosmographic measurement of H0 would have a very flat (albeit not completely flat) direction, corresponding to
the e↵ective MST � parameter of �PL models. The H0LiCOW collaboration could thoroughly test this hypothesis on

6
Note that Cappellari et al. (2015) finds characteristic spectral index � > 2 for all of their halos, while the lensing analyses typically find a

softer index � < 2.
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the ATLAS3D data alone. It employs a Bayesian method with
constant (i.e., “ignorant”) priors on all parameters.

The key difference between this work and previous stellar
dynamical studies of dark halos in ETGs is the fact that we
place virtually no constraint on the halo profile parameters. The
halo is assumed to be spherical, but it is described by a
generalized Navarro et al. (1996) profile (gNFW) with free
normalization, inner slope, and break radius:
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Our models have seven free parameters. Some are poorly
constrained but are not of interest here. They are just “nuisance
parameters,” marginalized out to derive the total mass profiles
studied here. The parameters are (i) the inclination i; (ii) the
anisotropy β σ σ≡ −1z z R

2 2, with σz and σR the stellar
dispersion in cylindrical coordinates, for the MGE Gaussians
with σ <j Re ; (iii) the anisotropy for the remaining Gaussians
at larger radii; (iv) the stellar M L( )stars; (v) the break radius of
the dark halo, constrained to be < <r10 50s kpc; (vi) the halo
density ρs at rs; and (vii) the dark halo slope α for ≪r rs.

4. RESULTS

4.1. The Models Describe the Data Well

The first result is the simple fact that the models provide a
good description of the stellar kinematics of all the modeled
galaxies over the full field (Figures 2, 3 and Table 1). This was
not expected. It would have been natural if we had employed,
e.g., the more general orbit-superposition method (e.g.,
Cappellari et al. 2006), which is fully described by thousands
of parameters. However, our models have just six nonlinear
parameters and one scaling factor M L( )stars.

Moreover, the fits look similarly good even assuming a
power-law halo and a constant-anisotropy stellar body (four
nonlinear parameters and one scaling factor). The fact that four
parameters are able to consistently describe all features of the
two-dimensional maps for the full set of 14 galaxies indicates
that (i) the (cleaned) SLUGGS data are reliable and (ii) the
model assumptions provide a good description of the dynamics
and mass distribution of the real galaxies.

An alternative interpretation for the good fits would be that
the anisotropy and dark matter variations and data systematics
conspire to mimic the simple orbital structure and mass
distribution assumed by the models. This would be a realistic
possibility when studying a single galaxy, given the non-full
generality of the JAM models, but such a conspiracy is unlikely
for such a large and diverse set of galaxies.

4.2. Isothermal Profiles with Small Scatter to 4Re

The second and main result of this work is that all 14
modeled fast-rotator ETGs have a nearly isothermal ρ ∝ −rtot

2

total density distribution from Re/10 out to the median radius of
4Re sampled by this study (Figure 4(a)). The total mass–
density profiles11, marginalized over all nuisance parameters,

are tightly constrained by the data. In the whole range 0.1Re
< <r 4 Re, the profiles are well described by a power law
ρ ∝ γ−rtot with the largest average deviation of 11%. The
corresponding average logarithmic slope is γ〈 〉 = ±2.19 0.03
for the sample, with an rms scatter of just σ =γ 0.11. We do not
detect any significant correlation of the slope with Re, stellar
mass, or stellar velocity dispersion. For 0.1Re < <r Re, the
average slope is γ〈 〉 = ±2.15 0.03 with σ =γ 0.10, while for
Re< <r 4 Re, we find γ〈 〉 = ±2.27 0.06 with σ =γ 0.23.
Our inner-profile slope and scatter are in excellent agreement

with the values γ〈 〉 = ±2.08 0.03, with σ =γ 0.16 found
around ≈r Re/2 using strong lensing (Auger et al. 2010).
Figure 4(b) shows that the observed trend is consistent with

what one would predict for the whole ATLAS3D sample for
cosmologically motivated uncontracted Navarro–Frenk–White
(NFW) halos. In Figure 4(c), the stellar profiles are very
different from the total ones at the radii we sample: they have
slopes ρ ∝ −rstars

2 around r ≈ Re/2 (Figure 2 of Cappellari et al.
2013a) but fall off more steeply than ρ ∝ −rstars

3 around
r ≈ 4 Re.
Figure 4(d) compares our total profiles with published ones

for NGC 0821, NGC 2974, NGC 4494, NGC 4649, and
NGC 4697 (from Forestell & Gebhardt 2010; Weijmans et al.
2008; Morganti et al. 2013; Das et al. 2011; de Lorenzi et al.
2008, respectively). The ρ r( )tot was derived from the circular
velocities v r( )c , assuming spherical symmetry. In four out of
five cases, the agreement is excellent, with our statistical
uncertainties overlapping the published profiles over the full
radial range. The tight agreement for NGC 2974 is noteworthy,
where the v r( )c was directly measured from a regular H I disk.
We believe the disagreement for NGC 4494 may be due to the
inclusion of the strong asymmetry in the SLUGGS data at

> ″r 100 in Morganti et al. (2013) models. We excluded those
data from our fits, but including them would improve the
agreement.

