

Dark Matter Halo Mergers & **Smoluchowski's Equation** Andrew Benson (Caltech)

Overview

- Press-Schechter theory and extensions
 - Progenitor mass functions
 - Merger trees
 - Goal is full-featured merger tree factory
 - Masses
- Sm Concentrations
 - W Spins
 - Shapes
 - Dynamical Evolution
- Simple analytic forms
 - Fits
 - Mass function evolution

March 11, 2008

Dark Matter Halo Merging

Galiarm

What is Press-Schechter?

- An analytical model for the distribution of dark matter halo masses in hierarchical Universes
- Based on the statistics of peaks in Gaussian fields
- First derived by Press & Schechter (1974), extended in early 90's by Lacey & Cole, BCEK, Bower etc.
- Predicts halo mass function:

$$n(M;t) = \sqrt{\frac{2}{\pi}} \frac{\rho_b}{M^2} \frac{\delta_c(t)}{\sigma(M)} \left| \frac{d \ln \sigma}{d \ln M} \right| \exp\left(\frac{-\delta_c^2(t)}{2\sigma^2(M)}\right)$$

Rate of change of mass function easily determined

$$\dot{n}(M;t) = n(M;t) \left| \frac{\dot{\delta}_c}{\delta_c} \right| \left| \frac{\delta_c^2(t)}{\sigma^2(M)} - 1 \right|$$

March 11, 2008

Dark Matter Halo Merging

M

Extended Press-Schechter (ePS) Prediction for halo merger rate: I = $n(M_1)n(M_1)Q_1(M_1,M_2;t)$ • Theory carrispe¹, M₂;t) z = 0.5apipulated to predict $d \ln q$ σ_2 0.1 progenitor mass $\ln M_f$ $d fund t_{i} on (1 - \sigma_{f}^{2} / \sigma_{1}^{2})^{3/2}$ 0.01 /dM1 Agree reasonably well 0.001 with N-body $dN(M, |M_n)$ annulations 2 Leads to predictions 0.1 Obvious problem with this: for merger rates of 0.01 halos... $M_2 \neq Q(M_2, M_1)$ 0.001 10 M_{\star}/M_{\star}

Somerville et al. (2001)

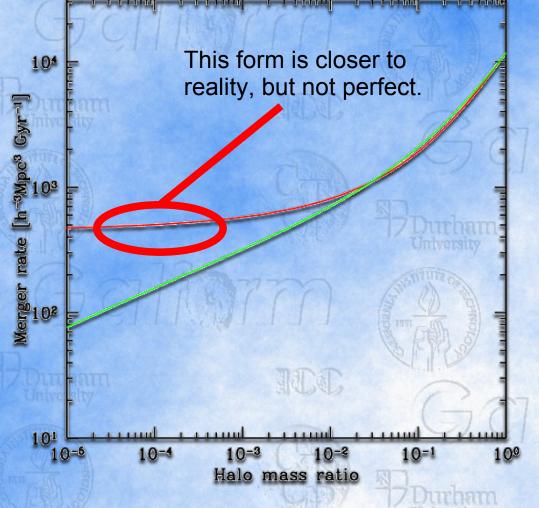
March 11, 2008

Merger Trees

- Halos form through merging of sub-units
- Process of merging described by merger trees
- Extended Press-Schechter can be used to construct these statistically

March 11, 2008

Uses of Press-Schechter


- Press-Schechter (and in particular ePS) is used extensively in studies of cosmology and galaxy formation
 - Galaxy evolution
 - Galaxy morphology
 - AGN activity
 - Lyman-break galaxies
 - Abundance of binary SMBHs...
 -and resulting event rate for LISA
 - Formation of the first stars
 - Substructure in Galactic halos
 - Reionization of the Universe
 - Halo angular momenta and concentrations
 - Particle acceleration in clusters
 - Formation redshifts of clusters

March 11, 2008

Dark Matter Halo Merging

Out of 686,000 refereed articles in the ADS database, Lacey & Cole (1993) is the 142nd most cited

The Problem with ePS

- Problem is that ePS predicts *two different* merger rates!
- Rates are similar for equal mass mergers, but very different for larger mass ratios
- Can affect many calculations using ePS

March 11, 2008

Why is There a Problem?