5. CONCLUSIONS

We combine the integral-field stellar kinematics from the
ATLAS3D survey, within ∼1Re , with the two-dimensional
stellar kinematics from the SLUGGS survey, out to a median
radius of about 4Re and a maximum radius of 2.0–6.2 Re, for a
sample of fast-rotator ETGs consistent with axisymmetry. We
construct the first statistically significant set of detailed
axisymmetric dynamical models of the two-dimensional stellar
kinematics out to those large radii where dark matter
dominates.
We find that the galaxies’ dynamics are well represented

by a few relatively simple assumptions. The models
tightly constrain the total density profiles, which closely
approximate the isothermal form ρ ∝ −rtot

2 from Re/10 out to
the median radius of 4Re sampled by the data, with remarkably
little scatter. The observed total mass distribution is not a
generic prediction of ΛCDM and provides constraints on the
models (e.g., Remus et al. 2013; Dutton & Treu 2014).
Our sample highlights the importance of similar studies on

larger samples of galaxies to provide a much needed bench-
mark for galaxy formation models. For this, studies like the
present one, using DEIMOS on Keck or MUSE on the Very
Large Telescope, can be complemented with models of
shallower data, but for much larger samples like MaNGA
(Bundy et al. 2015). To be most useful, samples need to

11 Computed from the axisymmetric MGEs as
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the added benefit of making the agreement between data and
model easy to visually assess. We need to verify that our
models capture the global features of the data and that our
results are not driven by a few deviant values. This is important
in situations where data systematics may be present, and
relying entirely on χ2 statistics may be misleading.

3.2. Weighting and Matching of the Two Data Sets

Another issue for the modeling is the fact that the ATLAS3D

observations consist of many more data points with smaller
uncertainties, which completely dominate the χ2 estimate.
However, here, we want our dark halo determinations to be
especially constrained by the SLUGGS data, which sample the
region where the halo dominates. Similarly to Morganti et al.
(2013), we increase the size of the ATLAS3D kinematic
uncertainties so that for a good fit, the two data sets provide
an equal contribution to the χ2. We leave the SLUGGS
uncertainties unchanged to retain properly normalized con-
fidence levels for our model parameters.

The SLUGGS Vrms at the SAURON locations tend to be
lower than the measured SAURON values. We find a median
offset of 11%, which is larger than the 5% level we consider
unavoidable between independent data sets. This offset was
noted by Arnold et al. (2014), but its source is unknown. The
ATLAS3D data agree on average with hundreds of independent
determinations from the literature (Figure 8 of Cappellari et al.
2013a), suggesting the SLUGGS data may be offset with
respect to the optical literature. Here, we simply multiply the
SLUGGSVrms to fit, for each galaxy, the interpolated SAURON
data at the same locations. This is the standard kinematics we
fit with our models. However, importantly, we have also run all
our models with the SLUGGS data alone and confirmed that
the slopes of the total mass profiles agree with those of our
standard models.

3.3. Dynamical Models

We model the ATLAS3D and SLUGGS stellar kinematics
using the Python version of the axisymmetric Jeans anisotropic
modeling (JAM) method (see footnote 8; Cappellari 2008).
The approach is the same used in Cappellari et al. (2013a) for

Figure 4. Profiles of the total mass–density distribution. (a)Measured profiles for the 14 modeled galaxies with SLUGGS+ATLAS3D data. The profile for each galaxy
was plotted for 100 realizations randomly drawn from the posterior distribution of the model parameters to illustrate the random model uncertainties. Three lines with
ρ ∝ −r 1 (NFW inner slope), ρ ∝ −r 2 (isothermal), and ρ ∝ −r 3 are also shown. (b) Cosmologically motivated profiles (these are models E from Cappellari et al.
2013a). These were computed by attaching spherical NFW dark halos with masses predicted by the abundance matching technique to the stellar density of the
ATLAS galaxies in such a way that the models fit the stellar kinematics. These models naturally predict a nearly isothermal total-mass profile out to ≳r 10Re. (c) For
comparison, the purely stellar profiles of the same ATLAS3D galaxies in (b) are shown. (d) Comparison between our density profiles and published ones. The profiles
with an outline enclose the allowed range of published profiles, while the colored bands are realizations from the posterior distribution of our model parameters.

10 This is done by replacing , which appears in Equation (38) of Cappellari
(2008) with σ+ − c b q R[ (1 ) ]k k k k

2 2 2 (footnote 9 of the arXiv:0806.0042
version of that paper).
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10 This is done by replacing , which appears in Equation (38) of Cappellari
(2008) with σ+ − c b q R[ (1 ) ]k k k k

2 2 2 (footnote 9 of the arXiv:0806.0042
version of that paper).
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the ATLAS3D data alone. It employs a Bayesian method with
constant (i.e., “ignorant”) priors on all parameters.

The key difference between this work and previous stellar
dynamical studies of dark halos in ETGs is the fact that we
place virtually no constraint on the halo profile parameters. The
halo is assumed to be spherical, but it is described by a
generalized Navarro et al. (1996) profile (gNFW) with free
normalization, inner slope, and break radius:

ρ ρ= +
α α− −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟r

r
r

r
r

( )
1
2

1
2

. (3)s
s s

DM

3

Our models have seven free parameters. Some are poorly
constrained but are not of interest here. They are just “nuisance
parameters,” marginalized out to derive the total mass profiles
studied here. The parameters are (i) the inclination i; (ii) the
anisotropy β σ σ≡ −1z z R

2 2, with σz and σR the stellar
dispersion in cylindrical coordinates, for the MGE Gaussians
with σ <j Re ; (iii) the anisotropy for the remaining Gaussians
at larger radii; (iv) the stellar M L( )stars; (v) the break radius of
the dark halo, constrained to be < <r10 50s kpc; (vi) the halo
density ρs at rs; and (vii) the dark halo slope α for ≪r rs.

4. RESULTS

4.1. The Models Describe the Data Well

The first result is the simple fact that the models provide a
good description of the stellar kinematics of all the modeled
galaxies over the full field (Figures 2, 3 and Table 1). This was
not expected. It would have been natural if we had employed,
e.g., the more general orbit-superposition method (e.g.,
Cappellari et al. 2006), which is fully described by thousands
of parameters. However, our models have just six nonlinear
parameters and one scaling factor M L( )stars.

Moreover, the fits look similarly good even assuming a
power-law halo and a constant-anisotropy stellar body (four
nonlinear parameters and one scaling factor). The fact that four
parameters are able to consistently describe all features of the
two-dimensional maps for the full set of 14 galaxies indicates
that (i) the (cleaned) SLUGGS data are reliable and (ii) the
model assumptions provide a good description of the dynamics
and mass distribution of the real galaxies.

An alternative interpretation for the good fits would be that
the anisotropy and dark matter variations and data systematics
conspire to mimic the simple orbital structure and mass
distribution assumed by the models. This would be a realistic
possibility when studying a single galaxy, given the non-full
generality of the JAM models, but such a conspiracy is unlikely
for such a large and diverse set of galaxies.

4.2. Isothermal Profiles with Small Scatter to 4Re

The second and main result of this work is that all 14
modeled fast-rotator ETGs have a nearly isothermal ρ ∝ −rtot

2

total density distribution from Re/10 out to the median radius of
4Re sampled by this study (Figure 4(a)). The total mass–
density profiles11, marginalized over all nuisance parameters,

are tightly constrained by the data. In the whole range 0.1Re
< <r 4 Re, the profiles are well described by a power law
ρ ∝ γ−rtot with the largest average deviation of 11%. The
corresponding average logarithmic slope is γ〈 〉 = ±2.19 0.03
for the sample, with an rms scatter of just σ =γ 0.11. We do not
detect any significant correlation of the slope with Re, stellar
mass, or stellar velocity dispersion. For 0.1Re < <r Re, the
average slope is γ〈 〉 = ±2.15 0.03 with σ =γ 0.10, while for
Re< <r 4 Re, we find γ〈 〉 = ±2.27 0.06 with σ =γ 0.23.
Our inner-profile slope and scatter are in excellent agreement

with the values γ〈 〉 = ±2.08 0.03, with σ =γ 0.16 found
around ≈r Re/2 using strong lensing (Auger et al. 2010).
Figure 4(b) shows that the observed trend is consistent with

what one would predict for the whole ATLAS3D sample for
cosmologically motivated uncontracted Navarro–Frenk–White
(NFW) halos. In Figure 4(c), the stellar profiles are very
different from the total ones at the radii we sample: they have
slopes ρ ∝ −rstars

2 around r ≈ Re/2 (Figure 2 of Cappellari et al.
2013a) but fall off more steeply than ρ ∝ −rstars