Press-Schechter

Halo mass

<u>i</u> G]	T.S.	"Reality"	"
		120	
A CONTROL			

- Press-Schechter doesn't deal with discrete halos
- Halo mass is a continuously varying function of position
- So, it doesn't really incorporate halo mergers at all
- (Also, filtering is not spatially localized)

March 11, 2008

Smoluchowski's Coagulation Equation

- Smolue coag
- Forn form

Hal

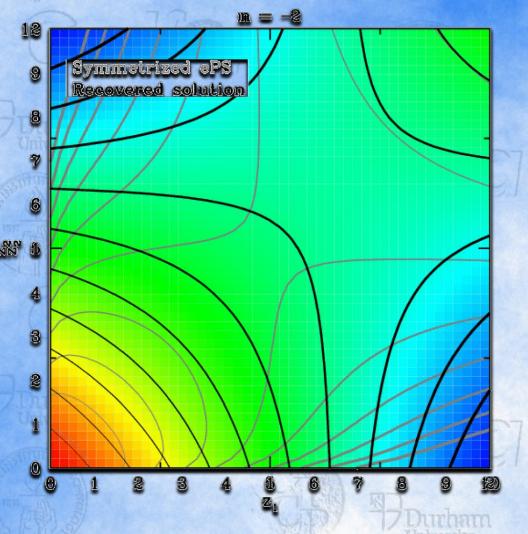
Net r

- Caveats
- Assumes mass is conserved in mergers
 Not true in N-body simulations
- Assumes binary mergers
 - May be true.....
-a. Ignores fragmentation
 - Happens in N-body simulations
 - Shoot-through
 - Ejection

ui

 $-\int_{0}^{\infty}Q(M,M')n(M)n(M')dM'$

March 11, 2008


Dark Matter Halo Merging

verning

dM

archical

Results: Merger Rate Functions

 $P(k) \propto k^n$

- Merger rate functions are symmetric and smooth
- Similar form to symmetrized ePS merger rates
- Can be parameterized by a simple fitting formula

CDM Power Spectra.....

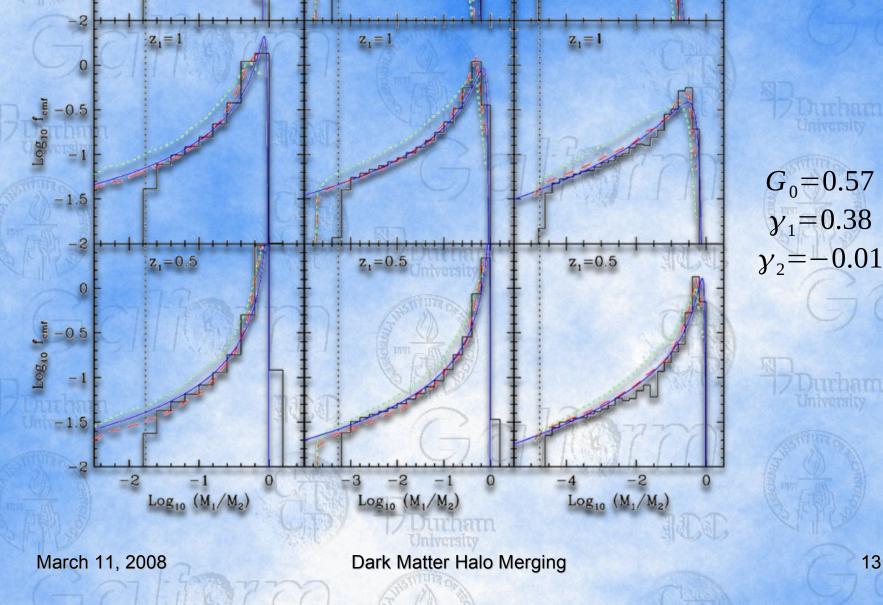
- Apply same techniques to CDM power spectra
- Used same regularization conditions
- Improved solver with improved dynamic range
- Can find solutions to Smoluchowski's equation.....
-but do not agree with N-body simulations!
- The smoothest solution is not the correct one
- Tried other regularization conditions, but no real success