3 around
r ≈ 4 Re.
Figure 4(d) compares our total profiles with published ones

for NGC 0821, NGC 2974, NGC 4494, NGC 4649, and
NGC 4697 (from Forestell & Gebhardt 2010; Weijmans et al.
2008; Morganti et al. 2013; Das et al. 2011; de Lorenzi et al.
2008, respectively). The ρ r( )tot was derived from the circular
velocities v r( )c , assuming spherical symmetry. In four out of
five cases, the agreement is excellent, with our statistical
uncertainties overlapping the published profiles over the full
radial range. The tight agreement for NGC 2974 is noteworthy,
where the v r( )c was directly measured from a regular H I disk.
We believe the disagreement for NGC 4494 may be due to the
inclusion of the strong asymmetry in the SLUGGS data at

> ″r 100 in Morganti et al. (2013) models. We excluded those
data from our fits, but including them would improve the
agreement.

5. CONCLUSIONS

We combine the integral-field stellar kinematics from the
ATLAS3D survey, within ∼1Re , with the two-dimensional
stellar kinematics from the SLUGGS survey, out to a median
radius of about 4Re and a maximum radius of 2.0–6.2 Re, for a
sample of fast-rotator ETGs consistent with axisymmetry. We
construct the first statistically significant set of detailed
axisymmetric dynamical models of the two-dimensional stellar
kinematics out to those large radii where dark matter
dominates.
We find that the galaxies’ dynamics are well represented

by a few relatively simple assumptions. The models
tightly constrain the total density profiles, which closely
approximate the isothermal form ρ ∝ −rtot

2 from Re/10 out to
the median radius of 4Re sampled by the data, with remarkably
little scatter. The observed total mass distribution is not a
generic prediction of ΛCDM and provides constraints on the
models (e.g., Remus et al. 2013; Dutton & Treu 2014).
Our sample highlights the importance of similar studies on

larger samples of galaxies to provide a much needed bench-
mark for galaxy formation models. For this, studies like the
present one, using DEIMOS on Keck or MUSE on the Very
Large Telescope, can be complemented with models of
shallower data, but for much larger samples like MaNGA
(Bundy et al. 2015). To be most useful, samples need to

11 Computed from the axisymmetric MGEs as

∑ρ
σ σ

σ
=

− −

−=

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥( )( )

r
M r r q q

π r q
( )

exp 2 erf 1 2

4 1
.

j

M j j j j j

j j

tot 1

2 2 2

2 2
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Stellar kinematics   (of other elliptical galaxies)

…a cored structure of the kind you propose would be difficult to exclude from 
measurements of the stellar kinematics. Part of the reason is the mass 
profile-velocity anisotropy degeneracy. Another part is simply that no one 
has tried: most modelers fit the system to a small number of components 
(stars, gas, dark matter, central black hole) with constant mass-to-light ratio 
and none of these look like the core you propose. It would be straightforward 
for some of the modelers to try adding cores. 

I suppose some critics will say that your cores are ad hoc, but I think they 
are less ad hoc than most of the modifications to cosmology needed to 
explain the Hubble discrepancy!

A friend:
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Inner part of simulated galaxies forms a core

ULDM in galaxies
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple mergers. We merge
isolated soliton cores (t = 0) until a single bound halo forms, which is characterized by a stable soliton core at the centre of the halo and quantum fluctuations
throughout the domain. The volume rendering shows isocontours of density differing by factors of 10. Insets show projected density in log-space. The bottom
panel shows the time evolution of the total energy E, potential energy W, classical kinetic energy Kv and quantum gradient energy Kρ in the simulation.
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any given time are the exact solution for the given initial
conditions.

The smoothing radius ⇠ must be chosen to provide a
su�ciently smooth interpolation of the particle density.
We used ⇠ = 8�x where �x is the cell width at the
most refined level. We checked that increasing the radius
further does not systematically lead to di↵erent results.
However, the core mass in Fig. 6 can di↵er by up to 30%
owing to the approximations in the employed boundary
conditions.

Particles inside the Schrödinger domain are evolved
further but do not contribute to the density field that
sources gravity. Instead, the density of the Schrödinger
field | |2 acts as a source of gravity in this region.

A. Simulation Setup

We generate initial conditions with Music [45] us-
ing a transfer function for FDM generated by Axion-
CAMB [18]. All our simulations have a side length of
2.5 Mpc/h. We choose H0 = 70 km/s/Mpc, ⌦⇤ = 0.75,
⌦m = ⌦FDM = 0.25 and m22 = m/(10�22 eV) = 2.5.
Starting from redshift z = 60 we sample phase space
with ⇠ 2.8⇥ 108 particles.

Employing the Poisson solver implemented in Enzo,
the initial particle phases Si are computed by solving

r · v = a
�1r2

S (8)

and interpolating from the grid to the particle positions.
Here, v is the velocity field generated by Music.

On top of the root grid with 5123 cells, two nested
static refinement levels with a side length of roughly
a quarter of the total domain are centered on the La-
grangian patch of a previously chosen halo. Three addi-
tional refinement levels with side lengths of 0.0625 Mpc/h
trace the position of the halo’s maximum density. Using
a refinement factor of two between levels, we resolve the
finest one with a cell width of 150 pc/h. In order to de-
termine the halo’s Lagrangian patch and the position of
its maximum density over time, we run low resolution
standard N-body simulations.

To minimize computational cost, the SP solver is ap-
plied only after a redshift of z ⇡ 7, where the particles
are still in the single stream regime and the gradient en-
ergy of  is negligible. At this redshift, the classical
wave function is constructed at the most refined level
and serves as an initial condition for the SP solver. Like
for the smoothing radii, initializing at earlier times has
no systematic e↵ects but produces statistical scattering
of the resulting core mass of 30%.

In total we have simulated seven halos with a mass
range between 8 ⇥ 108 M� and 7 ⇥ 1010 M�. For com-
parisons with standard CDM dynamics, we have rerun
five of these simulations with only the N-body solver us-
ing identical grid resolution and level setup.

z = 1.07
2.5 Mpc/h

9 kpc/h

FIG. 1. Volume rendering of a typical simulation. The large
box shows the N-body density in the full simulation domain,
the inlay shows the density of the Schrödinger field in the
central region of the indicated halo. The density thresholds
in the inlay are set to 0.75, 0.05 and 0.01 times the maximum
density.

III. RESULTS

For this work, we only consider halos that evolve with-
out major mergers. These are more abundant in FDM
cosmologies relative to CDM, owing to the low-mass cut-
o↵ in the initial power spectrum. Figure 1 shows a typical
snapshot of our simulations.

A. Averaged properties

Radial density profiles centered around the maximum
density of four representative halos are compared with
results from pure N-body runs in Fig. 2. Here, the virial
mass of a halo is the mass enclosed by the virial radius,
rvir, defined as the radius where the enclosed mean den-
sity is equal to ⇣(a)⇢̄ with [46]

⇣(a)⌦m(a) = 18⇡2 + 82 (⌦m(a)� 1)� 39 (⌦m(a)� 1)2 .

(9)

Taking radial density profiles already involves smoothing
the density by averaging over spherical shells. Conse-
quently, the granular structure of FDM halos which devi-
ates strongly from the smooth CDM density field on small
scales, is not visible apart from a small region around the
solitonic core. The radially averaged core profile agrees
well with previous results [6, 34, 36]. Among the five
halos in our sample that were rerun with a pure N-body

Veltmaat et al 2018
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ỹ

x̃ x̃

t̃ = 1250

0

1

2

FIG. 2. (a) Time to Bose star formation in the cases of Gaus-
sian ( ) and �-peaked ( ) initial distributions. The �-graphs
are shifted downwards (⌧gr ! ⌧gr/10) for visualization pur-
poses. Lines depict fits by Eq. (4). (b) The same for isolated
miniclusters. (c), (d) Slices z̃ = const of the solution | ̃(t̃, x̃)|
describing formation of a Bose star in the center of a mini-
cluster; Ñ = 290, L̃ ⇡ 63.

that apart from the Coulomb logarithm ⇤ involves only
local parameters i.e. the boson number density n and
characteristic velocity v. So, up to weak logarithmic de-
pendence on the size L formation of the Bose star can be
regarded as a local process, with periodic box represent-
ing a central part of some DM halo. We will confirm this
intuition below.

We performed simulations of the gas with Gaussian
initial distribution at di↵erent L̃ and ñ. Our results for
⌧gr (circles in Fig. 2a) cover two orders of magnitude, but
they are nevertheless well fitted by Eq. (4) with v = v0

and b ⇡ 0.9 (upper line in Fig. 2a). To confirm that
Eq. (4) is universal, we repeated the calculations for the
initial �-distribution, | p|2 / �(|p| � mv0) (squares in
Fig. 2a). The new vales of ⌧gr are still described by
Eq. (4), albeit with slightly di↵erent coe�cient b ⇡ 0.6.
We conclude that Eq. (4) is a practical and justified ex-
pression for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, !) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [21] for the homogeneous isotropic Coulomb ensem-
ble,

@tF̃ = ⌧
�1
0 @!̃

h
Ã@!̃F̃ + (B̃F̃ � Ã)F̃ /2!̃

i
, (5)

see Supplementary material S1.4 for derivation. Here
the scattering integral in the right-hand side in-
volves Ã(!̃) =