March 11, 2008

Modified ePS Merger Rates

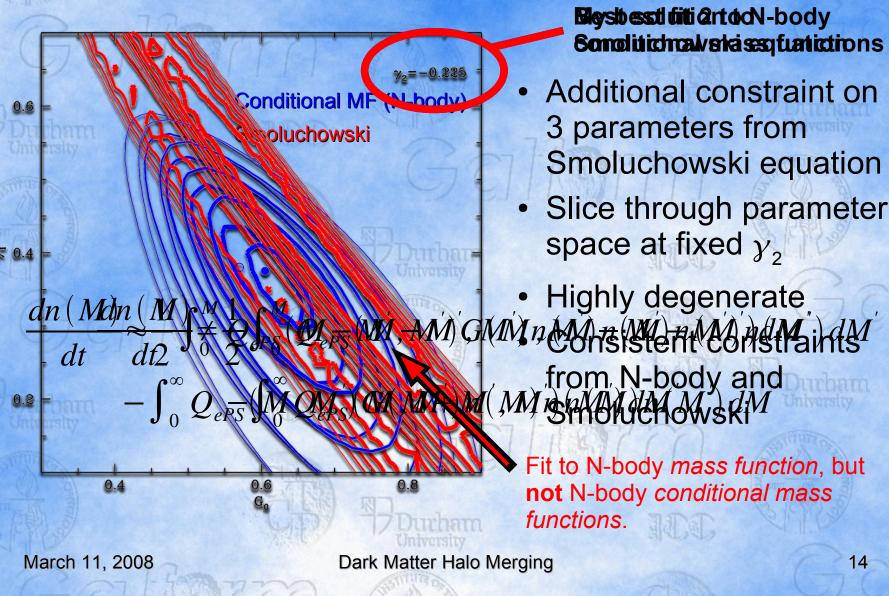
 $\frac{dN}{dM_1} \rightarrow \frac{dN}{dM_1} G\left(\frac{\sigma_1}{\sigma_f}, \frac{\delta_f}{\sigma_f}\right)$

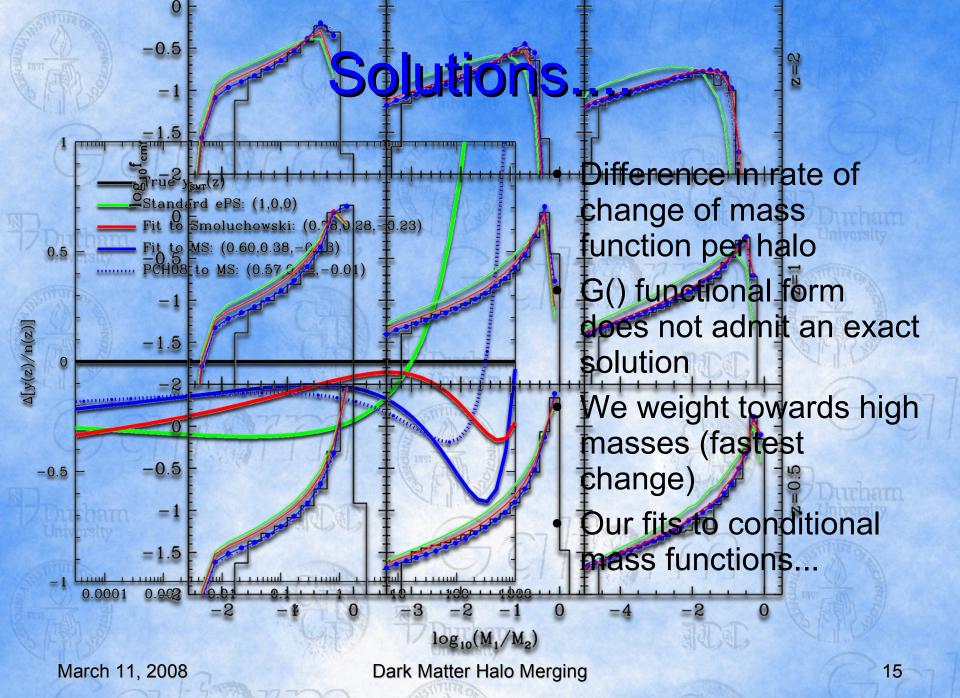
- Recently proposed empirical modifications to ePS
- Tuned to match N-body progenitor mass functions
- Parkinson, Cole & Helly (2007) method:

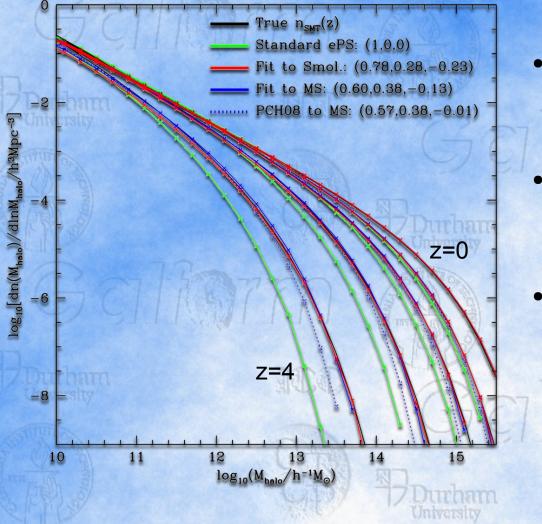

Progenitor mass function: Number of progenitors of mass M_1 for final halo of mass M_f

In Smoluchowski terms, just multiplies the merger kernel

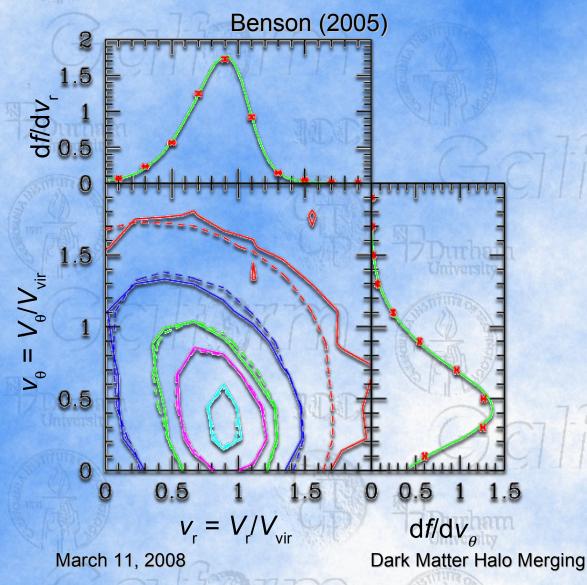
 $G\left(\frac{\sigma_1}{\sigma_f},\frac{\delta_f}{\sigma_f}\right) = G_0\left(\frac{\sigma_1}{\sigma_f}\right)^{\gamma_1} \left(\frac{\delta_f}{\sigma_f}\right)^{\gamma_2}$


March 11, 2008


Fits to Conditional Mass Functions

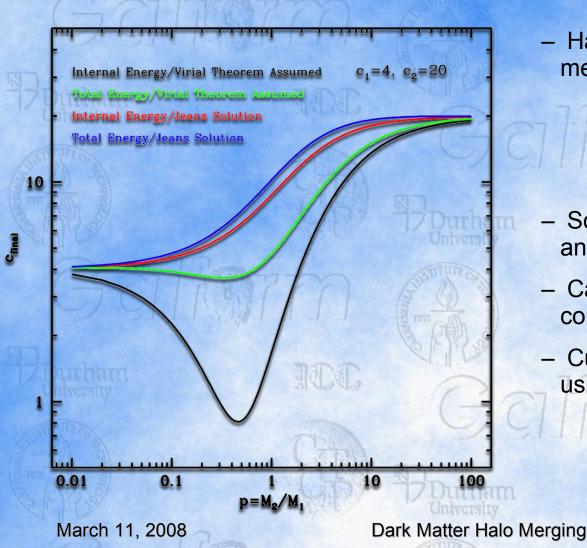

13

Constraints from Smoluchowski


Constraints from Smoluchowski

- Evolve Sheth-Tormen mass function over large redshift intervals
- New fits work extremely well, even for very low abundance halos
- Other functional forms for G() could work better still

March 11, 2008


Merger Tree Factory: Orbits

•What are orbital properties of just merged halos?

- •How to find them
 - N-body simulation
 - •Find all the halos
 - •Find those about to merge
- •Distribution of orbital velocities
- •Measured to very good precision

Halo Mass-Concentration Dan Grin & AJB

- Halo concentrations well measured
 - + Millennium Simulation (Neto et al., arXiv:0706.2919)
 - + C(M,z)
- Scatter larger than current analytic models predict (<30%)
- Can we rectify this by considering complete merging history?
- Currently testing this hypothesis using Millennium Simulation data

18

Summary

- Merger trees ubiquitous in structure/galaxy formation work
 - Need to be accurate
 - N-body trees good, but still very limited
- Extended Press-Schechter doesn't work
 - Inconsistencies
 - Inaccurate
- Coagulation equation
 - Can solve directly, but what regularization to use?
 - Using simple analytic forms a better/easier approach
- High-accuracy merger trees possible
 - Can construct trees back to z≥4 maintaining mass function

March 11, 2008