R1
0 d!̃1 min3/2(!̃, !̃1)F̃ 2(!̃1)/(3!̃1!̃

1/2),

B̃(!̃) =
R !̃
0 d!̃1F̃ (!̃1), it is explicitly proportional to the

inverse relaxation time ⌧�1
0 = 8⇡3

n
2
G

2(⇤ + a)/mv
6
0 ⇠

⌧
�1
gr . Notably, Eq. (5) is valid in the leading logarithmic
approximation ⇤ � 1 which is too rough for our numer-
ical solutions with ⇤ ⇠ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to ⇤.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (t, !) (circles) is compared to the microscopic distribu-
tion (3) (dashed line) at t ⇡ ⌧gr, where a ⇡ 5 is obtained
from the fit. We observe agreement in the kinetic region
!̃ � 2⇡2

/L̃
2 which confirms Eq. (5) at t < ⌧gr.

Note that unlike in the case of short-range interac-
tions [22] thermalization in Landau equation does not
proceed via power-law turbulent cascades [21], and we
do not observe them in Figs. 1e,f. Nevertheless, we think
that Eq. (5) provides the basis for analytic description of
gravitational Bose-Einstein condensation.

6. Miniclusters. So far we assumed that homoge-
neous ensemble in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas forms
clumps at scales R & 2⇡/kJ due to Jeans instabil-
ity, where k

2
J = 2⇡Gnm

2h!�1i and the average is com-
puted with F (!). Starting numerical evolution from the
homogeneous ensemble with �-distributed momenta at
L > 2⇡/kJ , we indeed observe formation of a virialized
minicluster in Fig. 2c. With time it remains stationary
until the Bose star appears in its center, see Fig. 2d and
movie [18]. Thus, formation of Bose stars is not specific
to finite boxes.

We checked that our kinetic expression for ⌧gr works
for the virialized miniclusters. To this end we gener-
ated many di↵erent miniclusters, computed their central
densities n and virial velocities hv2i = �2h!i/m using
the ! < 0 part of the distribution F (!), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
⇤ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ⇡ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v
2 ⇠ 4⇡GmnR

2
/3 in the

halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form ⌧gr ⇠ 0.047 (R/v) (Rmv)3/⇤, where the numer-
ical factor is computed. Remarkably, ⌧gr equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ⇠ 1
the Bose stars form immediately [12, 13, 15].

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the ensemble. Due to com-
putational limitations we are able to observe only the
first decade of their mass increase that proceeds accord-
ing to the heuristic law Ms(t) ' cv0(t/⌧gr � 1)1/2/Gm

with c = 3± 0.7. The ratio t/⌧gr in this expression sug-

Levkov et al 2018

Schive et al 2014
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FIG. 2. (a) Time to Bose star formation in the cases of Gaus-
sian ( ) and �-peaked ( ) initial distributions. The �-graphs
are shifted downwards (⌧gr ! ⌧gr/10) for visualization pur-
poses. Lines depict fits by Eq. (4). (b) The same for isolated
miniclusters. (c), (d) Slices z̃ = const of the solution | ̃(t̃, x̃)|
describing formation of a Bose star in the center of a mini-
cluster; Ñ = 290, L̃ ⇡ 63.

that apart from the Coulomb logarithm ⇤ involves only
local parameters i.e. the boson number density n and
characteristic velocity v. So, up to weak logarithmic de-
pendence on the size L formation of the Bose star can be
regarded as a local process, with periodic box represent-
ing a central part of some DM halo. We will confirm this
intuition below.

We performed simulations of the gas with Gaussian
initial distribution at di↵erent L̃ and ñ. Our results for
⌧gr (circles in Fig. 2a) cover two orders of magnitude, but
they are nevertheless well fitted by Eq. (4) with v = v0

and b ⇡ 0.9 (upper line in Fig. 2a). To confirm that
Eq. (4) is universal, we repeated the calculations for the
initial �-distribution, | p|2 / �(|p| � mv0) (squares in
Fig. 2a). The new vales of ⌧gr are still described by
Eq. (4), albeit with slightly di↵erent coe�cient b ⇡ 0.6.
We conclude that Eq. (4) is a practical and justified ex-
pression for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, !) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [21] for the homogeneous isotropic Coulomb ensem-
ble,

@tF̃ = ⌧
�1
0 @!̃

h
Ã@!̃F̃ + (B̃F̃ � Ã)F̃ /2!̃

i
, (5)

see Supplementary material S1.4 for derivation. Here
the scattering integral in the right-hand side in-
volves Ã(!̃) =

R1
0 d!̃1 min3/2(!̃, !̃1)F̃ 2(!̃1)/(3!̃1!̃

1/2),

B̃(!̃) =
R !̃
0 d!̃1F̃ (!̃1), it is explicitly proportional to the

inverse relaxation time ⌧�1
0 = 8⇡3

n
2
G

2(⇤ + a)/mv
6
0 ⇠

⌧
�1
gr . Notably, Eq. (5) is valid in the leading logarithmic
approximation ⇤ � 1 which is too rough for our numer-
ical solutions with ⇤ ⇠ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to ⇤.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (t, !) (circles) is compared to the microscopic distribu-
tion (3) (dashed line) at t ⇡ ⌧gr, where a ⇡ 5 is obtained
from the fit. We observe agreement in the kinetic region
!̃ � 2⇡2

/L̃
2 which confirms Eq. (5) at t < ⌧gr.

Note that unlike in the case of short-range interac-
tions [22] thermalization in Landau equation does not
proceed via power-law turbulent cascades [21], and we
do not observe them in Figs. 1e,f. Nevertheless, we think
that Eq. (5) provides the basis for analytic description of
gravitational Bose-Einstein condensation.

6. Miniclusters. So far we assumed that homoge-
neous ensemble in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas forms
clumps at scales R & 2⇡/kJ due to Jeans instabil-
ity, where k

2
J = 2⇡Gnm

2h!�1i and the average is com-
puted with F (!). Starting numerical evolution from the
homogeneous ensemble with �-distributed momenta at
L > 2⇡/kJ , we indeed observe formation of a virialized
minicluster in Fig. 2c. With time it remains stationary
until the Bose star appears in its center, see Fig. 2d and
movie [18]. Thus, formation of Bose stars is not specific
to finite boxes.

We checked that our kinetic expression for ⌧gr works
for the virialized miniclusters. To this end we gener-
ated many di↵erent miniclusters, computed their central
densities n and virial velocities hv2i = �2h!i/m using
the ! < 0 part of the distribution F (!), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
⇤ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ⇡ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v
2 ⇠ 4⇡GmnR

2
/3 in the

halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form ⌧gr ⇠ 0.047 (R/v) (Rmv)3/⇤, where the numer-
ical factor is computed. Remarkably, ⌧gr equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ⇠ 1
the Bose stars form immediately [12, 13, 15].

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the ensemble. Due to com-
putational limitations we are able to observe only the
first decade of their mass increase that proceeds accord-
ing to the heuristic law Ms(t) ' cv0(t/⌧gr � 1)1/2/Gm

with c = 3± 0.7. The ratio t/⌧gr in this expression sug-

Levkov et al 2018
Also:
Eggemeier, Niemeyer 2019,
Chen et al 2020,
Schwabe et al 2020

Schive et al 2014; Veltmaat et al 2018
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Figure 1: Constraints on the scalar DM mass m and fraction F of the total DM density in scalar

DM obtained from Lyman-↵ forest data; the two di↵erent areas indicate 2 and 3 � confidence levels.

These results have been obtained for the reference combination of data sets described in [16], with a

physically motivated weak prior on the thermal evolution of the intergalactic medium. The regime of

m < 10�22 eV has been extrapolated.

DM fraction becomes small, as we will shortly see, hence the quantum pressure is also expected to

be negligible there. If the quantum pressure at the nonlinear level is actually non-negligible, then

it should lead to further suppression of structure formation; hence the bounds we present for the

scalar DM parameters can be considered as conservative.

Following [16] we vary only �8 (the normalization of the matter power spectrum) and the slope

of the matter power ne↵ , at the scale of Lyman-↵ forest (0.005 s/km). Five di↵erent values are

considered in the hydrodynamical simulations for both �8 (in the range of [0.754, 0.904]) and ne↵ (in

the range of [�2.3474, �2.2674]). These parameters just described are our cosmological parameters.

There have been several studies in the past (e.g. [18, 27, 28]), that have shown that the Lyman-↵

forest is really measuring the amplitude of the linear matter power spectrum, the slope of the power

spectrum, and possibly the e↵ective running, all evaluated at a pivot scale of around 1-10 Mpc/h.

Thus �8 and ne↵ used are good tracers of what is actually measured. Given that all our modelling

in simulations kept ⌦mh
2 fixed, �8 can be directly translated into the amplitude of linear matter

power at the pivot scale (similarly to how ne↵ was used). As pointed by [18], these matter power

amplitude parameters are equivalent. The linear matter power only weakly depends on ⌦mh
2, and

moreover, the e↵ects of ⌦m and H0 on the linear matter power are already captured in the tracers

of the amplitude (�8) and slope (ne↵). Therefore the constraints are not sensitive to the value of

⌦m nor H0.

4

Ωm

Ωm,obs

Kobayashi et al 1708.00015 (Ly-alpha)

Cosmological constraints: ULDM can only make up a fraction of the DM

Also:
Hlozek, Marsh, Grin 1708.05681 (CMB)
Lague et al, 2104.07802 (CMB+LSS)
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Fig. 3. Hubble constant as a function of the measured velocity disper-
sion of the main lens. The horizontal lines indicate the latest H0LiCOW
2019 (dotted orange, Wong et al. 2019) and Planck (dashed blue,
Planck Collaboration 2018) results along with the 1� uncertainties.

5.2. Dependency on intrinsic parameters of the deflector

traced by the velocity dispersion

An additional potential concern is whether systematic di↵er-
ences between our assumptions and the internal structure of
early-type galaxies could give rise to measurable biases. For
example, the so-called "tilt" of the fundamental mass plane is
believed to arise primarily from the increase in dark-to-stellar
matter ratio, a systematic change in stellar initial mass function
with galaxy stellar mass, and possibly a small subdominant con-
tribution from systematic variations in stellar orbits anisotropy
(Auger et al. 2010; Cappellari 2016). The stellar initial mass
function is not a concern in the TDCOSMO analysis, since the
stellar mass to light in the composite models is a free parameter.
However, in principle the other two sources of "tilt" could intro-
duce a potential systematic e↵ect in TDCOSMO analysis, where
each system is analyzed independently and with the same priors,
rather than with priors that depend on the stellar mass.

In Fig. 3 we show the inferred H0 as a function of stellar ve-
locity dispersion, a redshift independent proxy of position along
the fundamental plane. No trend is found, indicating that any
residual velocity dispersion dependent bias is smaller than the
measurement uncertainties, and thus not significant at this stage.
As for the plots shown in the previous (and next) section, this
sanity test should be repeated as the sample size and individual
measurement precision increase.

5.3. Dependency on the external convergence and lens

redshift

In the previous sections, the focus is on how the lens velocity
dispersion influences H0 measurements. But there is also an ex-
ternal contribution of all objects along the line of sight to the
main lensing potential. This external convergence, ext, is esti-
mated in all TDCOSMO systems from galaxy counts, in com-
bination with spectroscopy for obtaining redshifts for galaxies
and quantifying coherent structures (e.g., groups and clusters).
Tihhonova et al. (2018) showed that this measurement is com-
patible with the constraints obtained on ext with weak lensing.
ext is directly related to the time-delay distance D�t, as shown
in Equation (7). Similarly, the e↵ect of the external convergence

Fig. 4. Measured Hubble constant, before (upper panel) and after (lower
panel) correction for the mass along the line of sight as a function of the
estimated external convergence. H

uncorr
0 and H

corr
0 are related according

to Equation (15). The dashed black lines show the best linear fit, and
the shaded grey envelopes correspond to the 1� uncertainties. The dot-
ted blue lines represent the relation expected from the theory between
H

uncorr
0 , H

corr
0 and ext.

on the inferred H0 can be written as :

H
uncorr
0 =

H
corr
0

(1 � ext)
, (15)

where H
uncorr
0 (Hcorr

0 ) is the value of H0 before (after) correc-
tion from ext. The e↵ect of this external MST can be mitigated
by directly inferring ext. To test the presence of residual ex-
ternal Mass-Sheet Degeneracy (MSD) not entirely removed by
the measurement of ext, we investigate the presence of corre-
lation between the estimated ext and the inferred H0 value for
the seven lenses of the TDCOSMO sample. The top panel of
Fig. 4 shows the relation between the H0 measurements before
correction for the mass along the line of sight, i.e. H

uncorr
0 and

the estimated convergence. A trend is visible between these two
quantities indicating that the measurement is indeed sensitive to
the lens environment. If no correction is applied, the lenses lo-
cated in over-dense regions (positive ext) tend to have a higher
H

uncorr
0 than lenses in under-dense regions (negative ext). We fit

a linear model to the un-corrected data, and measure a slope of
a

uncorr = 90.0± 32.1 km s�1 Mpc�1, well compatible with the ex-
pected slope of a

uncorr = H
corr
0 = 73.7 km s�1 Mpc�1.
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Weak lensing correction in H0LiCOW / TDCOSMO
 is probably a little bit off.

Birrer et al, 2007.02941 (TDCOSMO IV) 
Teodori, et al, 2201.05111

14

FIG. 5. Comparing the probability distribution obtained in ray tracing [51] (blue bar histograms) with our computation, in linear theory
(solid orange) and with the non-linear approximation (solid green: kcuto↵ = 10 Mpc�1, dashed green: kcuto↵ = 5and 20 Mpc�1).
Code: �.
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